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Abstract 
 
Any electronic eigenstate   of the paramagnetic ion open-shell is characterized by the three independent 

multipole asphericities  = k
kA C   for  and 6 related to the second moments of the relevant 

crystal-field splittings by 

= 2,4k

 2 2= 1 2 1k k
2
kJ A S     , where   22 = 1 2 1k q

S k B    kq . The Ak as the reduced 

matrix elements can serve as a reliable measure of the state   capability for the splitting produced by the 

k-rank component of the crystal-field Hamiltonian. These multipolar characteristics allow one to verify any 
fitted crystal-field parameter set by comparing the calculated second moments and the experimental ones of 
the relevant crystal-field splittings. We present the multipole characteristics Ak for the extensive set of eigen-
states from the lower parts of energy spectra of the tripositive 4 f N ions applying in the calculations the im-
proved eigenfunctions of the free lanthanide ions obtained based on the M. Reid f-shell programs. Such 
amended asphericities are compared with those achieved for the simplified Russell-Saunders states. Next, 
they are classified with respect to the absolute or relative weight of Ak in the multipole structure of the con-
sidered states. For the majority of the analyzed states (about 80%) the Ak variation is of order of only a few 
percent. Some essential changes are found primarily for several states of Tm3+, Er3+, Nd3+, and Pr3+ ions. The 
detailed mechanisms of such Ak changes are unveiled. Particularly, certain noteworthy cancelations as well 
as enhancements of their magnitudes are explained. 
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1. Introduction 
 
The spherical tensor operators  in the one-electron 
crystal-field (CF) Hamiltonian written as  

( )k
qC

 ( )
,

= ,k
CF kq q i ii k q

H B C  
( )k

 

[1], or shortly as 
,CF kq qk q

=H B C , act on the angle 
coordinates i , i  of individual unpaired electrons (i) 
of the central ion in its initial eigenstates   that are 
superpositions of the Russell-Saunders (RS) states 

N
Jl SLJM . The kq  stand for the crystal-field pa-

rameters (CFP) for the above specified operators. For  
B

complex many-electron states the one-electron character 
of the  operators manifests itself by the 6-j symbols 
in their developed matrix elements [1-5] and the doubly 
reduced matrix elements of the unit tensor operator  
[1-5] (Section 2, Equation (2)). They both reveal a de-
composition of the coupled many-electron state into its 
one-electron spinorbitals. Thus, any matrix element  

( )k
qC

( )kU

( )k
qC   is concerned exclusively with the intrinsic  

properties of the central ion electronic eigenstate  . 
The reduced (double bar) matrix elements is defined by 
[1-5] 

 

   
1

( ) = 1 ,
J M kN k N N NJ

J q J
J J

J k J
l SLJ C l SL J l SLJM C l SL J M

M q M







       
             (1) 
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where the factor preceding the matrix element is the re-
ciprocal of the 3-j symbol [1-5]. The reduced matrix 
element is independent of the reference frame orientation 
and hence also of JM . The diagonal reduced elements 

( )kC   represent the 2k-pole asphericities kA  (for 
 and 6) of the considered electronic state = 2, 4k   

[6] and these dimensionless values can serve as a reliable 
measure of the state capability for CF splitting by the 
k-rank CF Hamiltonian (Section 3). The electron density 
distribution of the f-electron states is fully described by 
the first three multipoles with even  and 6. The 
asphericities k

= 2,4k
A  for 105 lower lying electron eigen-

states of all the trivalent lanthanide ions are compiled in 
Table 1 (Section 2). They have been calculated for the 
corrected eigenstates including J-mixing effect [7] and 
the outstanding set of the free-ion data [8] and subse-
quently compared with those corresponding to the 
one-component RS states [6]. The kA  magnitudes and 
their possible variations due to the J-mixing of the RS 
states are thoroughly discussed. An inseparable entan-
glement of the asphericities kA  and the k-components 
of the CF strength k  [9-12] seen in the expression for 
the second moment of the splitting k

S
  [10,13,14] (Sec-

tion 3) justifies the kA  as a reliable capability of the 
relevant state for the -pole partial CF splitting. By the 
fundamental law of additivity 

2k

2 = kk
2   [10,13, 14], 

resulting from the orthogonality of the 3-j symbols [3,4] 
(Equation (1)), the global 2  can be expressed by 
means of the kA  and k  components. Tables 2-6 
show the classification of the examined eigenstates with 
respect to their multipole structure (Section 4). The states 
distinguished by the strongest and the weakest 

S

=A  
, by the strongest and the weakest 2 2

2 4(A A A2 1
6

/2)  kA , 

and finally those with the largest and the smallest 

kA A  for  and 6 have been selected respec-
tively. The relation between the defined capability of 
electronic state for CF splitting and correct parametriza-
tion of the involved CF Hamiltonian is explained by way 
of example for Tm3+:Y2O3 in Section 5. In turn, Section 
6 gives a few instructive examples unveiling the mecha-
nisms of the k

= 2, 4k

A  changes induced by the J-mixing of the 
RS states. A special attention has been paid to the strong 
enhancements and cancelations among the asphericities 

kA . 
 

2. Multipole Characteristics of the 4 f N 
Tripositive Free-Ion Eigenstates  
including J-Mixing Effects 

 
The k-rank multipole moment of an electronic eigenstate 
  which is a superposition of the RS states with 

various L and S but the same J can be evaluated based on 
the reduced matrix element ( )kC   of the respec-
tive k-rank spherical tensor operator. According to the 
Wigner-Eckart theorem [5,15] such quantity is inde-
pendent of the reference frame orientation and ade-
quately expresses the 2k-pole type asphericity of the 
given eigenstate  . For the spherical electronic den-
sity distribution the matrix element identically vanishes 
for  and 6. It plays also a crucial role as a scal-
ing factor in the CF Hamiltonian interaction matrices and 
hence participates in both the calculational and fitting 
CFP procedures. In the case of J-mixing approach, i.e. 
for fixed J, the reduced matrix element can be expressed 
by the sum of all diagonal and off-diagonal matrix ele-
ments occurring in the 

