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Abstract 
This paper aims to assess the ways in which multi-resolution object-based clas-
sification methods can be used to group urban environments made up of a 
mixture of buildings, sub-elements such as car parks, roads, shades and pave-
ments and foliage such as grass and trees. This involves using both unmanned 
aerial vehicles (UAVs) which provide high-resolution mosaic Orthoimages and 
generate a Digital Surface Model (DSM). For the study area chosen for this pa-
per, 400 Orthoimages with a spatial resolution of 7 cm each were used to build 
the Orthoimages and DSM, which were georeferenced using well distributed 
network of ground control points (GCPs) of 12 reference points (RMSE = 8 
cm). As these were combined with onboard RTK-GNSS-enabled 2-frequency 
receivers, they were able to provide absolute block orientation which had a sim-
ilar accuracy range if the data had been collected by traditional indirect sensor 
orientation. Traditional indirect sensor orientation involves the GNSS receiver 
in the UAV receiving a differential signal from the base station through a 
communication link. This allows for the precise position of the UAV to be es-
tablished, as the RTK uses correction, allowing position, velocity, altitude and 
heading to tracked, as well as the measurement of raw sensor data. By assessing 
the results of the confusion matrices, it can be seen that the overall accuracy of 
the object-oriented classification was 84.37%. This has an overall Kappa of 0.74 
and the data that had poor classification accuracy included shade, parking lots 
and concrete pavements. These had a producer accuracy (precision) of 81%, 
74% and 74% respectively, while lakes and solar panels each scored 100% in 
comparison, meaning that they had good classification accuracy. 
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1. Introduction 

In recent years, photogrammetry has been recognised as an extremely good sur-
veying method when trying to produce 3D images of the Earth’s surface. This is 
because it can be used on demand and has the ability to create high-resolution 
data, including DSM layers and orthophotos (orthorectified images). Photo-
grammetry includes analysing Earth-based (terrestrial) data or dedicated air- 
and space-borne campaigns [1] [2] [3]. Photogrammetry can be used in a variety 
of industries, including urban mapping and planning [4] [5], agriculture, re-
source management [6] [7], recording of archaeological features [8] [9] and hy-
drology and hydrodynamic flood modelling [10] [11] [12]. Due to its uses, there 
has also been a rise in photogrammetry being used in geosciences, where it can 
be used for mapping, monitoring [13] [14], and the detection of objects [15] and 
group changes in topography [16].  

Despite its uses, in the past, the use of aerial photogrammetry has been li-
mited. This is because it was seen as a high-cost method of data collection and 
often faced difficulties when trying to collect 3D topographic data, orthophotos, 
topographic maps and other map features due to the large format metric cam-
eras that were used [17]. The development of unmanned aerial vehicles (UAVs), 
however, has helped to make photogrammetry a more accessible means if data 
collection allows for the collection of images with high spatial and spectral reso-
lutions in a way that can save both money and time. These technological ad-
vances allow for high-quality mapping of the earth’s surface using Orthoimages 
and also mean that 3D models (meshes) of the earth’s surface can be created 
with high resolution and accuracy. Alongside this, advances in computer hard-
ware and image matching software have also meant that stereo images can be 
compared faster and more accurately than ever before, thus making photo-
grammetry a viable alternative to manned aerial photography [18] [19] [20]. In 
spite of these advantages though, UAVs often have weight and cost restrictions 
which mean that the sensors used in them are often lower quality than those that 
would be used during manned aerial photography. This can mean that when the 
sensor needs to provide accurate data in centimetres, this traditional approach 
may not provide suitable results unless a large number of group control points 
(GCPs) are distributed evenly across the sample. This can mean that a project 
becomes too expensive or is impractical and may even mean that inaccessible 
terrain gets included within the sample. In order to create overlapping imagery 
in a block configuration, it is important that the aerial position is precisely con-
trolled, which can help to reduce the need for multiple GCPs [21]. 

There have also been developments in Global Navigation Satellite Systems 
(GNSS), which can be seen to be particularly interesting in terms of this paper. 
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There has been an increase in the use of Real-Time Kinematic (RTK) devices 
being placed into UAVs that are readily available. This is interesting because the 
use of RTKs means that the position of the UAV can be more easily tracked, and 
can also help to ensure that the data provided is more accurate (up to 2 cm) [22]. 
UAVs using this kind of technology can modulate signals between the satellites 
and the receivers using the GNSS carrier phase [23]. The GNSS receiver in the 
UAV receives a differential signal from the base station, which is corrected by 
the RTK and allows for a communication link. The most recent UAVs now 
come with RTK units onboard them and they use a dual frequency which can 
help to reduce atmospheric delay and provide an even more precise location. In 
comparison to a single frequency, the ambiguity resolution is also much quicker 
[24].  

