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Abstract 
 
Any undesirable signal limiting to a degree or another the integrity and the intelligibility of a useful signal 
can be considered as noise. In the general rule, the good performance of a system is assured only if the level 
of power of the useful signal exceeds by several orders of magnitude that of the noise (signal to noise of a 
several tens of decibels). However certain elaborate methods of treatment allow working with very low sig- 
nal to noise ratio in an optimal way any a priori knowledge available on the signal useful to interpret. In this 
work, we evaluate the robustness of the noise on a new method of multicomponent image segmentation de- 
veloped recently. Two types of additional noises are considered, which are the Gaussian noise and the uni- 
form noise, with varying correlation between the different components (or planes) of the image. Quantitative 
results show the influence of the noise level on the segmentation method. 
 
Keywords: Multicomponent Images, Segmentation, n-D Compact Histogram, Additional Noise, Gaussian 

Noise, Uniform Noise, Correlated Noise 

1. Introduction 
 
Multicomponent images are composed of several plans 
of images. We can classify them into three main catego- 
ries [1]: 1) The images of homogeneous components are 
those consisted of series of images of the same nature, 
and representing the same scene. The nature of the third 
dimension depending on the application may be temporal 
or polarimetric. 2) The images with quasi-homogeneous 
components are images intrinsically vectorial. Each pixel 
is characterized by the vector “color” or multispectral. The 
components are expressed numerically with the same 
measuring unit, for example energies in different wave- 
bands. The only rigorous approach to treat such images 
is the vectorial approach. This work interests particularly 
this category of images. 3) The images with heterogene- 
ous or multiprotocol components are images whose 
components are not the same nature because the different 
components of the image are obtained by the use of 
sources of different nature.  

In a multicomponent image, a pixel can be considered 
as a vector of attributes of n elements (tuple, where n is 
the number of components of the image) from which 
each value of the tuple is resulting from a component of 
the image. Segmenting the images according to their 
radiometric attributes can be achieved by analyzing multi- 
dimensional histogram [2,3]. However, to manipulate a 
nD histogram (n > = 3) is not easy task because it re-
quires a large memory [4-6]. The difficulty can be over-
come by using a compact multidimensional histogram 
[7-12]. We have recently proposed a segmentation 
method [3] based on the analysis of compact nD histo- 
gram. We report here how this algorithm proves to be 
robust to additional noise considered as a harmful cor- 
rupting signal with the extraction of the useful signal. 

In this work, we first make a brief presentation of our 
segmentation algorithm, for more details refer to the arti- 
cle [3]. Then we present here the additive noises that are 
likely considered Gaussian, uniform and so correlated. 
Finally the robustness of the noise is evaluated on a mul- 
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ticomponent synthetic image whose properties are de- 
scribed. 
 
2. Algorithm of Multicomponent Images  

Segmentation  
 
The classification of “colours” is carried out in two steps 
[3]: the learning step and the decision step. 

The learning step is a hierarchical decomposition of 
populations in the compact n-D histogram. For each level 
of population pn, peaks Pi are identified by the FCCL 
algorithm for a given value of α, which retains the con- 
nected components whose populations are greater than or 
equal to pn. Each peak is then iteratively decomposed 
into narrower peaks, beginning from population 0. A 
peak is labelled as significant if it represents a population 
greater than or equal to a threshold S (expressed in per- 
cent of the total population in the histogram). The pro- 
cedure is illustrated in part (a) of Figure 2 (drawn in one 
dimension for clarity). We shall name kernels Ki the 
peaks corresponding to circled leaves in part (b) of Fig-
ure 1. In other words, kernels are significant peaks (part 
a of Figure 1) without descendants in the hierarchical 
decomposition tree (part (b) of Figure 1) (e.g., Figure 1 
shows five significant peaks Pi (i = 0 to 4) and three 
kernels Ki (i = 2, 3, 4)). The number of classes Nc is 
taken equal to the number of kernels (the class corre- 
sponding to kernel Ki is noted Ci). Therefore Nc depends 
on the threshold S, i.e. on the precision the image colors 
are analyzed with and the value of α the degree of simi- 
larity between the spels.  