= 2,4k

( )kC   expansion [1,5,16]  
 

         = 1 2 1 ,
S L J kk kN N N NJ J k

l SLJ C l SL J J l SL U l SL l C l
L L S

         
k            (2) 

 
where the first factor on the right side, defining the sign 
of the reduced element, depends on the parity of the sum 
of four numbers, which are in principle autonomous, 
what leads to the sign randomness. The second factor 
stands for the degeneracy of the state, the third one is the 
6-j symbol revealing what part of the final SLJ  
function belongs to the orbital part SL  [17]. Finally, 
the double-bar matrix element of the unit tensor operator 

 depends on coupling of the N one-electron angular 
momenta 1 of the 

 kU
Nl  configuration into the resultant L 

[18]. The one-electron reduced matrix element ( )kl C l  
for  is equal to –1.3663, 1.1282, and –1.2774 for 

 and 6, respectively.  
= 3
, 4

l
= 2k
The JM  quantum numbers and the q index do not 

appear in Equation (2) (compare with Equation (1)). It 
clearly shows that the reduced matrix elements and in 

consequence the kA  are independent of the reference 
frame choice. Any element of the ( )kC   expan-
sion includes additionally the product of amplitudes of 
the two involved components in the   superposition 
together with their signs. The reduced matrix element 
(Equation (2)) differs from zero only for the same S 
quantum number (in the bra and ket) since  act 
exclusively on the configurational coordinates of the 
electrons, and for the states of the same parity L and L'. 
These requirements reduce the number of the non-zero 
off-diagonal matrix elements between various compo-
nents of the J-mixed eigenfunctions. 

( )kC

Such multipole characteristics have been evaluated 
earlier for the pure (one-component) RS open-shell elec-
tronic eigenstates [6]. In Table 1 we compare them with 
the corrected characteristics for the 4 f N tripositive ion  
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Table 1. Multipole character of the J-mixed electron eigenstates   in RE free ions. The eigenfunctions and eigenvalues 

are calculated using M. Reid f-shell programs [7] and free-ion data reported by Carnall et al. [8]. The electron eigenstate data 
cover respectively: the upper component (Up.Comp.), its amplitude (Ampl.), consecutive no. in the spectrum [7] (no.), energy 
[cm–1] (E), number of components of amplitude >0.01 (n). The multipolar asphericities for the upper component of the state 
are given in the parentheses. 

RE ion Electron eigenstate data Multipolar asphericity 

Ion conf. Up.Comp. Ampl. no. E n  2A    4A    6A   

–1.1711 0.7560 0 
Ce3+ 1f  2

5/2F  1 1 0 1 
(–1.1711) (0.7560) (0) 

–1.3801 0.9670 –0.3054 
Ce3+ 1f  2

7/2F  1 2 2750 1 
(–1.3801) (0.9670) (–0.3054 )

–1.2048 –0.7693 0.6555 
Pr3+ 2f  3

4H  0.9856 1 0 3 
(–1.2367) (–0.7395) (0.7706) 

–1.3100 –0.6833 0.4451 
Pr3+ 2f  3

5H  1 2 2086 1 
(–1.3100) (–0.6833) (0.4451 ) 

–1.5204 –0.9511 1.1338 
Pr3+ 2f  3

6H  0.9985 3 4258 2 
(–1.5158) (–0.9583) (1.1386 ) 

0.3400 –0.0909 0 
Pr3+ 2f  3

2F  0.9880 4 4895 3 
(0.3187) (–0.1328) (0) 

0.3416 –0.0627 –0.3193 
Pr3+ 2f  3

3F  1 5 6284 1 
(0.3416) (–0.0627) (–0.3193) 

0.2439 –0.5484 –0.2280 
Pr3+ 2f  3

4F  0.8087 6 6718 3 
(0.4672) (–0.2906) (0.1558) 

–0.0421 –0.9275 –1.0310 
Pr3+ 2f  1

4G  0.8009 7 9732 3 
(–0.3058) (–1.2150) (–1.5299) 

0.8354 0.6203 0 
Pr3+ 2f  1

2D  –0.9430 8 16813 3 
(0.8765) (0.7968) (0) 

0 0 0 
Pr3+ 2f  3

0P  0.9947 9 20654 2 
(0) (0) (0) 

–0.5477 0 0 
Pr3+ 2f  3

1P  1 10 21274 1 
(–0.5477) (0) (0) 

–3.0273 1.4303 –0.4506 
Pr3+ 2f  1

6I  0.9985 11 21299 2 
(–3.0318) (1.4375) (–0.4554) 

0.8563 0.1112 0 
Pr3+ 2f  3

2P  –0.9549 12 22467 3 
(0.8366) (0) (0) 

–0.4758 –0.4742 –1.0773 
Nd3+ 3f  4

9/2I  0.9844 1 0 5 
(–0.4954) (–0.4904) (–1.1085) 

–0.4978 –0.3894 –0.3374 
Nd3+ 3f  4

11/2I  0.9947 2 1862 4 
(–0.5045) (–0.3935) (–0.3399) 
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–0.5615 –0.4700 –0.6186 
Nd3+ 3f  4

13/2I  0.9979 3 3845 3 
(–0.5569) (–0.4691) (–0.6217) 

–0.6587 –0.6886 –1.7765 
Nd3+ 3f  4

15/2I  0.9938 4 5907 2 
(–0.6438) (–0.6850) (–1.7999) 

0.3561 0 0 
Nd3+ 3f  4

3/2F  0.9698 5 11381 6 
(0.3578) (0) (0) 

0.3277 0.1843 0 
Nd3+ 3f  4

5/2F  0.9879 6 12420 6 
(0.3220) (0.1890) (0) 

0.2920 –0.0638 –0.0732 
Nd3+ 3f   2

9/2
2H  0.7398 7 12519 7 

(–0.0069) (0.4816) (0.0057) 

0.4650 0.0533 –0.4233 
Nd3+ 3f  4

7/2F  –0.9648 8 13383 6 
(0.4601) (0.0537) (–0.4552) 

0.0362 0 0 
Nd3+ 3f  4

3/2S  0.9719 9 13429 5 
(0) (0) (0) 