Advances in remote sensing have helped to make UAVs even more useful and 
effective data collection tools than ever before, as it means that UAVs now have 
the ability to combine temporal and spatial sensing. This allows for an even 
more precise recognition of features, which, while positive, can also mean that 
the images produced are subject to noise from shadows or the salt and pepper 
effect [25] [26] [27]. This is due to the nature of pixels and the way in which they 
behave when the spatial resolution of an image is increased. Studies have shown 
that increasing the spatial resolution of an image can have a negative effect on 
data, as pixel-based techniques can make it challenging to identify features ac-
curately [28] [29]. In order to overcome the shortfalls of pixel-based techniques, 
researchers have tended to move towards using object orientated classification 
techniques when looking at images with an extremely high spatial resolution 
[30], while the use of Orthoimages in this setting is massively underused, espe-
cially in terms of mapping v features. In one study, it was found that using 
UAVs to recognise tree species in a mixed boreal forest gave results with an 82% 
accuracy rate [30]. UAVs have also been found to be very useful when mapping 
specific plants in open woodland. A study by Chenari et al. (2017), aimed to es-
timate the mean crown area of wild single level trees in open woodland and clas-
sified the Orthoimages collected using the object-oriented method. This gave a 
classification accuracy of 0.90 and a precision score of 0.89 [31]. UAVs can also 
be used to classify urban environments with increased accuracy too [32] [33], 
especially when using Orthoimages and DSM, as these are useful when identify-
ing elevated objects in urban scenes [34] [35].  

However, these building detection algorithms are not without problems 
though and can struggle to identify buildings when they are less than 50 km2 or 
the building is on sloped ground. This is particularly common in casual settle-
ments, meaning that these detection algorithms are not suitable to be used in 
these kinds of areas. In order to ensure that buildings in these areas can be 
mapped, it is important that 2D and 3D features are analysed in order to get a 
high level of accuracy when classifying the area. The aim of this research, then, is 
to assess the effectiveness of object-oriented image analysis software eCognition 
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(Definiens Imaging, Germany) in urban environments that include features such 
as buildings, roads, car parks and vegetation. This is done by combining high 
spatial resolution mosaic-Orthoimages and DSM layers in order to be able to 
group features of the environment. This method is superior to VHR imagery as 
UAV Orthoimages are able to combine object segmentation and the fuzzy di-
mension digital classification method to recognise features in a diverse envi-
ronment, while objects may be too spectrally similar for VHR to be used effec-
tively.  

2. Study Site 

The site chosen for this research was the Jordan University of Science and 
Technology (JUST). Founded in 1986 and designed by the Japanese architect 
Tange, the campus combines futuristic style and sustainability. It is located 70 
km north of the capital Amman and 6 km south of Al-Ramtha at 32˚28'36.77"N 
and longitude 35˚58'24.05"E as shown in Figure 1. The campus has an elevation 
of 580 m and covers an area of 11 km2, which includes both buildings and natu-
ral areas. JUST is generally divided into two halves, the medical faculties, which 
can be seen on the lower part of Figure 1 and the engineering faculties which 
can be found on the upper part of Figure 1. The buildings tend to follow two 
main axis, the academic spine, where lecture buildings can be found, and the so-
cial spine, which includes services such as the library, mosque and accommoda-
tion. 