At the decision step, the mass center µ(Ki) of each 
kernel Ki is calculated in the feature multidimensional 
space. Let us denote by ß the color corresponding to the 
point of coordinates (g1, g2, ···, gn) in the feature space. 
Two cases appear: if (g1, g2, ···, gn) belongs to Ki, color ß 
is attributed to class Ci; if not, let us denote by Pk the 
peak which belong to (g1, g2, ···, gn); color ß is attributed 
to class Ci corresponding to kernel Ki, son of Pk, know- 
ing that d[µ(Ki), (g1, g2, ···, gn)] is minimum, where d[y, z] 
is the Euclidean distance between y and z. 

This method calls HierarchieFuzzy_nD. 
Figure 2 shows an example of segmented image of the 

probe image, inspired by the image Savoise [2,14]. 
 
3. Synthetic Image and Additional Noise 
 
There are many sources of noise to an image, for exam- 
ple in the case of a Gaussian random variable, or Gaus- 
sian noise can be added by the system to the ideal image. 
For digital images, the source is the precision of the CCD 
or CMOS highlighted by a high gain [13,14]. Two types 
of noise are considered in this work. 
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Figure 1. An example of hierarchical decomposition with α = 
0.5. The circled leaves (part (b)) correspond to significant 
peaks as obtained at the end of the iterative decomposition 
(solid lines in part (a)), whereas leaves marked < S (part (b)) 
correspond to insignificant peaks (dotted lines in part (a)). 
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Figure 2. Example of segmented image by HierarchieFuzzy_ 
nD. 
 
3.1. Synthetic Image 
 
The probe image (Figure 2(a)) is a synthetic RGB color 
image coded on 24 bits, with a 256 × 256 resolution. It is 
inspired by the image Savoise [2,15]. This image (noise- 
less) is composed of six regions with different geome- 
trical shapes and pure colors as indicated in Table 1. The 
six classes are numbered as shown in Figure 3. 

For segmenting the probe image (Figure 3) into 2 to 6 
classes, the choice of the intervals of the threshold S is 

iven by Table 2. g    
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Table 1. Characteristics of the noiseless probe image. 

Region Description Size Colorimetric components 

  pixels % R G B 

1 background 45092 68.8 86 84 70 

2 disk 1245 1.9 121 95 69 

3 triangle 1950 3.0 107 91 56 

4 ring 3768 5.7 187 87 87 

5 square 9050 13.8 70 123 77 

6 irregular 4431 6.8 63 108 99 

 
Table 2. Intervals of threshold S for a class number desired. 

Class number 2 3 4 5 6 

Threshold S range (%) [6.8, 13.8] [5.8, 6.7] [3.0, 5.7] [1.9, 2.9] [0.0, 1.8] 

 
 1 

2 4 

5 

3 
6 

 
Figure 3. Probe image with six numbered regions. 

 
3.2. Additional Gaussian Noise 
 
Also called Normal distribution, it occurs very frequently 
in statistics, advanced sciences like photonics, elec- 
tronics, transmission, quantum mechanics and economics 
and can be used to approximate many distributions oc- 
curring in nature and in the manmade world. For exam- 
ple, the white noise in telecommunication due to the re- 
sistance, amplifier, transistor and diode. The theory of 
normal distribution also finds use in natural and social 
sciences. 

In the images, the source is the precision of the sensor 
CCD or CMOS highlighted by a high gain [13,14]. The 
normal distribution can be characterized by the mean and 
standard deviation. The mean is generally represented by 
μ and the standard deviation by σ. For a perfect normal 
distribution, the mean, median and mode are all equal. 
The normal distribution function can be written in terms 
of the mean and standard deviation as follows: 

   2
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 
 

 




        (1) 

The simplest case of a normal distribution is known as 

the standard normal distribution (μ = 0 and σ = 1), 
described by the probability density p(x): 
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            (2) 

The normal distribution is usually denoted by  
 2, N   . Thus when a random variable Z is dis- 

tributed normally with mean μ and variance σ2, we write 
Z ~  2, N   .  