0.5748 –0.3050 0.1040 
Nd3+ 3f  4

9/2F  –0.8670 10 14652 7 
(0.7136) (–0.4051) (0.1799) 

0.1289 0.0001 –0.2027 
Nd3+ 3f   2

11/2
2H  0.8955 11 15857 5 

(–0.0076) (0.5373) (0.0066) 

0.0321 0.4718 0 
Nd3+ 3f  4

5/2G  –0.9929 12 17181 5 
(0.0349) (0.4786) (0) 

0.3684 0.1189 0.1939 
Nd3+ 3f  4

7/2G  0.6180 13 17224 6 
(0.0342) (0.1361) (0.5380) 

0.2818 0 0 
Nd3+ 3f  2

3/2P  0.7205 23 26179 6 
(0.2981) (0) (0) 

0.4609 0.4132 0.7588 
Pm3+ 4f  5

4I  –0.9880 1 0 6 
(0.4540) (0.4103) (0.7679) 

0.4453 0.2467 –0.2889 
Pm3+ 4f  5

5I  –0.9933 2 1255 6 
(0.4428) (0.2437) (–0.2958) 

0.4786 0.2622 –0.3007 
Pm3+ 4f  5

6I  0.9950 3 2636 8 
(0.4796) (0.2613) (–0.3072) 

0.5415 0.3978 0.2378 
Pm3+ 4f  5

7I  –0.9921 4 4102 6 
(0.5524) (0.4042) (0.2398) 

0.6292 0.6585 1.6571 
Pm3+ 4f  5

8I  –0.9841 5 5625 5 
(0.6562) (0.6797) (1.7060) 

–0.2180 0 0 
Pm3+ 4f  5

1F  0.9798 6 11721 4 
(–0.2191) (0) (0) 

0.8650 0.2724 0 
Sm3+ 5f  6

5/2H  0.9783 1 0 10 
(0.8458) (0.2978) (0) 
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0.7272 –0.1291 0.6885 
Sm3+ 5f  6

7/2H  –0.9853 2 1035 9 
(0.7176) (–0.1129) (0.7035) 

0.7883 –0.1551 0.6503 
Sm3+ 5f  6

9/2H  0.9899 3 2243 10 
(0.7786) (–0.1423) (0.6845) 

0.9585 –0.0042 0.6924 
Sm3+ 5f  6

11/2H  –0.9906 4 3571 7 
(0.9587) (–0.0108) (0.7152) 

1.2281 0.3162 0.4041 
Sm3+ 5f  6

13/2H  –0.9869 5 4978 6 
(1.2375) (0.3128) (0.4146) 

0 0 0 
Sm3+ 5f  6

1/2F  –0.9846 6 6297 7 
(0) (0) (0) 

1.5794 0.9086 –0.8624 
Sm3+ 5f  6

15/2H  –0.9782 7 6431 8 
(1.6095) (0.9134) (–0.9000) 

0.0565 0 0 
Sm3+ 5f  6

3/2F  0.9779 8 6548 10 
(0.0596) (0) (0) 

0.0033 –0.1068 0 
Sm3+ 5f  6

5/2F  –0.9719 9 7052 20 
(0.0130) (–0.1260) (0) 

–0.1085 –0.1612 –0.2209 
Sm3+ 5f  6

7/2F  –0.9752 10 7922 16 
(–0.0920) (–0.2030) (–0.2276) 

–0.2631 –0.1020 0.2790 
Sm3+ 5f  6

9/2F  0.9824 11 9105 13 
(–0.2595) (–0.1391) (0.2617) 

–0.4884 0.2495 –0.0652 
Sm3+ 5f  6

11/2F  –0.9873 12 10503 6 
(–0.4951) (0.2465) (–0.0853) 

0 0 0 
Eu3+ 6f  7

0F  –0.9663 1 0 6 
(0) (0) (0) 

–0.5317 0 0 
Eu3+ 6f  7

1F  –0.9729 2 382 8 
(–0.5477) (0) (0) 

–0.4240 –0.3961 0 
Eu3+ 6f  7

2F  –0.9809 3 1052 9 
(–0.4382) (–0.3984) (0) 

–0.2150 0.1805 –0.2154 
Eu3+ 6f  7

3F  0.9867 4 1914 9 
(–0.2277) (0.1880) (–0.2129) 

0.1621 0.5883 0.7592 
Eu3+ 6f  7

4F  –0.9890 5 2898 9 
(0.1528) (0.6075) (0.7650) 

0.7301 0.4986 –0.7222 
Eu3+ 6f  7

5F  –0.9873 6 3957 6 
(0.7277) (0.5125) (–0.7419) 

1.4991 –0.7080 0.2161 
Eu3+ 6f  7

6F  0.9814 7 5055 8 
(1.5159) (–0.7188) (0.2277) 

0 0 0 
Gd3+ 7f  8

7/2S  0.9879 1 0 5 
(0) (0) (0) 
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–1.5028 0.7060 –0.2170 
Tb3+ 8f  7

6F  –0.9793 1 0 9 
(–1.5159) (0.7188) (–0.2277) 

–0.7299 –0.4962 0.7184 
Tb3+ 8f  7

5F  –0.9852 2 2036 7 
(–0.7277) (–0.5125) (0.7419) 

–0.1703 –0.5725 –0.7560 
Tb3+ 8f  7

4F  0.9781 3 3323 12 
(–0.1528) (–0.6075) (–0.7650) 

0.2068 –0.1773 0.2150 
Tb3+ 8f  7

3F  –0.9763 4 4317 12 
(0.2277) (–0.1880) (0.2129) 

0.4186 0.3839 0 
Tb3+ 8f  7

2F  –0.9745 5 5021 14 
(0.4382) (0.3984) (0) 

0.5298 0 0 
Tb3+ 8f  7

1F  0.9739 6 5487 10 
(0.5477) (0) (0) 

0 0 0 
Tb3+ 8f  7

0F  0.9736 7 5717 7 
(0) (0) (0) 

–1.5745 –0.9047 0.8503 
Dy3+ 9f  6

15/2H  –0.9708 1 0 8 
(–1.6095) (–0.9134) (0.9000) 