3. Images Acquisition 
3.1. UAV and Sensor Description 

MARSRobotics® Talon with fixed wings, as seen in Figure 2(a), was used as the 
UAV in this study and performed all of the flights. This UAV complies with de-
sign standards for UAVs and is approved by Transport Canada, the Jordan Civil 
Aviation Regulation Commission (JCARC), as well as the Federal Aviation Ad-
ministration (FAA) in the USA. MARSRobotics® Talon is a hand-launched at 
takeoff. It has a 530 kV brushless motor which is powered by two 6-cell 4500 
mAh batteries which provide it with two hours of flight time with a full payload. 
When cruising, it can reach speeds of 72 km/h (20 m/s) and is able to reach 
maximum speeds of 85 km/h (23.6 m/s). It is also able to operate in up to 35 
km/h winds when flying and 25 km/h when the parachute has been deployed. It 
can be controlled remotely within a 15 km radius by a handheld controller or 
can make use of Pixhawk software created by PX4 and manufactured by 3D ro-
botics which allows the MARSRobotics® Talon of autonomous flight. The max-
imum weight at takeoff is anything up to 3.5 kg (7.7 lbs) and the MARSRobotics® 
Talon can reach an altitude of 2000 m (3.1 miles) above sea level if needed. The 
controller displays data about the flight, such as altitude, battery status and dis-
tance travelled. The following table shows the technical features of the MAR-
SRobotics® Talon (Table 1). 
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Figure 1. Location map of Jordan university of science and technology (JUST), and JUST Campus plan 
(source: Engineering Unit at JUST). 

 

 
Figure 2. MARSRobotics® UAV (a) and Sony Alpha ILCE-A6000 camera (b). 
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Table 1. Platform technical specifications (Aeromapper Talon). 

Specification Technical details 

Wingspan 2.0 m (5.65 ft) 

Construction EPO foam 

Take-off Hand-launch, fully automatic 

Take-off weight 3500 g (7.7 lbs) 

Cruise speed 50 km/h (31 mph) 

Maximum speed 85 km/h (52.8 mph) 

Motor 530 kV brushless motor 

Battery 3-cell 9000 mAh, two batteries required for flight 

Flight time 1.5 hours (with full payload) 

Landing Repeatedly passes over desired area at 30 m - 40 m 

Autopilot Pixhawk by 3D Robotics 

Max. altitude About 2000 m above sea level 

Telemetry 
Battery status, altitude, ground speed, compass, distance travelled, 

flight time (speech enabled) 

Operating conditions 
All weather performance can fly in light rain as all electronics are 

enclosed 

3.2. Camera System 

The MARSRobotics® Talon features a SONY A6000 (ILCE-6000L) Digital Sin-
gle-Lens Reflex (DSLR) camera, as seen in Figure 2(b), which is powered by its 
own rechargeable battery. It has a 24.3-megapixel Advanced Photo System (APS) 
Type-C (Classic) which involves a sensor, hybrid autofocus feature and a conti-
nuous shooting speed of up to 11 frames/second. It has a Complementary Met-
al-Oxide-Semiconductor (CMOS) sensor (23.5 × 15.6 mm). The data is recorded 
in the form of 8-bit, in both JPEG and RAW formats with a resolution of 4000 × 
6000 pixels. The lens ranges from 16 - 50 mm and has power zoom with an 83˚ - 
32˚ angle of view as seen in Table 2. This camera is held on to the UAV by a 
gimbal, as this ensures a constant viewing angle, meaning that near-nadir images 
will be provided.  

3.3. Control Unit 

The way in which the flight is controlled is crucial to the MARSRobotics® Talon. 
Drones such as this can be controlled in a variety of ways, such as GPS enabled 
autopilot systems or through using radio-controlled hardware. In this study, the 
Pixhawk autopilot system was used to control the UAV. This is an open-source 
autopilot system which is marketed towards users of inexpensive autonomous  
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Table 2. Camera technical specifications (Sony Alpha ILCE-A6000). 

Specifications Technical details 

Camera format Compact system camera 

Weight 468 g, includes rechargeable batteries 

Size 120 × 67 × 45 mm 

Sensor type CMOS 

Effective megapixels 24.3 

Sensor format APS-C 

Sensor size 23.50 mm × 15.60 mm 

Aspect ratio 3:2 

Colour filter type RGBG 

Image resolution 6000 × 4000 (24.0 MP, 3:2) 

Image file format RAW + JPEG 

Continuous-mode frames/second 11.1 

Focal length (actual) 16 - 50 mm 

Zoom ratio 3.13× 

(https://www.imaging-resource.com/PRODS/sony-a6000/sony-a6000DAT.HTM) 
 

aircraft. This was a good choice as it is a low-cost system and is easily available. 
The RTKite GNSS Receiver was used to plan GCPs and checkpoints. This has 
444 channels and can pick up both L1 and L2 frequencies, as well as GPS and 
GLONASS constellations. This is able to directly connect with the Pixhawk con-
troller. GNSS differential processing of CGP and checkpoints were conducted 
with Pixhawk 32-bit ARM Cortex M4 core with FPU. The GNSS receiver has 
two categories, the redundant three antennas for position measurements and the 
two antennas for differential measurements (GNSS RTK), ensuring that the data 
is transmitted to the data link in real time and then back to the base station. The 
connection between the GNSS sensors and the Pixhawk controller uses Conti-
nuously Operating Reference Stations (CORS) with an embedded GSM/GPRS 
cellular modem. The GNSS receiver corrects accumulated error from AHRS and 
provides information regarding the position, velocity and altitude of the drone, 
as well as where it is heading to and raw sensor data measurements.  

