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Abstract 
A simplified version of the quantum teleportation protocol is presented in 
here. Its experimental confirmation will have deep implications for a better 
understanding of Quantum Entanglement with a particular projection on 
Quantum Communications. 
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1. Introduction 

First, we should mention the key pieces in Quantum Information Processing (in 
general), and Quantum Computing, and Communications (in particular), i.e., 
the Principle of Superposition and the quantum entanglement [1], both closely 
related to the work of Erwin Schrödinger [2] [3]. In fact, Schrödinger defined the 
entangled of pure states as the pure quantum state ABΨ  associated to compo-
site systems like A and B that cannot be represented in the form of simple tensor 
products of subsystem state-vectors, that is [1], 

AB A Bψ ψΨ ≠ ⊗                        (1) 

where “⊗ ” indicates the tensor product (also known as Kronecker’s product) 
while Aψ  and Bψ  are vectors providing the states of both subsystems, 
such as elementary particles [2] [3]. Those states of composite systems that can 
be represented as tensor products of subsystem states constitute the complement 
in the set of pure states, the product states [1]. In fact, states of the composite 
system that can be represented in this form are called separable states. Then, 
since not all states are separable states (and thus product states) we will carry out 
the following analysis. A pair of basis is established: { }Ax  for HA and { }By  
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for HB. In HA ⊗ HB, the most general state is of the form 

,
AB xy A B

x y
n x yΨ = ⊗∑                      (2) 

Therefore, this state will be separable if there exist vectors A
xn   , B

yn   , so  
that A B

xy x yn n n=  yielding A
A x A

x
n xψ =∑  and B

B y B
y

n yψ =∑ . It is inseparable  

if for any vectors A
xn   , B

yn    at least for one pair of coordinates A
xn , B

yn  we 
have A B

xy x yn n n≠ . If a state is inseparable, it is called an entangled state. 
On the other hand, in 1935 Albert Einstein, Boris Podolsky and Nathan Rosen 

(EPR) propose a thought experiment by which they try to demonstrate that the 
wave-function does not provide a complete description of physical reality (and 
which gives rise to the famous EPR paradox), and hence that the Copenhagen 
interpretation is unsatisfactory; resolutions of the paradox have important im-
plications for the interpretation of quantum mechanics [4]. The essence of the 
paradox is that particles can interact in such a way that it is possible to measure 
both their position and their momentum more accurately than Heisenberg’s un-
certainty principle allows [5], unless measuring one particle instantaneously af-
fects the other to prevent this accuracy, which would involve information being 
transmitted faster than light [6] [7] [8] as forbidden by the theory of relativity 
(“spooky action at a distance”) [5] [9] [10] [11] [12] [13]. This consequence had 
not previously been noticed and seemed unreasonable at the time; the pheno-
menon involved is now known as quantum entanglement [1] [5]. 

Moreover, in 1964 John S. Bell introduces his famous theorem [9] associated 
with 4 states, i.e., 2-qubit vectors into a combined space of Hilbert 

2 2
AB A BH H H= ⊗ , and relative to two subsystems A and B, 

( )

( )

1 0 ,0 1 ,1
2

1 0 ,1 1 ,0
2

AB A B A B

AB A B A B

±

±

Φ = ±

Ψ = ±
                 (3) 

where they are called Bell’s states, and also known as EPR pairs. This theorem 
raises an inequality, which when violated by quantum mechanics establishes the 
non-locality present in the entanglement of two subsystems like A and B. Besides, 
a posterior redefinition of this inequality due to Clauser, Horne, Shimony and 
Holt (CHSH) [14] leads to a more conducive way to experimental testing with 
[13] and without [15] loopholes. 