We suppose that X follows the distribution  0,1N  
and we pose Y X   , then Y follows the distribu- 
tion  2, N   . 

Our developments have been realized in the Matlab 
environment. The function (algorithm) for generating a 
2D (or image) Gaussian noise with 256 × 256 resolution 
name Gnoise is given below. Figure 4 shows the probe 
image corrupted with an additional Gaussian noise and 
its segmentation by HierarchieFuzzy_nD.  

function    Gn = Gnoise(μ, σ) 
% generating a Gaussian noise with for example  
% 2D (or image) Gaussian noise Gn with standard de- 

viation σ and mean μ 
Gn = σ*randn(256,256) + μ ; 
% End of the function 

 
3.3. Additional Uniform Noise 
 
In probability theory, discrete uniform law is a discrete 
probability law which can be characterized by saying 
that each value of a finite set of possible values is equally 
likely to occur (we speak of equal probability).  

A random variable that can take n possible values K1, 
K2, ···, Kn following a uniform distribution when the 
probability of any value Ki is defined by:  



S. OUATTARA  ET  AL. 1085 
 

 
(a) 

 

α Number of 
classes 0.5 0.25 

6 

  

5 

  

4 

  

3 

  

2 

  
(b) 

Figure 4. The probe image corrupted with a Gaussian noise 
of σ = 0.02 (a) and its segmentation for α = 0.5 and α = 0.25 
by HierarchieFuzzy_nD (b). 
 

  1
     1ip x K i n

n
                (3) 

The function for generating a 2D (or image) Uniform 
noise with 256 × 256 resolution name Unoise is given 
below; Figure 4 shows the probe image corrupted with 
an additional Uniform noise. 

function    Un = Unoise(μ, σ) 
% generating a Uniform noise 
% 2D (or image) Uniform noise Un with standard de- 

viation σ and mean μ 
Un = σ*rand(256,256) + μ ; 
% End of the function 

 
3.4. Additional Correlated Noise 
 
In order to evaluate the robustness of our segmentation 

method, the different components of the probe image 
have been corrupted by additional Gaussian or Uniform 
noises with more or less correlation. The noise gene- 
ration has been realized by using Matlab language. 

Being Nm1, Nm2, ···, Nmn n (n >= 3) matrices of mar- 
ginal center noise, and Nc a matrix of common centered 
noise, with the same standard deviation σ, the alteration 
of an image constituted of the n spectral components P1, 
P2, ···, Pn is given by : 

PiN = Pi + βNc + (1 − β)Nmi  (i = 1, 2, ···, n)    (4) 

where the noise correlation can be adjusted through β, 
from uncorrelated noise (β = 0) to totally correlated 
noise (β = 1). A partially correlated noise corresponds to 
β = 0.5. 

An example of a corrupted image is given on Figure 
4(a) or Figure 5. It is obtained from Figure 3 by adding 
uncorrelated Gaussian noise or Uniform noise with σ = 
0.02. 

When we apply to the noiseless probe image (Figure 3) 
the segmentation algorithm HierarchieFuzzy_nD, it pro- 
vides a class number which grows from 1 to 6 when the 
threshold S (Figure 1) which decreases from 100% to 
0%. The classes so obtained will be taken as references 
of segmented images for calculating the segmentation 
errors induced by adding noise into the original probe 
image. The following figure (Figure 6) presents the 
probe image corrupted with a partially correlated Gaus- 
sian noise and its segmentation into six classes. 