3.4. Software 
3.4.1. Mission Planner 
Misson Planner is software developed by ArduPilot which allows for a flight 
path to be planned. It is a Ground Control Software (GCS) system and can be 
used for APM and Pixhawk open source piloting systems. Using Mission Plan-
ner allows for the firmware to be upgraded and the autopilot system to be con-
figured, as well as ensuring that live telematics readings are collected and allow-
ing a mission or flight path to be programmed into the drone. Pix4D Mapper 
Pro was used for the photogrammetric processing of the images collected by the 
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UAV. This software allows the user to calculate the position and original orien-
tation of an image through Automatic Aerial Triangulation (AAT) and Bundle 
Block Adjustment (BBA). This allows the DSM layer to be generated as a 3D 
cloud point can be obtained from both of these data sets (Wolf, 1985; Mikhail 
and Bethel, 2001). By projecting and combining the original images and DSM 
layer, it is possible to orthorectify and mosaic the images (Pix4D Manual, 2013). 
GTR Processor v2.92 allows for GNSS differential processing of the ground con-
trol points and checkpoints, while statistical analysis was carried out using 
MATLAB v7.11 R2010b. 

3.4.2. Pix4D Mapper Pro 
Pix4D Mapper Pro was developed by Pix4D, a Swiss company at the École Poly-
technique Fédéralede Lausanne (EPFL). It is a vision based software which al-
lows users to define its settings, including choosing their own projection centres, 
positioning their own accuracies and choosing their own camera model. De-
pending on the way in which the geolocation data is stored for each image, it is 
possible for the software to automatically carry out process on it. If the file is 
saved in the Exchangeable Image File Format (EXIF), Pix4D Mapper Pro will 
load it for BBA, as well as assessing its estimated position accuracy. Although 
this process is generally done automatically, users are able to define options for 
the SFM, BBA and camera calibration. The software also allows for feature 
matching with SIFT operators, meaning that tie points can be extracted. The 
software finally stores all of the estimated parameters and results of the matching 
processes and orientation in the output folder, making them easily accessible. 
The images were processed by MARSRobotics® Team using their Pix4D license. 

3.4.3. eCognition  
eCognition software was developed by Delphi2-Creative Technologies, a Ger-
man company and is a new way of analysing object-oriented data and multiscale 
images. The Beta version of this software was used in this study for the ob-
ject-based classification. When looking at object-oriented data, eCognition 
means that the user is able to access information that they cannot gain by single 
pixels. The analysis process included two steps, segmentation and classification. 
Segmentation involves grouping certain elements in a picture based on their 
likeness and must be carried out before the software is able to classify the objects 
as the software works with objects rather than pixels [36]. 

3.4.4. Universal Ground Control Station (UGCS) Software 
UGCSs oftware can be used for flight route planning and fly drone survey mis-
sions. It is also supports the software that controls drones hardware from differ-
ent manufacturers, therefore enabling the drone to be controlled via different 
broadcast systems. The software can calculate the route and fly the UAV auto-
nomously. Also, the appropriate input parameters need to be set accordingly: the 
area location of interest must be well-defined on a map, and setting flight prop-
erties (side and forward image overlap percentage, flight altitude) as well. These 
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input parameters are used for calculation of the optimal flight route which will 
assure full coverage of the area of interest. 