An extremely important concept in quantum teleportation is the No-Cloning 
Theorem [5] [16], which states that it is impossible to create an identical copy of 
an arbitrary unknown quantum state. This No-Go Theorem of quantum me-
chanics was articulated by Wootters and Zurek [16] and Dieks [12] in 1982, and 
has profound implications in quantum computing and related fields. Besides, 
the No-Cloning Theorem [5] prevents the transfer of information faster than 
the speed of light [6] [7] [8]. We have seen that a measurement on subsystem A 
instantaneously transforms subsystem B into a well-defined state. The word 
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“instantaneous” is seductive. Let us imagine that an entangled pure state has 
been produced whose subsystem SA is at Alice’s location and whose another 
subsystem SB at Bob’s location, very far away. Alice attempts to transmit one bit 
of information to Bob by measuring one of two non-commuting observables on 
her subsystem SA. If Bob succeeds in reading out this information on his subsys-
tem SB, then it would have been transmitted at a velocity greater than that of 
light and this would contradict the theory of relativity [6]. 

Quantum teleportation [17] [18] [19] is a process by which a quantum state 
ψ  can be transferred from one point to another while destroying the original 

state, which is required by the no-cloning theorem [5] [12] [16]. This process 
takes place between two different locations. An EPR pair (i.e., two maximally 
entangled states) is apportioned between Alice and Bob. Alice has the state to be 
teleported. This state is entangled with his EPR state, and after that a process 
involving quantum gates, Alice performs measurements with a certain probabil-
ity, so that in identifying the original state in the appropriate base she transmits 
the elements of that base but in its classic version (i.e., two bits) through a classic 
channel. On the other side, Bob receives both bits, so that with them and the ap-
propriate quantum gates, he rebuilds the original state. Clearly, we can see that a 
quantum teleportation depends on a classical communication, which can pro-
ceed no faster than the speed of light, it cannot be used for faster-than-light 
transport or communication of classical bits. Of course, the classical channel is 
the weak link in this chain in terms of transmission speed. 

Otherwise, and since the quantum entanglement has a serious enemy, and in 
addition, quantum teleportation necessarily depends on the quantum entangle-
ment, then such an enemy is inherited by quantum teleportation. This enemy is 
decoherence [20], which usually collapse the entanglement. Decoherence can be 
viewed as the loss of information from a system into the environment, since 
every system is loosely coupled with the energetic state of its surroundings. This 
interaction between the state and its environment is clearly seen during the 
quantum measurement [21], which causes the collapse of the wave-function [20] 
[21]. To try to mitigate this problem, we must apply reconstructive techniques of 
the state, which results in an increase in the computational cost of the process as 
a whole [22]. 

In this paper, we present a new protocol of quantum teleportation which does 
not require any disambiguation based on the transmission of classical bits, as in 
fact it happens in the original version [12] [17] [18] [19], which when using two 
channels (one classic for the bits and another quantum for the distribution of the 
EPRs) is more susceptible to attacks. However, the new version is simpler to im-
plement in the laboratory than the original. This possibility has its origin in a 
work of Quantum Communications [23] which, through an extensive analysis, 
reaches the conclusion that such a possibility is viable. 

Finally, the main pending aspect within the teleportation is its lack of instan-
taneity (seen and a whole) and a clear definition of its bandwidth [23]. Both are 
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the responsibility of the classic channel that the protocol necessarily uses. To this 
scenario points to this work based on [23]. 

2. Setup 

For the implementation of quantum teleportation, we must use some quantum 
gates, which we are going to present next. The first one is the Hadamard gate,  

which acts on a single qubit. It maps the basis state 0  to ( )1 0 1
2

+  and 1  

to ( )1 0 1
2

− , which means that a measurement will have equal probabilities  

to become 1 or 0 (i.e., it creates a superposition). It is represented by the Hada-
mard matrix: 

( ) 1 11 1
1 12 2x zH σ σ
 

= + =  − 
                 (4) 

where xσ  and zσ  are two of the three Pauli’s matrices ( ), ,x y zσ σ σ  [24] 

0 1
1 0xσ
 

=  
 

, 
0

0y

i
i

σ
− 

=  
 

 and 
1 0
0 1zσ
 

=  − 
        (5) 

with 1i = − . Figure 1 represents the Hadamard’s gate [24]. 
The second one is the Controlled NOT gate or simply CNOT, which operates 

on a quantum register consisting of 2 qubits. The CNOT gate flips the second 
qubit (the target qubit) if and only if the first qubit (the control qubit) is 1 . 
The inputs are allowed to be a linear superposition of { }0 , 1 . As an example 
of this, we can see that the CNOT gate transforms a superposed quantum state 
of the kind 00 01 10 11a b c d+ + +  into another like  