 

 

Figure 5. The probe image corrupted with an Uniform 
noise of σ = 0.02. 
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Figure 6. Corrupted probe image with a partially corre-
lated Gaussian noise (σ = 0.02) and its segmentation. 
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4. Evaluation of Segmentation Errors Due to  
the Noise 

 
The measure of Vinet [16-19] is a supervised criterion 
which corresponds to the correct segmentation or classi- 
fication rate between segmentation result and reference 
segmentation. For synthetic image, the ground truth is 
available. This criterion is often used to compare a seg- 
mentation result RI  with a ground truth RefR

I  in the 
literature. We compute the following superposition table: 

  
( , )

, Ref , Ref
R R

i j

T I I card R R  i j



        (5) 

where  Ref
i jcard R R  is the number of pixels result- 

ing from the intersection of regions i  and R jR  in the 
ground truth. The best match between i  and R Ref

jR  is 
one that maximizes 

R
. Vinet’s measure gives 

a dissimilarity measure, it is computed as follows: 
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For a given number Nc of classes in noiseless image (2 
≤ Nc ≤ 6) , the classification will be considered as robust 
to noise if first Nc classes can be found in the corrupted 
image (for the two images the threshold S providing Nc 
classes will be eventually different). In our case, we as- 
sociate the regions between i  and R Ref

jR  respectively 
to the classes i  and C Ref

jC . In this case the regions are 
paired by minimizing accordance to the Equation (4) the 
quantity: 

   2

( , )

, Ref
i j

i j

dist K K 
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             (7) 

where dist represents the Euclidian distance. The mini- 
mization considers the kernels mass centers rather than 
the classes mass centers in order to make pairing inde- 
pendent of the classification decision step. 

The measure г so calculated is more relevant to the 
segmentation by classification than the general measure 
of Vinet [16-19]. 

The classification error Г has been measured for the 
probe image of Figure 3, altered with Gaussian or Uni- 
form noise. The noise correlation between the R, G, B 
planes is realized using the parameter β. Three β values 
are considered: β = 0 (uncorrelated noise), β = 0.5 (par- 
tially correlated noise) and β = 1 (totally correlated noise). 
Eight values of noise standard deviation are applied 
(from σ = 0.005 to σ = 0.05). The distance used used for 
attributing pixels to different classes is either the Euclid- 
ian distance (E) or the Mahalanobis (M). The threshold S 
is adjusted so as to obtain 2, 3, 4, 5 or 6 classes. Some- 
times, there are some cases where S adjustment does not 
allow obtaining the desired class number.  

5. Results and Discussion 
 
5.1. Robustness of Our Segmentation Method in  

the Presence of Noise and the Effect of Noise  
on the Class Number 

 
In a general way, to estimate the robustness of our seg- 
mentation at a number of classes varying from 2 to 6, we 
use the criterion of Vinet, the pairing of the classes is 
chosen by verifying the Equation (7). Supposing that the 
segmentation is best for a global error lower than 5%, 
Figure 7 illustrates the resistance in the Gaussian noise 
of our method. The graphic zones where classification is 
resistant for a number of classes ranging between 2 and 6 
appear in a color which indicates this number of classes; 
the other cases correspond to the background of the 
graph. 

The general study of the effect of noise shows that it 
acts on the class number into three contradictory ways: 
 It tends to decrease the class number by merging 

neighboring peaks of the histogram; 
 The “colorimetric” variations induced by noise create 

new peaks which increase the class number; 
 The effect of the random distribution of the noise 

causes some pixels initially in the same class to 
change class. 

The second effect increases with the standard devia- 
tion σ and is more important for the Uniform noise than 
the Gaussian noise as illustrated in Figure 7. This effect 
remains true for partially and correlated noises. 

Seeing the results of segmentation in the Figure 4(b), 
we can say that the fuzzy parameter α can improve the 
quality of segmentation, but in this work it is fixed to 
0.50. 
 
5.2. Segmentation Errors Induced by Noise 
 
The segmentation error Г (Equation (6)) has been mea- 
sured for the probe image of Figure 3, altered with 
Gaussian or Uniform noise. The results are presented in 
Table 3; they show that the segmentation error Г is ei- 
ther very low (lower than 4%) or high (greater than 40%). 
The resistance for 2 to 6 classes with an error lower than 
4% in a Gaussian and Uniform uncorrelated noises of 
variable standard deviation σ, into metric Euclidean and 
Mahalanobis is shown in Table 3 by the values in blue 
color. In certain cases the adjustment of S does not allow 
to obtain the desired class number, this happens when the 
method fails in building classes which are comparable 
with and without noise. This failure is caused by the 
double noise influence. 