3.5. System Design  
3.5.1. UAV Flight Mission 
The flight missions for the UAV were designed using UgCS software which al-
lows for the planning of missions and the route was selected based on the confi-
guration of the camera. In order to obtain an overview of the area and define the 
boundaries for the flight path, Google Earth was used, although this does not 
show dangers or obstructions, so cannot be used alone. Because of this, a survey 
must be carried out in order to identify obstacles such as trees, buildings and 
electricity pylons. During the preflight survey, it is possible to identify a wide 
open space suitable for take-off and landing also, making it very important. In 
this study, the flight was planned to cover an area of 11 hectares at 400 m aver-
age height, ensuring that the UAV could obtain a ground sample distance of 7 
cm. Forward overlaps were set at 70% and side overlaps at 50%, this overlap set-
tings was made using the mission planning software (UgCS). The flight path was 
computerised in order to be able to estimate the outcomes of the flight, as seen 
in Figure 3, and it was decided that Adaptive Bank Turns would be used and the 
maximum speed would be 15 ms−1. The flight path was then uploaded to the 
UAV. The validation of these settings was verified after examining the raw im-
ages in Figure 5 taken directly from the UAV camera before processing. 

 

 
Figure 3. Flight planning realized by Mission Planner software for the MARSRobotics® 
Talon JUST mission. 
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Figure 4. The location of GCPs at the campus of JUST University, 12 GCPs (in red) of 
the control configuration 12 GCP and of the 14 CPs (in green) on the test site. The 
highlighted GCP number 13 is used in the control configuration RTK + 1 GCP. Processed 
by MARSRobotics® Team using their Pix4D license. 

3.5.2. Establishing Ground Control Points 
The need for ground control points can be avoided if the UAV has a dual fre-
quency GNSS on board, but in this study, the GNSS was only single frequency. 
In this study the GNSS was not used, instead GCPs were used and had to be 
marked on the project area before the flight [37]. This resulted in 16 signalized 
targets being deployed and surveyed just before the UAV took flight. These had 
to be in accordance with the rules of local buildings and parks, and if it was al-
lowed, the GCPs were surveyed using Trimble R8 GNSS. They scored a hori-
zontal accuracy of 0.8 cm + 0.5 ppm and a vertical accuracy of 1.5 cm + 0.05 
ppm using MARSRobotics® owned North® RTK system. This project used a de-
fault setting as suggested by North® RTK system when collecting results. The 
GCPs used in this project can be seen in Figure 4 and were selected in order to 
ensure the best Georeferencing results. The five points marked in red in Figure 
4 were used as GCPs and the 11 yellow points were used as checkpoints. The 
base station of the GPS is marked with a blue dot 

3.5.3. UAV-Based RTK and GCP Distribution 
The flight in this study not only has well distributed GCPs, as seen in Figure 5 
but was also conducted using RTK-GNSS-enabled 2-frequency receivers. This 
meant that the RTK-GNSS data attached to each image was combined with the  
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Figure 5. Illustration of the UAV-image taken with the visible camera at 400 m in the test site, the zoomed image is the image No. 
DS00079 which appears in the middle of the last row of the image above (Provided by MARSRobotics® Aerial Mapping Team). 
 

bundle adjustment, with the onboard RTK reducing the alteration or deforma-
tion of the image. Once the UAV was in flight, photos of the study area were 
then collected based on the flight configuration listed in Table 3. 
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Table 3. Configuration of UAV photogrammetric system. 

Item name Value 

Flight height (m) (400) 

Flight speed (m/s) 15 

Camera capture frequency (s)  
configured based on distance covered 

3 

Control mode automatic 

Flight mode Four-strip 

Flight duration (min) 25 

GSD (cm) 7 

 
The same inputs were used for all versions of the flight and the flight was in 

semi-automatic mode with the same flight plan each time photos were taken. 
The UAV flew at a height of approximately 400 m above the ground and the UAV 
was put into manual mode for both take-off and landing. For this particular study, 
the five-strip flight mode was used, meaning that 542 images were collected after 
the 25-minute flight and covered the ground sample distance of 7 cm. In order to 
get the clearest images, both weather and time of day were taken into account 
when choosing a time for the flight. Some of the photos taken can be seen in 
Figure 5. 

4. Image Processing 
4.1. Camera Position and Orientation 

The software selected for processing the images from this study was Pix4D 
Mapper by Pix4D. During BBA, the internal orientation of the camera was cali-
brated, meaning that the focal length, position of the principal point and lens 
distortion parameters were all self-adjusted. It was not possible to recalibrate the 
camera in the field before the flight, but it has been shown that this is not neces-
sary when self-calibration has been performed. After the images have been ana-
lyzed by BBA, tie points are used to match pairs of images that are spatially sim-
ilar. This allows for the exact flight path to be seen, as the tie points produce a 
point cloud above the image. This can be seen in Figure 6, which highlights the 
camera position when the UAV was over Acadia A. It also shows points where 
unsuitable images have been taken in the foreground. 