00 01 11 10a b c d+ + + . The CNOT gate can be represented by the matrix: 

1 0 0 0
0 1 0 0

0 0 0 0
0 0 0 1
0 0 1 0

xCNOT I σ

 
 
 = ⊗ + ⊗ =
 
 
 

        (6) 

where I is the identity matrix. Figure 2 represents the CNOT gate [24]. 
With both gates, we can build the famous Bell state (or EPR pair, named after 

Einstein, Podolsky, and Rosen paper [4]) from computational basis state 0  
[5], as we can see in Figure 3. 

As an example, we are going to build 00β , i.e., the Bell state of Figure 3 
based on two states 0  at its entrance and the application of Hadamard (H) 
and CNOT gates in that order. Thus, for the upper branch of Figure 3, we have 

1 1 1 1 210
1 1 02 1 2

H
    

= =     −      
               (7) 

while by the lower branch, simply 0 0= . Now, and before of CNOT gate, the 
Kronecker’s product “⊗ ” intervenes between both branchs of Figure 3, the up-
per and the lower, 
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Figure 1. Hadamard’s (H) gate. 

 

 
Figure 2. CNOT gate. 

 

 
Figure 3. The output of these gates (Hadamard and CNOT) is an EPR qubit or Bell state. 
In fact, an EPR pair, one to Alice and other to Bob. 
 

1 2
1 1 2 0

0 0
0 1 2 1 2

0

H

 
     ⊗ = ⊗ =          
  

              (8) 

Finally, CNOT gate is applied 

( ) 00

1 0 0 0 1 2 1 2 1 0
0 1 0 0 0 0 0 01 1
0 0 0 1 0 0 02 21 2
0 0 1 0 0 10 1 2

1 10 0 1 1
2 2

1 10 0 1 1
2 2

1 00 11
2

β

        
        
        = = +        
        
           

= ⊗ + ⊗

= +

= + =

       (9) 

The complete set of Bell’s basis are: 

( )

( )

( )

( )

00

01

10

11

1 00 11
2

1 00 11
2

1 01 10
2

1 01 10
2

β

β

β

β

+

−

+

−

= Φ = +

= Φ = −

= Ψ = +

= Ψ = −

               (10) 
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then, 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

00 01

10 11

10 11

00 01

1 100
2 2

1 101
2 2

1 110
2 2

1 111
2 2

β β

β β

β β

β β

+ −

+ −

+ −

+ −

= Φ + Φ = +

= Ψ + Ψ = +

= Ψ − Ψ = −

= Φ − Φ = −

         (11) 

On the other hand and as a complement to the tools seen so far in this section, 
it is necessary to be able to evaluate the quality of the experimental implementa-
tion of teleportation protocols in the presence of noise, i.e., how faithful is the 
teleported state to the original? Therefore, we will need a good metrics to be able 
to evaluate said transfer quality. Then, we recommend here two versions of the 
most used metric in teleportation, the fidelity [25]. These versions have to do 
with the characteristic of the state to teleport, i.e., if it is pure or a mixed state 
[25] [26] [27]. 

Fidelity f is a metric which gives us the closeness between an initial and final 
state in a quantum process [25]. It has widely been used to characterize the per-
formance of various quantum information tasks. Fidelity f is bounded by 0 ≤ f ≤ 
1, where the unit fidelity (f = 1) implies that the initial and final states are equiv-
alent [25]. Quantum teleportation is designed to transmit all possible (unknown) 
input states, thus a measure of averaging over all inputs is used. That is the av-
erage fidelity F. It quantifies how well the unknown input states can be trans-
mitted to another location. Thus, F shows the optimality of the quantum tele-
portation. There it is shown that the unit average fidelity (F = 1) can be obtained 
when the two remote parties share the maximally entangled states, whereas F = 
2/3 is the maximally attainable one in any classical schemes which cannot use 
the entanglement [25]. 