The segmentation method reveals globally more ro- 
bust to Gaussian noise than to Uniform noise and more  
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(a)                                                    (b) 

Figure 7. Effect of uncorrelated Gaussian (left) and uniform noise (right) on the number of detected classes. (a) Uncorrelated 
Gaussian noise with σ ={0; 0.01; 0.03; 0.05}; (b) Uncorrelated uniform noise with σ ={0; 0.01; 0.03; 0.05}. 
 
Table 3. Segmentation errors in percentage (%) for the probe image of Figure 3, altered with Gaussian or uniform noise. 
Uncorrelated noise (β = 0), partial correlation, noise (β = 0.5) and totally correlation noise (β = 1). σ is the standard deviation of 
the noise. The distance used for attributing pixels to different classes is either the Euclidian distance (E) or the Mahalanobis 
distance (M). The boxes marked NA correspond to cases where the threshold S adjustment does not allow obtaining the desired 
class number. 

(a) 

Type of noise Gaussian Uniform 

Correlation β 0 0.5 1 0 0.5 1 

Distance E M E M E M E M E M E M 

σ = 0.005 0 0 0 0 0 8.155 0 0 0 0 0 0 

σ = 0.01 0 0 0 0 0 0.05 0 0 0 0 48.87 48.23

σ = 0.015 0 0 0 0 0 0.37 0 0 0 0 47.34 47.10

σ = 0.02 0 0 0 0 0 0.66 0 0 0 0 42.30 22.16

σ = 0.025 0.06 0.03 0 0 0 1.23 0 0 0 0 41.62 38.45

σ = 0.03 73.64 75.41 0 0 0.04 7.34 0 0 0 0.7 41.72 33.60

σ = 0.04 73.57 74.25 0.1 0.07 0.19 7.34 49.96 40.18 0.04 0.04 44.03 45.58

2 classes 

σ = 0.05 27.23 32.11 0.32 0.24 0.45 2.60 44.18 66.44 0.02 0.02 0.35 0.05 

 
(b) 

Type of noise Gaussian Uniform 

Correlation β 0 0.5 1 0 0.5 1 

Distance E M E M E M E M E M E M 

σ = 0.005 0 0 0 0 0 0 0 0 0 0 0 0 

σ = 0.01 0 0 0 0 0 21.35 0 0 0 0 55.63 55.63

σ = 0.015 0 0 0 0 0 0 0 0 0 0 54.10 54.10

σ = 0.02 80.44 80.52 0 0 0 0 0 0 0 0 49.06 49.06

σ = 0.025 80.44 80.56 0 0 0 0 80.44 80.44 0 0.21 71.81 75.81

σ = 0.03 80.23 83.93 0 0 0 0.05 80.44 80.44 0 0 44.06 44.06

σ = 0.04 77.46 77.86 0.12 0.26 0.01 0.0 70.05 NA 0 0 45.45 45.45

3 classes 

σ = 0.05 48.44 54.32 80.37 80.65 0.02 0.08 53.88 74.02 80.36 80.55 65.74 85.74
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(c) 

Type of noise Gaussian Uniform 

Correlation β 0 0.5 1 0 0.5 1 

Distance E M E M E M E M E M E M 

σ = 0.005 0 0 0 0 0 0 0 0 0 0 0 0 

σ = 0.01 0 0 0 0 0 0 0 0 0 0 43.12 43.12

σ = 0.015 0 0 0 0 0 0 0 0 0 0 41.59 41.59

σ = 0.02 0.07 0.07 0 0 0 0 0 0 0 0.31 43.31 43.31

σ = 0.025 0.39 1.25 0 0.51 0.02 0.02 46.32 53.64 0 0 59.85 43.15

σ = 0.03 1.19 1.76 0 NA 0.05 0.05 27.75 16.35 0 0 59.99 59.99

σ = 0.04 50.44 8.71 0.16 0.83 0.16 0.25 62.30 73.26 0.01 0.01 66.07 66.07

4 classes 

σ = 0.05 69.24 89.57 36.76 41.16 0.27 0.27 63.16 79.60 49.96 51.16 59.99 59.99

 
(d) 