The software selected for processing the images from this study was Pix4D 
Mapper by Pix4D. During BBA, the internal orientation of the camera was cali-
brated, meaning that the focal length, position of the principal point and lens 
distortion parameters were all self-adjusted. It was not possible to recalibrate the 
camera in the field before the flight, but it has been shown that this is not neces-
sary when self-calibration has been performed. After the images have been ana-
lyzed by BBA, tie points are used to match pairs of images that are spatially sim-
ilar. This allows for the exact flight path to be seen, as the tie points produce a 
point cloud above the image. This can be seen in Figure 6, which highlights the 
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camera position when the UAV was over Acadia A. It also shows points where 
unsuitable images have been taken in the foreground. 

4.2. DSM Layers and Orthoimage Mosaics 

Photogrammetric results such as DSM layers and orthomosaics were generated 
from the data collected. DSM or Digital Surface Models provide a 3D represen-
tation of an area, highlighting elevation. This, alongside the creation of the point 
cloud and med, allows the surface of the terrain to reconstructed digitally. In this 
case, this was done with the Pix4D software, which takes the exterior data and 
camera calibration features and uses them to create a digital scene by image 
matching. This, along with the point clouds, means that the terrain can be de-
scribed, and this is then triangulated to create orthophotos and DSM layers, as 
seen in Figure 7.  

 

 
Figure 6. The location of the images from two different angles. It is created by MARSRobotics® Team using Pix4D Mapper using 
3D view in Pix4D Mapper. The point cloud view indicates the area of each image that was taken along the flight path and the angle 
of each relative to the ground. 
 

 
Figure 7. Orthoimage (left) and DSM (right) created from UAV images by MARSRobotics® system. 
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4.3. Geolocation Accuracy 

Using portable North® GNSS-RTK system and the GCPs surveyed by MARSRo-
botics® Team in Figure 4, it was possible to carry out statistical analysis on the 
results of the study. Of the 16 points identified in Figure 5, 5 GCPs and 11 
checkpoints were selected, allowing analysis of the exterior orientation process 
and accuracy assessment respectively. The points were inputted into ArcGIS 10.3 
and the output coordinate system was set to the Jordanian Transfer Mercator 
(JTM projection). The base layer used was the orthomosaic images as well as the 
DSM, meaning that the vertical and horizontal accuracy could be assessed. Mi-
crosoft Excel was then used to calculate the accuracy of the results. This can be 
seen in Table 4 and was done by inputting the Root Mean Square Error (RMSE) 
into Microsoft Excel.  

From Table 4 it can be seen that the accuracy of the orthophoto is 8 cm east, 
7 cm north and 20 cm in terms of height, which means about one pixel in east-
ing and northing and less than 3 pixels in the elevation accuracy, It can also be 
seen that the residual delta N for point number 9 varies massively from the other 
points. This could either be because the point is an outlier or could be down to a 
fault with the measurements. From this data, it can be concluded that the posi-
tion of the orthophoto is accurate with a standard deviation of one pixel −7 cm -  

 
Table 4. Geolocation accuracy. 

Real Ground Coordinates Image Coordinates Differences (m) 

GCP Easting Northing Altitude 
 

Easting Northing Altitude E-error N-error Alt-error 

0 780892.3 3,599,256 581.659 Ref. Point 780892.27 3599256.1 581.54 −0.03 0.07 −0.119 

1 780313.7 3598550.7 578.22 Ckps 780313.75 3598550.7 578.28 0.05 0.03 0.06 

2 780106.1 3598367.1 587.7936 GCP 780106.04 3598367.1 587.89 −0.06 0.04 0.0964 

3 780370.4 3598179.7 581.4189 Ckps 780370.34 3598179.7 581.44 −0.06 0.03 0.0211 

4 780648.9 3598015.4 585.95 GCP 780648.93 3598015.6 585.95 0.03 0.16 0 

5 780,968 3598558.4 584.151 Ckps* 780967.96 3598558.5 583.88 −0.04 0.06 −0.271 

6 780789.5 3,598,686 583.733 Ckps* 780789.49 3598685.9 583.44 −0.01 −0.08 −0.293 

7 780,711 3598793.7 594.2491 GCP 780711.01 3598793.6 594.25 0.01 −0.09 0.0009 

8 780710.5 3,599,358 580.164 Ckps* 780710.41 3,599,358 579.93 −0.09 −0.02 −0.234 

9 780,537 3599074.3 576.7025 Ckps* 780537.09 3599074.2 576.69 0.09 −0.11 −0.0125 

10 780316.4 3598734.9 579.306 Ckps* 780316.55 3598734.9 578.95 0.15 −0.05 −0.356 

11 781,221 3598876.8 579.273 Ckps* 781220.91 3598876.9 578.99 −0.09 0.08 −0.283 

12 780043.2 3598988.6 575.4725 Ckps* 780043.33 3598988.5 575.72 0.13 −0.15 0.2475 