Therefore, if inψ  and outψ  are the state to be teleported and the state te-
leported, respectively, 

in in inρ ψ ψ=  and out out outρ ψ ψ=             (12) 

will be their respective density matrices. Fidelity quantifies a transformation 
performance between inψ  and outψ  states as, 

( )1 2

out in outf Tr ρ ρ ρ =   
                (13) 

The quantum teleportation applies to unknown input states so that the aver-
age fidelity—an average of the fidelities f over all possible input states—is used: 

d inF f ψ= ∫                         (14) 

where d inψ  is Haar measure with d 1inψ =∫ . Here, F = 1 implies that the task 
is perfectly performed for all possible inputs, while F = 1/2 does at random [25]. 
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3. Standard Quantum Teleportation 

Then, we will develop the standard quantum teleportation protocol with and 
without noise. Where, the noiseless analysis is fundamental taking into account 
the implications of the new protocol for the whole Physics from the theoretical 
point of view, while from the purely experimental point of view we must con-
sider the reality of the laboratory affected by innumerable noises due to all the 
gates involved for the purpose of implementing the different protocols. For this 
last reason, we need a thorough analysis in the presence of noise. 

3.1. Noiseless Analysis 

The quantum teleportation begins with the distribution of the EPR pair 00β  
to Alice and Bob. This distribution constitutes the entanglement link between 
Alice and Bob, and after that, we continue with the complete sketch of quantum 
teleportation of Figure 4, where the green line indicates the border between the 
sides of Alice and Bob, that is, both extremes of the entanglement link. In Figure 4, 
a single fine line represents a wire carrying one qubit, while a double line 
represents a wire carrying one classical bit [24]. Besides, the classical channel is 
really a control classical channel for disambiguation purposes (as we will see be-
low through two bits), while the entanglement link is really an entanglement da-
ta link. Besides, in this figure, the block with an H represents a Hadamard’s gate, 
and 00

A Bβ ∪
+≡ Φ  of Equation (10). 

Now, If 0 1ψ α β= +  is an arbitrary state to be teleported with 
2 2 1α β+ =  and α β∧ ∈  of a Hilbert space, then, the initial state 

(3-partite state) will be, 

( ) ( )

( ) ( )

0 00 00
10 1 00 11
2

1 0 00 11 1 00 11
2

1 000 011 100 111
2

ψ ψ β ψ β α β

α β

α α β β

= ⊗ = = + +

 = + + + 

=  + + +  

    (15) 

where for simplicity (and from here on) in a generic form x y x y⊗ = . 
Now, CNOT gate is applied to Equation (15), 

1
1 000 011 110 101
2

ψ α α β β=  + + +             (16) 

At this time, we apply a Hadamard’s gate to the elements of Equation (16), 

0 0 1 0 0 1 1 1
2

0 0 0 1 1 0 1 1

1 00 01 10 11
2
1
2

x z x z x z x z

x z x z x z x z

ψ σ σ ψ σ σ ψ σ σ ψ σ σ ψ

σ σ ψ σ σ ψ σ σ ψ σ σ ψ+ − + −

 = + + + 

 = Φ + Φ + Ψ + Ψ 

(17) 

Besides, Table 1 synthesizes the complete process of quantum teleportation, 
where Alice measures two of the possible qubits of the basis of Equation (10) and 
therefore she transmits the corresponding bits b1 and b2 via a classical channel to  
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Table 1. Alice’s side: measurement of the base, classical transmission of bits, and the col-
lapse of states. Bob’s side: classical reception of bits, gates application for the final recov-
ery of the arbitrary state. 

Alice’s  
measurement 

Alice 
transmits 

This happens with 
probability 

Collapsed state Bob applies 1 2b b
x zσ σ  

00+Φ →  2 1 00b b =  
2

0 01 1
2 4x zσ σ ψ =  0 0

x zσ σ ψ+Φ  0 0
x zσ σ ψ ψ=  

01+Ψ →  2 1 01b b =  
2

1 01 1
2 4x zσ σ ψ =  1 0

x zσ σ ψ+Ψ  1 0
x z xσ σ ψ σ ψ=  

10−Φ →  2 1 10b b =  
2

0 11 1
2 4x zσ σ ψ =  0 1

x zσ σ ψ−Φ  0 1
x z zσ σ ψ σ ψ=  

11−Ψ →  2 1 11b b =  
2

1 11 1
2 4x zσ σ ψ =  1 1

x zσ σ ψ−Ψ  1 1
x z x zσ σ ψ σ σ ψ=  

 

 
Figure 4. Standard Teleportation protocol using an EPR pair and two classical bits for 
disambiguation. 
 