Type of noise Gaussian Uniform 

Correlation β 0 0.5 1 0 0.5 1 

Distance E M E M E M E M E M E M 

σ = 0.005 0 0 0 3.20 0 0 0 0 0 1.90 0 0 

σ = 0.01 0 0 0 3.62 0 0 0 0 0 1.90 38.24 38.24

σ = 0.015 0.02 0.07 0 4.16 0 0.62 0 0 0 1.90 37.21 39.21

σ = 0.02 0.37 0.66 0 3.20 0 0 0 0 0 0 62.75 64.71

σ = 0.025 48.06 NA 0.02 4.75 0 0 59.92 48.61 0 0 52.49 52.65

σ = 0.03 50.47 NA 0.11 0.11 0.02 0.02 64.48 73.03 0.01 3.96 59.85 59.85

σ = 0.04 59.53 59.53 36.76 48.96 34.76 20.76 68.42 87.07 0.09 14.45 58.57 60.34

5 classes 

σ = 0.05 69.74 82.53 53.48 73.21 33.32 30.21 64.35 79.06 51.14 80.83 59.98 72.71

 
(e) 

Type of noise Gaussian Uniform 

Correlation β 0 0.5 1 0 0.5 1 

Distance E M E M E M E M E M E M 

σ = 0.005 0 0 0 0 0 0 0 0 0 0 0 3.25 

σ = 0.01 0 0 0 0 0 0 0 0 0 0 77.87 77.87

σ = 0.015 0.05 0.62 0.01 0.11 0 0 33.23 51.05 0 0 55.21 55.21

σ = 0.02 37.01 NA 0.12 0.32 0 0 36.93 40.67 54.23 54.23 55.99 50.68

σ = 0.025 50.96 50.96 0.30 0.30 0.01 0.21 62.42 NA 0.31 0.31 52.87 52.87

σ = 0.03 54.26 74.86 37.15 NA 0.02 0.52 68.99 76.03 53.18 43.18 53.03 53.03

σ = 0.04 78.47 80.21 43.86 51.96 41.94 31.45 73.99 90.6982 73.60 81.83 58.93 62.71

6 classes 

σ = 0.05 70.59 94.75 67.80 97.30 43.39 50.81 69.73 77.33 65.98 74.42 60.41 79.02

 
robust in Euclidean metric than Mahalanobis metric (Ta- 
ble 3). 

The robustness of the segmentation algorithm de- 
creases when the desired number of classes increases. 

These results come from the fact that the ‘colorimetric’ 
distance between the two nearest classes decreases when 
the number on classes increases. Consider ∆, the nor- 
malized distance between nearest classes, the segmenta- 
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tion algorithm fails when σ approaches ∆/2.  

The histograms peaks are kept separated, even for high 
noise for a totally correlated noise. However, the seg- 
mentation is not very robust to totally correlated Uniform 
noise because the ‘colorimetric’ variations induced by 
the noise give rise to new peaks. 
 
6. Conclusions 
 
Image segmentation is an important and sensitive step in 
image processing through various applications because it 
affects the interpretation and decision making, which 
justifies here the study of the influence of noise on the 
quality of segmentation.  

Thus in this article, we presented the performances of 
our segmentation algorithm in the presence of additive 
noises. This can be useful in courses offered at the aca- 
demic level. This article opens the way to the study of 
non-additive noises, i.e., is multiplicative, see convolut-
ive which may require the use of homomorphic process-
ing. Also an enhancement of the histogram is desirable 
before segmentation. Certain noises inerrant with the 
acquisition systems of images such as the speckle noise 
could be studied. The study of the variation of the fuzzy 
parameter α in the process of segmentation may be con-
sidered because it is likely to promote minimization of 
error rates of segmentation due to the noise. 
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