13 781411.8 3599160.4 576.458 Ckps* 781411.82 3599160.4 576.17 0.02 −0.03 −0.288 

14 780881.8 3599518.1 580.109 Ckps* 780881.84 3599518.1 580.2 0.04 −0.01 0.091 

15 780901.39 3599635.38 576.2416 GCP 780901.34 3599635.4 576.28 −0.05 −0.02 0.0384 

16 781604.74 3599542.32 564.4994 GCP 781604.71 3599542.4 564.27 −0.03 0.04 −0.2294 
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8 cm horizontally and 20cm vertically. In terms of individual records it can be 
recognized that the Easting coordinates accuracy of 13 out of 16 of the Ground 
Control Points and the Check Points (81% of the GCPs & CkPs) are within one 
pixel, while the accuracy of (100%) of them is within 2 pixels. For the northing 
coordinates accuracy of 16 out of 16 (100%) of the Ground Control Points and 
the Check Points are less than two pixels.  

5. Object-Based Image Analysis 
5.1. Segmentation 

The area covered in by this study can be seen in Figure 7(a). It is a complex 
zone with a size of 3350 × 4400 pixels and a spatial resolution of 0.07 m. When 
carrying out object-oriented image analysis, it is vital that the data is segmented. 
This involves dividing the data up into different categories and it is important 
that the parameters that are used to do this are accurate in order to ensure accu-
rate results. The segmentation of OBIA was carried out using eCognition De-
veloper 9 software and was based on the RGB data collected by the camera. 
During the MRS steps, the red, green and blue data from the DSM layer and or-
thomosaic data was inputted into the software. This caused some of the data to 
appear incorrectly, as it was hard for the software to distinguish between build-
ing roofs and the terrain due to similar spectral features. In order to remove this 
problem, the entire DSM layer was used and after several trials, the best parame-
ters for the segmentation were determined by a scale. The score for objects was 
1,319,821, colour was 0.8, shape was 0.2, compactness was 0.5 and smoothness 
was 0.5. Each of these layers was given the same weight, and due to the high res-
olution of the data, each image had to be segmented multiple times in order to 
get an accurate picture, as seen in Figure 8.  

5.2. Image Object Classification 

After the segmentation has been performed, an image object classification was 
run. This was also done using eCognition, which offers users the choice between 
fuzzy classification by user-defined membership functions and fuzzy nearest 
neighbour classification. In this study, the nearest neighbour classification was  

 

 
Figure 8. Multi-resolution segmentation results with the scale parameters 10 (a), 25 (b), 100 (c) and 1000 
(d) using Orthomosaic images. 
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used and samples were selected for each different class. This was a more efficient 
classifier as it uses automation and operates in a feature space which can either 
be automated or user controlled. Samples were selected to give a representative 
picture of the dataset as a whole and 11 land cover classes were identified within 
the area used in this study. These were defined by class rules based on shape, 
spectral signatures, location and relationships between objects and were used to 
classify the images into their most probable categories as well as categorising the 
DSM. The results from the ArcGIS 10.3 software can be seen in Figure 9. 

In order to ensure that accurate data has been obtained from this study, the 
data was compared to test samples from different classes. Generally, the results 
were similar to the test samples (equal to 0.94, 0.95 and 0.92 respectively for 
scale factors 10, 40 and 80). This shows that the accuracy decreases as the scale 
factor increases, meaning that both the multi-resolution segmentation technique 
and the object-oriented classification are important for understanding remote 
sensing images. The SNN used here also needs specific knowledge of the examined  

 

 
Figure 9. Result of classification with fuzzy nearest neighbour classifier method results 
applied to segmentation with scale factor 25. 
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area and a good selection of data in order to ensure good results. It is possible 
that the results of the study could be even further improved by using new sen-
sors. 