–1.2254 –0.3172 –0.3992 
Dy3+ 9f  6

13/2H  –0.9830 2 3432 7 
(–1.2375) (–0.3128) (–0.4146) 

–0.9743 0.1970 –0.2401 
Dy3+ 9f  6

11/2H  –0.9577 3 5776 14 
(–0.9587) (0.0108) (–0.7152) 

0.4928 –0.4364 –0.3538 
Dy3+ 9f  6

11/2F  0.9624 4 7377 11 
(0.4951) (–0.2465) (0.0853) 

–0.7764 0.1267 –0.6407 
Dy3+ 9f  6

9/2H  –0.9685 5 7649 18 
(–0.7786) (0.1423) (–0.6845) 

0.2334 0.1231 –0.2286 
Dy3+ 9f  6

9/2F  0.9440 6 8731 16 
(0.2595) (0.1391) (–0.2617) 

–0.7167 0.1037 –0.6715 
Dy3+ 9f  6

7/2H  0.9653 7 9083 15 
(–0.7176) (0.1129) (–0.7035) 

–0.8418 –0.2803 0 
Dy3+ 9f  6

5/2H  0.9625 8 10149 12 
(–0.8458) (–0.2978) (0) 

0.0595 0.1840 0.2116 
Dy3+ 9f  6

7/2F  –0.9603 9 10626 22 
(0.0920) (0.2030) (0.2276) 

–0.0340 0.1464 0 
Dy3+ 9f  6

5/2F  0.9653 10 12019 18 
(–0.0130) (0.1260) (0) 

–0.0502 0 0 
Dy3+ 9f  6

3/2F  0.9561 11 12818 17 
(–0.0596) (0) (0) 

0 0 0 
Dy3+ 9f  6

1/2F  0.9570 12 13358 9 
(0) (0) (0) 
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–0.6021 –0.6350 –1.6074 
Ho3+ 10f  5

8I  0.9681 1 0 6 
(–0.6562) (–0.6797) (–1.7060) 

–0.5324 –0.3942 –0.2371 
Ho3+ 10f  5

7I  0.9857 2 5066 6 
(–0.5524) (–0.4042) (–0.2398) 

–0.4943 –0.3011 0.2350 
Ho3+ 10f  5

6I  –0.9756 3 8613 11 
(–0.4796) (–0.2613) (0.3105) 

–0.4517 –0.2619 0.2542 
Ho3+ 10f  5

5I  0.9492 4 11205 13 
(–0.4428) (–0.2437) (0.2958) 

–0.4854 –0.4136 –0.7128 
Ho3+ 10f  5

4I  –0.9472 5 13307 12 
(–0.4540) (–0.4103) (–0.7679) 

0.5502 –0.3680 0.0816 
Ho3+ 10f  5

5F  0.9044 6 14747 12 
(0.7278) (–0.3843) (0.1484) 

0.0188 0.0463 0 
Ho3+ 10f  5

2S  0.8429 7 17660 15 
(0) (0) (0) 

1.2573 1.0060 –0.6106 
Ho3+ 10f  3

9L  0.9462 21 28805 2 
(1.1349) (1.1236) (–0.8368) 

0.6798 0.6933 1.7442 
Er3+ 11f  4

15/2I  0.9852 1 0 3 
(0.6438) (0.6850) (1.7999) 

0.5670 0.4715 0.6150 
Er3+ 11f  4

13/2I  0.9955 2 6514 3 
(0.5569) (0.4691) (0.6217) 

0.3778 0.2335 0.2376 
Er3+ 11f  4

11/2I  0.9094 3 10170 5 
(0.5045) (0.3935) (0.3399) 

0.0067 0.3294 0.5419 
Er3+ 11f  4

9/2I  0.6985 4 12286 7 
(0.4954) (0.4904) (1.1085) 

–0.3421 0.3340 0.1925 
Er3+ 11f  4

9/2F  0.7512 5 15038 7 
(–0.7136) (0.4051) (–0.1799) 

–0.1689 0 0 
Er3+ 11f  4

3/2S  0.8293 6 18546 6 
(0) (0) (0) 

0.0534 –0.2887 0.4731 
Er3+ 11f   2

11/2
2H  0.6715 7 19185 5 

(0.0076) (–0.5373) (–0.0066) 

–0.4633 –0.0505 0.4215 
Er3+ 11f  4

7/2F  –0.9610 8 20192 7 
(–0.4601) (–0.0537) (0.4552) 

–0.3151 –0.1413 0 
Er3+ 11f  4

5/2F  –0.9254 9 21953 7 
(–0.3220) (–0.1890) (0) 

–0.3403 0 0 
Er3+ 11f  4

3/2F  –0.7931 10 22316 4 
(–0.3578) (0) (0) 

1.5291 0.9373 –1.1246 
Tm3+ 12f  3

6H  0.9956 1 0 2 
(1.5158) (0.9583) (–1.1386) 
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–0.1561 0.7045 0.6365 
Tm3+ 12f  3

4F  0.8028 2 5308 3 
(–0.4672) (0.2906) (–0.1558) 

1.3100 0.6833 –0.4451 
Tm3+ 12f  3

5H  1 3 8192 1 
(1.3100) (0.6833) (–0.4451) 

0.7100 0.4743 –0.9252 
Tm3+ 12f  3

4H  0.7688 4 12390 3 
(1.2367) (0.7395) (–0.7706) 

–0.3416 0.0627 0.3193 
Tm3+ 12f  3

3F  1 5 13961 1 
(–0.3416) (0.0627) (0.3193) 

–0.5151 –0.2386 0 
Tm3+ 12f  3

2F  0.8805 6 14659 3 
(–0.3187) (0.1328) (0) 

0.5216 1.0655 0.8922 
Tm3+ 12f  1

4G  0.7543 7 20957 3 
(0.3058) (1.2150) (1.5299) 

–0.6780 0.1478 0 
Tm3+ 12f  3

2P  0.6938 8 27041 3 
(–0.8366) (0) (0) 