Bob. The quantum measurement process is imperative in order to make the 
wave-function of the original arbitrary state collapse since this is necessary not 
to violate the No-Cloning Theorem. In other words, the quantum measurement 
process destroys the original arbitrary state [24]. 

At this point, it is important to mention that in literature there are several 
concerns regarding the implementation of teleportation protocols using a great-
er or lesser dimensional commitment but always with two classical bits for dis-
ambiguation. An interesting example can be found in [28], which shows that the 
one-qubit teleportation can be considered as a state transfer between subspaces 
of the whole Hilbert space of an indivisible eight-dimensional system. However, 
this as well as the rest of the works that manipulate high dimensional quantum 
systems for the implementation of quantum teleportation protocols do it with 
two classical bits for disambiguation. 

On Alice’s side, the combination of the modules constituted by the following 
gates: CNOT, H (Hadamard) and quantum measurement, constitute what is 
known as Bell State Measurement (BSM), while on Bob’s side, its modules are 
unitary operations necessary for the reconstruction of the teleported state. What 
Alice did plus the transmission of the classic bits of disambiguation along with 
Bob’s unitary operations is the clearest example of Local Operations and Classical 
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Communication (LOCC) [29]. 
Finally, we must highlight as a fundamental contrast between this version of 

the quantum teleportation protocol with the following one, that here, i.e., in Eq-
uation (15) we make 00ψ β⊗  and that the Kronecker product “⊗ ” is not 
commutative. 

3.2. Noisy Analysis 

Starting again from Figure 4, and considering noise in the EPR pair by a distur-
bance of the shape 

00 00 11n A Bβ = +                       (18) 

where subscript n means noise, and 

2 2 1A B+ = , with ( ) 1 1
2 2

A B A B   ≠ ∧ ≠ ∧ ≠   
   

         (19) 

Then, repeating Equation (15) but with 00 nβ  instead of 00β , we will have 

( )( )0 00 0 1 00 11

000 100 011 111
n A B

A A B B

ψ ψ β α β

α β α β

= = + +

= + + +
        (20) 

Now, CNOT gate is applied to Equation (20), 

1 000 110 011 101A A B Bψ α β α β= + + +         (21) 

At this time, we apply a Hadamard’s gate to the elements of Equation (21), 

2
1 000 100 010 110
2

011 111 001 101

00 0 00 1 10 0 10 1
2 2 2 2

01 0 01 1 11 1 11 0
2 2 2 2

00 0 1 10 0 1
2 2 2 2

01 1 0 11 1 0
2 2 2 2

A A A A

B B B B

A B A B

A B B A

A B A B

B A B A

ψ α α β β

α α β β

α β α β

β α α β

α β α β

α β α β

=  + + −

+ + + − 

= + + −

+ + + −

   = + + −   
   
   + + + −   
   

 (22) 

From here, we follow a procedure similar to that of Table 1 but taking into 
account how sensitively the state will be affected by noise. 

4. Simplified Quantum Teleportation 

First, and unlike the previous one, the new protocol dispenses with a classic 
channel to transmit the disambiguation bits, as well as it does not require the use 
of the Pauli matrices of Bob’s side in order to reconstruct the teleported state 
from the mentioned disambiguation bits. These simplifications are the reason 
for the title of this paper, that is, simplified protocol. We will focus on Figure 5 
using 00β ψ⊗  instead of 00ψ β⊗ . 
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Figure 5. Simplified Teleportation protocol using an EPR pair but without classical bits 
for disambiguation. 