5.3. Classification Accuracy Assessment 

Using confusion matrices, accuracy assessments were carried out for the ob-
ject-oriented image classification. The accuracy was assessed using previous data 
which had been collected over the study area using both in the field and aerial 
photography data. A measure for the overall classification accuracy is expressed 
by counting and dividing the number of pixels correctly by the total number of 
pixels; it’s expressed as following: 

overall accuracy ,ijP
N

= ∑                     (1) 

where: ijP∑ —the total number of correctly classified pixels.  
N—total number of pixels in the confusion matrix. 
The producer’s accuracy is a reference-based accuracy that is calculated by re-

viewing the predictions produced for a class and by forming the percentage of 
precise predictions, it’s expressed as following: 

the producer s accuracy ,’ ij

I

P
Ri

=                   (2) 

where: ijP —number of properly classified pixels in row i (in the diagonal cell). 
Ri—total number of pixels in row i. 
The user’s accuracy is a map-based accuracy that is calculated by reviewing 

the reference data for a class and establishing the percentage of correct predic-
tions for these samples. It’s expressed as following: 

the users s accuracy ,’ ij

j

P
C

=                     (3) 

where: Pij—number of properly classified pixels in column j (in the diagonal 
cell), jC —total number of pixels in column j. 

The results of the confusion matrices for object-oriented image classification 
can be seen in Table 5. Looking at this table, the c overall accuracy of the ob-
ject-oriented classification was 84.37% and that the overall Kappa score was 0.74. 
It can also be seen that some classes, such as the shade, car parks and concrete 
pavements had lower levels of accuracy, while lakes and solar panels had signifi-
cantly higher levels.  

6. Conclusions 

From this study, it can be seen that the spatial resolution of orthoimagery plays a 
significant role in how accurate the classification of the data will be. This flight 
mission aims to collect images with a very high spatial resolution as these are 
generally better for distinguishing between buildings and sub-elements such as 
car parks and vegetation. This was done by creating mosaic Orthoimages and  
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Table 5. Error matrix of object-oriented image classification. 

 Buildings Grass Shades 
Parking  

lots 
Concrete 
pavement 

Asphalt 
pavement 

Bare soil 
Solar  

panels 
Trees 

Pedestrian  
corridors 

Lake Sum 

Buildings 28 0 0 1 2 0 1 0 0 0 0 32 

Grass 0 26 1 0 0 0 0 0 3 2 0 32 

Shades 0 0 25 1 0 0 2 0 0 3 0 31 

Parking lots 2 0 3 29 3 0 2 0 0 0 0 39 

Concrete pavement 2 0 0 4 29 3 1 0 0 0 0 39 

Asphalt pavement 0 0 0 0 2 24 2 0 0 0 0 28 

Bare soil 0  1 0 2 1 35 0 0 0 0 39 

solar panels 0 0 0 0 0 0 0 12 0 1 0 13 

Trees 2 3 2 0 0 0   41   48 

Pedestrian corridors 1 2 0 0 0 1 1 0 0 27 0 32 

Lake 0 0 0 0 0 0 0 0 0 0 10 10 

Sum 35 31 32 35 38 29 44 12 44 33 10 343 

Producer accuracy 
(precision) 

0.88 0.81 0.81 0.74 0.74 0.86 0.90 0.92 0.85 0.84 1.0  

User accuracy 0.80 0.84 0.78 0.83 0.76 0.83 0.80 1.00 0.93 0.82 1.00  

 
DSM layers. Over 400 images were taken of the study area and they had a spatial 
resolution of 7 cm. These were collected by the RTK enabled UAV while it was 
in flight. In terms of accuracy and repeatability, the levels seem high as they can 
be seen by an analysis carried out using Pix4D software. GNSS-AT determines 
an average horizontal RMSE of 2.2 cm, while, in elevation, these rise to 5.5 cm. 
Despite this, the results follow the claims of the manufacturer and suggest that 
photogrammetric surveys can rely on onboard RTK/PPK GNSS to create a stable 
reference system.  

The findings also showed the effectiveness of object-oriented multi-resolution 
segmentation when used on DSM layers and high-resolution images. Using the 
fuzzy nearest neighbour classifier, classes were created based on spectral signa-
tures, shape, location and relationship and were applied to each object. This data 
was found to be fairly accurate, with the object-oriented classification scoring 
84.37% and an overall Kappa score of 0.74. 
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