0 0 0 
Tm3+ 12f  3

0P  0.9714 9 33755 2 
(0) (0) (0) 

3.0185 –1.4165 0.4414 
Tm3+ 12f  1

6I  0.9956 10 34201 2 
(3.0318) (–1.4375) (0.4554) 

0.5477 0 0 
Tm3+ 12f  3

1P  1 11 34636 1 
(0.5477) (0) (0) 

–0.9160 –0.5731 0 
Tm3+ 12f  3

2P  –0.7047 12 37213 3 
(–0.8366) (0) (0) 

1.3801 –0.9670 0.3054 
Yb3+ 13f  2

7/2F  1 1 0 1 
(1.3801) (–0.9670) (0.3054) 

1.1711 –0.7560 0 
Yb3+ 13f  2

5/2F  1 2 10450 1 
(1.1711) (–0.7560) (0) 

 
eigenstates obtained in the more accurate J-mixing ap-
proach based on the M. Reid f-shell programs [7] and the 
free-ion data reported by Carnall et al. [8]. In the consid-
ered J-mixed superpositions the average number of RS 
components is 7, whereas the average number of the 
constituent matrix elements is 13. In turn, the maximal 
number of the components reaches 22, whereas the 
maximal number of the matrix elements amounts to 64 
(including 42 off-diagonal ones) what occurs for the 9th 
eigenstate of Dy3+ ion (Table 1) with 6

7/2F  state as 
the upper component.  

In total, we have taken into account 105 lower lying 
eigenstates of the three-valent RE ions from Ce3+ ( 14 f ) 
up to Yb3+ ( 134 f ). Table 1 lists also the basic attributes 
of the considered eigenstates: the upper RS component, 

its amplitude in the normalized superposition, the con-
secutive number in the ion’s spectrum [7], the eigenenergy 
in cm–1, and the number of components with the amplitude 
exceeding 0.01. It is instructive to compare the aspheric- 
ities of the pure RS states [6] with those of the corrected 
J-mixed eigenstates. It turns out that from among the 105 
analysed states only about 20% of them differ markedly 
in the asphericities from their RS counterparts, i.e. their 
upper states. Primarily, these are the states of the fol-
lowing ions: Tm3+ ( 124 f ), Er3+ ( 114 f ), Nd3+ ( 34 f ), and 
Pr3+ ( 24 f ) (Table 1). By sheer coincidence two various 
states of Tm3+ ion: the 8th and 12th are characterized by 
the same dominating component 3

2P , but it does not 
lead to any misunderstanding because we do not use this 
ambiguous state description. 
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Table 2. Multipole characteristics of the RE+3 ion eigen-
states (selected from Table 1) distinguished by the strongest 
(the upper half) and the weakest (the lower half)  

.   
1/22 2 2

2 4 6A A A A

RE 
ion 

The upper state 
2 1S

JL  A 

Pr3+ 1

6I  3.3784 

Tm3+ 1

6I  3.3634 

Pr3+ 3

6H  2.1217 

Tm3+ 3

6H  2.1169 

Nd3+ 4

15/2I  2.0160 

Sm3+ 6

15/2H  2.0159 

Dy3+ 6

15/2H  2.0051 

Er3+ 4

15/2I  1.9962 

Pm3+ 5

8I  1.8909 

Ho3+ 5

8I  1.8301 

Nd3+ 4

3/2S  0.0361 

Ho3+ 5

2S  0.0500 

Dy3+ 6

3/2F  0.0502 

Sm3+ 6

3/2F  0.0565 

Sm3+ 6

5/2F  0.1068 

Dy3+ 6

5/2F  0.1503 

Er3+ 4

3/2S  0.1688 

Pm3+ 5

1F  0.2180 

Nd3+  2

11/2
2H  0.2402 

Nd3+ 2

3/2P  0.2818 

 
There exist the following J-mixing mechanisms that 

produce the observed changes in the asphericity of the 
states. Firstly, the normalization of any superposition of 
states reduces naturally the upper state amplitude, 
whereas its square determines the upper state asphericity 
input. Secondly, additional diagonal and off-diagonal 
terms in the the matrix element  kC

Table 3. Multipole characteristics of the RE+3 ion eigen-
states (selected from Table 1) distinguished by the strongest 

kA . 

RE 
ion 

The upper state 
2 1S

JL  2A  

Pr3+ 1

6I  –3.0273 

Tm3+ 1

6I  3.0185 

Sm3+ 6

15/2H  1.5794 

Dy3+ 6

15/2H  –1.5745 

Tm3+ 3

6H  1.5291 

Pr3+ 3

6H  –1.5204 

Tb3+ 7

6F  –1.5028 

Eu3+ 7

6F  1.4991 

Ce3+ 2

7/2F  –1.3801 

Yb3+ 2

7/2F  1.3801 

  4A  

Pr3+ 1

6I  1.4303 

Tm3+ 1

6I  –1.4165 

Tm3+ 1

4G  1.0665 

Ce3+ 2

7/2F  0.9670 

Yb3+ 2

7/2F  –0.9670 

Pr3+ 3

6H  –0.9511 

Tm3+ 3

6H  0.9373 

Pr3+ 1

4G  –0.9275 

Sm3+ 6

15/2H  0.9086 

Dy3+ 6

15/2H  –0.9047 

  6A  

Nd3+ 4

15/2I  –1.7765 

Er3+ 4

15/2I  1.7442 

Pm3+ 5

8I  1.6571 

Ho3+ 5

8I  –1.6074 

Pr3+ 3

6H  1.1338 

Tm3+ 3

6H  –1.1246 

Nd3+ 4

9/2I  –1.0773 

Pr3+ 1

4G

3

 –1.0310 

Tm3+ 4H  –0.9252 

Tm3+ 1

4G  0.8922 

  expansion 
differ in magnitudes and signs. The sign of each individ-
ual diagonal term is specified exclusively by the sign of 
the respective kA  on the involved component. Its mag-
nitude, however, comes from the product of kA  and 
the square of the component amplitude in the superposi-
tion. In turn, any off-diagonal term is a product of 6 fac-
tors including two involved amplitudes (Equation (2)).  
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Table 4. Multipole characteristics of the RE+3 ion eigen-
states (selected from Table 1) distinguished by the weakest 

kA . 