4.1. Noiseless Analysis 

( )( )0 00
1 00 11 0 1
2

1 000 001 110 111
2

ψ β ψ α β

α β α β

= = + +

=  + + +  

         (23) 

Now, CNOT gate is applied to Equation (23), 

1
1 000 001 100 101
2

ψ α β α β=  + + +            (24) 

Applying a Hadamard’s gate to the elements of Equation (24), 

( )

2
1 000 100 001 001
2

000 100 001 101

000 001 00 0 1

ψ α α β β

α α β β

α β α β

=  + + +

+ − + − 
= + = +

          (25) 

It is clear from Equation (25) that no disambiguation is necessary. Alice 
measures (where, both bits are always equal to zero independently of ψ ) in 
order to annul the entanglement and thus avoid violating the No-Cloning Theo-
rem [5] [16]. We can also see in Figure 5 that it is not necessary for Bob to apply 
any unitary transformation. This eliminates the classic channel that is responsi-
ble for obliging teleportation as a whole to be carried out in a time greater than 
zero, i.e., not being instantaneous. 

4.2. Noisy Analysis 

For noisy EPR pairs we also resorted to Figure 5 and using the same version of 
Equation (18) and Equation (19). Then, repeating Equation (23) but with 00 nβ  
instead of 00β , we will have 

( )( )0 00 00 11 0 1

000 110 001 111
n A B

A B A B

ψ β ψ α β

α α β β

= = + +

= + + +
        (26) 

Now, we apply CNOT gate to Equation (26), 

1 000 100 001 101A B A Bψ α α β β= + + +          (27) 
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Applying a Hadamard’s gate to the elements of Equation (27), 

( ) ( )

( ) ( )

( ) ( )

2
1 000 100 000 100
2

001 101 001 101

00 0 1 00 0 1
2 2

10 0 1 10 0 1
2 2

00 10 0 1 0 1
2 2

A A B B

A A B B

A B

A B

A B A B C

ψ α α α α

β β β β

α β α β

α β α β

α β α β

=  + + −

+ + + − 

= + + +

+ + − +

 + −   = + + = +    
    

  (28) 

where 

00 10
2 2

A B A BC + −   = +   
   

                 (29) 

 
The worst consequence of noise on the new protocol is that the teleported 

state loses its purity, that is to say, it would not be on Bloch’s sphere, in the more 
general case, given that 1C ≠ , but even so, the teleported state is recovered 
without problems and without disambiguation. 

5. Conclusions and Future Works 

In this work, we have presented a new quantum teleportation protocol in which 
we have eliminated the classical channel used currently for disambiguation, and 
since the classical channel is the weak link of standard teleportation in all mat-
ters relating to safety and speed, the novel seems to be an interesting alternative. 
We speak of security since quantum cryptography [30] [31] is much more robust 
than its classical counterpart, being its main tool the quantum key distribution 
(QKD) [5] [24] [30] [31]. On the other hand, the classical channel forces the 
communications system (as a complete unit) to have a speed of transmission 
equal to the speed of light, that is, the system is not instantaneous. In other 
words, in the case of an interplanetary communication, the traditional teleporta-
tion behaves (from the point of view of speed) as a classic communications sys-
tem currently in use. The new protocol is also not instantaneous; it simply 
doesn’t have the disadvantages of the classic channel, although it is extremely 
faster than traditional teleportation. 

The experimental implementation of the new protocol will allow us to verify 
what is established in [23], which is an attempt to unify the two main pillars of 
Physics: the Theory of Relativity and Quantum Mechanics, as well as get a better 
understanding of the entanglement. This happens because the new protocol eli-
minates the obligation to use two channels, a classical one and a quantum one, 
and that because of the first one, the fundamental attribute of entanglement is 
lost: the instantaneity. Furthermore, in the Quantum Communications work 
mentioned above [23], it is demonstrated that a superluminal signaling [7] [8] is 
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not necessary for entanglement to be instantaneous. 
The future challenges in this area involve: a thorough study of what this work 

means in black hole theory, and, a formal and detailed analysis of the complete 
attributes of the entanglement and therefore of a quantum channel in terms of 
its bandwidth, channel capacity and information transit time for Quantum 
Communications [32] [33] [34]. Besides, the impact of the aforementioned veri-
fication on Quantum Internet [35] [36] and Super Dense Coding [5] [17] is evi-
dent. 

Finally, and considering that there are already precedents of teleportation of 
energy [37] [38], and taking into account [23], can we in the not too distant fu-
ture teleport matter via exclusively quantum channels? 
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