RE 
ion 

The upper state 
2 1S

JL  2A  

Sm3+ 6

5/2F  0.0033 

Er3+ 4

9/2I  0.0067 

Ho3+ 5

2S  0.0188 

Nd3+ 4

5/2G  0.0321 

Dy3+ 6

5/2F  –0.0340 

Nd3+ 4

3/2S  0.0362 

Pr3+ 1

4G  –0.0421 

Dy3+ 6

3/2F  –0.0502 

Er3+  2

11/2
2H  0.0534 

Sm3+ 6

3/2F  0.0565 

  4A  

Nd3+  2

11/2
2H  0.0001 

Sm3+ 6

11/2H  –0.0042 

Ho3+ 5

2S  0.0463 

Er3+ 4

7/2F  –0.0505 

Nd3+ 4

7/2F  0.0533 

Pr3+ 3

3F  –0.0627 

Tm3+ 3

3F  0.0627 

Nd3+  2

9/2
2H  –0.0638 

Pr3+ 3

2F  –0.0909 

Sm3+ 6

9/2F  –0.1020 

  6A  

Sm3+ 6

11/2F  –0.0652 

Nd3+  2

9/2
2H

5

 –0.0732 

Ho3+ 5F  0.0816 

Nd3+ 4

9/2F  0.1040 

Er3+ 4

9/2F  0.1925 

Nd3+ 4

7/2G  0.1939 

Nd3+  2

11/2
2H

6

 –0.2027 

Dy3+ 7/2F  0.2116 

Eu3+ 7

3F  –0.2154 

Eu3+ 7

6F  0.2161 

Table 5. Multipole characteristics of the RE+3 ion eigen-
states (selected from Table 1) distinguished by the largest 

kA A . 

RE 
ion 

The upper state 
2 1S

JL  2A A  

Pr3+ 3

2P  0.9917 

Tm3+ 3

2P  –0.9771 

Pr3+ 3

2F  0.9659 

Sm3+ 6

5/2H  0.9538 

Dy3+ 6

11/2H  –0.9528 

Dy3+ 6

5/2H  –0.9488 

Nd3+  2

9/2
2H  0.9486 

Dy3+ 6

13/2H  –0.9233 

Sm3+ 6

13/2H  0.9227 

Er3+ 4

5/2F  –0.9124 

  4A A  

Sm3+ 6

5/2F  –1.0000 

Nd3+ 4

5/2G  0.9977 

Dy3+ 6

5/2F  0.9731 

Ho3+ 5

2S  0.9165 

Pr3+ 3

4F  –0.8541 

Tm3+ 3

4F  0.7322 

Tm3+ 1

4G  0.7181 

Eu3+ 7

2F  –0.6826 

Tb3+ 7

2F  0.6759 

Pr3+ 1

4G  –0.6685 

  6A A  

Nd3+ 4

15/2I  –0.8812 

Ho3+ 5

8I  –0.8783 

Pm3+ 5

8I  0.8764 

Er3+ 4

15/2I  0.8737 

Er3+ 4

9/2I  0.8545 

Er3+  2

11/2
2H

4

 0.8496 

Nd3+ 9/2I  –0.8485 

Nd3+  2

11/2
2H

7

 –0.8440 

Tb3+ 4F  –0.7846 

Eu3+ 7

4F  0.7794 

Copyright © 2011 SciRes.                                                                                 JMP 



J. MULAK  ET  AL. 
 

1383

Table 6. Multipole characteristics of the RE+3 ion eigen-
states (selected from Table 1) distinguished by the smallest 

kA A . 

RE 
ion 

The upper state 
2 1S

JL  2A A  

Er3+ 4

9/2I  0.0000 

Pr3+ 1

4G  –0.0300 

Nd3+ 4

5/2G  0.0671 

Er3+  2

11/2
2H  0.0970 

Tm3+ 3

4F  –0.1625 

Eu3+ 7

4F  0.1664 

Tb3+ 7

4F  –0.1766 

Dy3+ 6

7/2F  0.2064 

Dy3+ 6

5/2F  –0.2304 

Nd3+ 4

9/2I  –0.3268 

  4A A  

Er3+ 4

7/2F  –0.0812 

Nd3+ 4

7/2F  –0.0837 

Dy3+ 6

7/2H  0.1054 

Dy3+ 6

9/2H  0.1249 

Pr3+ 3

2P  0.1288 

Pr3+ 3

3F  –0.1323 

Tm3+ 3

3F  0.1323 

Sm3+ 6

9/2H  –0.1503 

Dy3+ 6

11/2H  0.1926 

Nd3+  2

9/2
2H  –0.2078 

  6A A  

Sm3+ 6

11/2F  –0.1187 

Ho3+ 5

5F  0.1229 

Eu3+ 7

6F  0.1292 

Tb3+ 7

6F  –0.1296 

Tm3+ 1

6I  0.1311 

Pr3+ 1

6I  –0.1334 

Nd3+ 4

9/2F  0.1578 

Ce3+ 2

7/2F  –0.1783 

Yb3+ 2

7/2F  0.1783 

Dy3+ 6

11/2H  –0.2347 

Its sign results from the product of 6 signs, and is in 
principle accidental. To cope with this matter effectively 
one should consider all the additional diagonal and off- 
diagonal contributions along with their various possible 
magnitudes and signs. Based on these investigations four 
types of the resultant Ak modifications can be noticed in 
Table 1.  
 Due to insignificant J-mixing admixtures to the upper 

state only small changes (within a few percent) arise in 
the pertinent kA , which are the algebraic sum of the 
normalization effect and the additional diagonal and 
off-diagonal corrections. Such effect occurs for about 
80% of the states listed in Table 1. However, the 
proximity of the Ak values for the RS and those for the 
corrected J-mixed states can be also accidental. For 
example, in the 23rd eigenstate of Nd3+ ion the ampli-
tude of its upper state 3

3/2P  reaches merely 0.7205 
and its contribution to 2A  of the superposition is only 

. Nevertheless, the re-
maining diagonal (0.2128) and off-diagonal (–0.0858) 
inputs are relatively large, and effectively lead to 

2 = 0.2818  that accidentally is close to 0.2981, 
which is the value for the 

2(0.7205) (0.2981) = 0

A

.1548

3
3/2P  state.  

 The sum of the corrections is substantial with respect 
to Ak of the upper state and has the same sign as the Ak. 
Here an enhancement of kA  occurs. Such resultant 
effect is observed for the states: 13th of Nd3+, 7th of 
Er3+, 6th, 7th and 12th of Tm3+ in the case of 2A , for 
the states: 6th of Pr3+, 3rd and 4th of Dy3+, and 2nd of 
Tm3+ in the case of 4A , and for the 4th state of Tm3+ 
in the case of 6A .  

 The sum of the corrections is substantial but with the 
opposite sign than that of the upper state Ak. In this 
case a partial compensation of kA  (including the 
complete cancelation), or even the sign conversion of 

kA , takes place. Such result has been found in the case 
of 2A  for the states: 6th and 7th of Pr3+, 7th, 10th and 
11th of Nd3+, 6th of Ho3+, 3rd, 4th and 5th of Er3+, 2nd, 
4th and 8th of Tm3+, in the case of 4A  for the states: 
7th and 8th of Pr3+, 7th, 10th and 11th of Nd3+, 4th, 5th 
and 7th of Er3+, 4th, 6th and 7th of Tm3+, and in the 
case of 6A  for the states: 1st, 6th and 7th of Pr3+, 7th, 
10th, 11th and 13th of Nd3+, 3rd and 4th of Dy3+, 6th 
of Ho3+, 3rd, 4th, 5th and 7th of Er3+, 2nd and 7th of 
Tm3+.  

 The corrections generate the only contribution to Ak 
that for the initial state is equal to zero. It takes place 
for the states 12th of Pr3+ ( 4A ), 9th of Nd3+ ( 2A ), 7th 
of Ho3+ ( 2A , 4A ), 6th of Er3+ ( 2A ), 8th and 12th of 
Tm3+ ( 4A ).  
The detailed mechanisms of the asphericity modifica-

tions induced by the J-mixing effect will be thoroughly 
analyzed for some representative examples in Section 6. 
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3. The Asphericity of an Electron Eigenstate 
and Its Crystal-Field Splitting 

 
The asphericity Ak for  and 6 of any electronic 
state may serve as a reliable measure of its capability for 
CF splitting produced by the 

= 2, 4k

 k
CFH  - the k-th component 

of the CFH . It stems from the fundamental relationship 
between the CF splitting second moment k  and the Ak 
[10,13,14]  

 2 = 1 2 1 ,k
2 2
k kJ A S              (3) 

where   22 = 1 2 1k q
S k B   kq  is the square of the 

CF strength of the 2k-pole CFH  component [9-12], and 
 is the degeneracy of the given state with a good 

quantum number J. In fact, the above relationship (Equa-
tion (3)) arises from the spherical harmonic addition 
theorem [19] concerning the expansion of 

2 1J  

1 ijr  into the 
series of q i i q j j

     ,kC C k ,     components. They 
are the products of the conjugated spherical harmonics 
defined for the separated indices i and j. In the CF con-
text the first factor refers to the electronic density angular 
distribution of the central ion unperturbed eigenstate, 
whereas the second refers to the surrounding charges. In 
fact, this separation lies in the background of the whole 
formalism exposing the scalar product nature of CF 
Hamiltonian. 

As it is seen from Equation (3) the asphericity Ak can 
be treated as a potential capability of the considered state 
for the 2k-pole CF splitting since the second factor Sk 
represents a separate and unrelated external impact. The 
Ak can be either positive or negative (Section 2) what 
symbolically may be imagined as asphericities of convex 
or concave type. The Ak sign does not affect the k , but 
is crucial calculating the resultant asphericities of the 
superposition of states. 

The question arises how the global second moment   
can be expressed by means of the asphericities of the 
involved electron eigenstate. As it is known, the square 
of the global second moment 2  is a simple sum of the 
second moment squares of the individual components 
[6,10,13,14,20]. 

  2 2 2 2 2 2 2
2 2 4 4 6 6= 1 2 1 .J A S A S A S           (4) 

To describe 2  it is convenient to introduce two aux-
iliary vectors:  2 2 2

2 4 6, ,A A AA  and  within 
the three-dimensional orthogonal reference frame based 
on the Ak (or Sk) axes. Then, 

 2 2 2
2 4 6, ,S S SS

 2 = 1 2 1J     A S  is 
defined by their scalar product. All the components of 
the A and S vectors are positive by definition and can be 
expressed by the spherical angular coordinates only 
within the ranges of 0 π 2   and 0 π 2  . 
Equation (4) shows that the CF splitting is determined by 
the two inseparable mutually entangled quantities Ak and 

Sk. The figurative vectors A and S may be orthogonal, 
what happens when both the vectors lie either along the 
two frame axes or one of them lies along an axis whereas 
the second belongs to the perpendicular plane. Then, 
always , in spite of some non-zero Ak and Sk. 
Simultaneously, Equation (4) enables us to critically ver-  

2 = 0

ify the meaning of such quantities like  1/22= kk
S S  

and  1/2
A2= kk

A   [6]. In general, no apparent physical  

sense can be assigned to these quantities. 
 
4. The Range of Capability of the 4 f N 

Tripositive Free Ion Eigenstates for 
Crystal-Field Splitting 

 
Similarly to the approximated RS states 2 1S

JL  of 
triply ionized lanthanides [6], the eigenstates amended 
by the J-mixing [7] are characterized by an exceedingly 
diversified multipole structure both in qualitative and 
quantitative way (Table 1). Such random, to a large ex-
tent, diversity stems from a stochastic character with 
respect to the magnitude and sign of the multifactorial 
expression for the  operator reduced matrix ele-
ment (Equation (2)). The chaotic dispersion of the Ak 
magnitudes and signs is well exhibited in Tables 2-6 by 
the eigenstates chosen from among all the 105 studied 
ones: the top ten states of the strongest or weakest 

2 4 6  (Table 2), the ten of the strongest 

 kC

1/22 2 2A =A A A

kA  (Table 3), the ten of the weakest kA  (Table 4), 
and finally the ten states of the highest kA A (Table 
5), as well as the ten ones of the lowest kA A  (Table 
6). The kA A , which is a cosine of the angle between 
the  2 4 6, ,A A A  vector and the distinguished axis rep-
resenting the Ak, gives the relative weight of the chosen 
2k-pole in the eigenstate multipole structure. It is enough 
to notice that A takes values from 0 to 3.3784, whereas 
the entirely independent one of another kA  change 
within the ranges: 20 < 3.0273A  , 40 < 1.4303A  , 
and 60 < 1.A  7765 . As it is seen, the multipole struc-
ture of the considered states is widely differentiated. In 
consequence, the states being characterized by only one 
prevailing multipole are not excluded. For example, the 
12th eigenstate 3

2P  of Pr3+ ion is characterized by the 
predominant role of the 22-pole component  2 =A A  

, the 9th eigenstate 70.991 6
5/2F  of Sm3+ ion by the 

24-pole component   4 1.0000A A  , and the 4th ei-
genstate 4

15/2I  of Nd3+ ion by the prevailing 26-pole 
component   6 = 0.8812A A , however not so dis-
tinctly as in the two previous cases. 

The highest total asphericities (the top A values), 
which represent the strongest total capabilities for the CF 
splitting, are found in the states with large L (and J) 
quantum numbers (Table 2). Such states are weakly dis-
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turbed by the J-mixing interaction due to a small number 
of the partner RS states of the same J and large energy 
gaps between them. Their calculated asphericities are 
close to those for the relevant upper states. On the con-
trary, the eigenstates with the weakest asphericities have 
quite often their Ak significantly changed with respect to 
those for their RS counterparts. In general, it results from 
a similar level of the J-mixing corrections in both the 
cases, and a substantial difference in their initial magni-
tudes. 

Tables 1-6 indicate an evident correspondence be-
tween the calculated Ak for the pairs of the lanthanide 
ions with the complementary electron configurations 
4 Nf  and 144 Nf  : (Ce3+, Yb3+), (Pr3+, Tm3+), (Nd3+, 
Er3+), (Pm3+, Ho3+), (Sm3+, Dy3+) and (Eu3+, Tb3+). The 
opposite Ak sign of the pair-partners results from the op-
posite sign of the related matrix elements of the  
operators [18], and is mainly a consequence of the 
Hund’s rules governing the eigenstates sequence, it 
means their location in the free-ion energy spectrum. 

 kU

The difference between the bottom parts of the energy 
diagrams of Pr3+ and Tm3+ ions serves as a good example 
of such case. In the energy spectrum of Pr3+ ion the RS 
states 3

4H  and 3
4F  interacting via J-mixing are 

located one to another as far as possible: the 3
4H  is 

the lowest state of the term 3H , whereas the 3
4F  the 

highest one of the term 3F . In Tm3+ ion, in the reverse 
order, the 3

4H  is the highest state of the 3H  term, 
whereas the 3

4F  the lowest state of the term 3F . In 
fact, the 3

4F  state lies below the state 3
4H  [16]. The 

energy gap between the states 3
4H  and 3

4F , their 
so-called energy denominator, determines the efficiency 
of the J-mixing interaction. 
 
5. Electronic State Capability for CF 

Splitting and Parametrization of the 
Involved CF Hamiltonian 

 
Equations (3) and (4) reveal the direct relationship be-
tween the CF splitting second moments (  and k ) 
available from the experimentally fitted splitting dia-
grams, and the relevant Ak and Sk in the form of their 
products. Having known the capabilities Ak one gets the 
Sk which are consistent with the experimental data. Thus, 
we have an additional condition imposed on the CFPs for 
each individual multipole, i.e. for CFPs with a fixed k 
index. Therefore any correct fitting procedure must lead 
to CFPs obeying Equations (3) and (4). To fully realize 
the significance of the above defined capability of elec-
tronic states for CF splitting and its indispensability in 
practical CF calculations let us verify, as an example, the 
parametrization of the CF Hamiltonian for eight lower 
lying electronic states of Tm3+ ion doped into single 

crystal (C2 sites) of cubic yttrium oxide Y2O3 [21]: 3
6H , 

3
4F , 3

5H , 3
4H , 3

3F , 3
2F , 1

4G , and 1
2D  

(Table 1). Mind the 8th state of Tm3+ ion (Table 1), the 
amplitude of the 1

2D  component is equal to 0.5871, 
so it is not the actual upper component. 

Based on Table IX in [21] all the eight 2  values for 
the considered states are known and amount to in 
[(cm–1)2]: 70205, 40019, 45836, 29941, 2965, 13548, 
83061 and 10004 in order of the above mentioned states. 
Next, all the needed capabilities (asphericities) kA  cal-
culated for the corrected electronic states of Tm3+ ion by 
M. Reid [7] are compiled in Table 1. We have then the 
following set of eight linear equations (of Equation (4) 
type) for ,  and :  2

2S 2
4S 2

6S

     

     

     

     

 

2 2 22 2 2
2 4 6

2 2 22 2 2
2 4 6

2 2 22 2 2
2 4 6

2 2 22 2 2
2 4 6

2 2
2

1
1.5291 0.9373 1.1246 70205

13
1

0.1561 0.7045 0.6365 40019
9
1

1.3100 0.6833 0.4451 45836
11
1

0.7100 0.4743 0.9252 29941
9
1

0.3416 0.06
7

S S S

S S S

S S S

S S S

S

     

     

     

     

     

   

     

   

2 22 2
4 6

2 22 2
2 4

2 2 22 2 2
2 4 6

2 22 2
2 4

27 0.3193 2965

1
0.5151 0.2386 13548

5
1

0.5216 1.0655 0.8922 83061
9
1

0.6780 0.1478 10004
5

S S

S S

S S S

S S

   

     

    

    

 

(5) 

By definition, only positive solution is admitted, what 
is rather a strong requirement. For the corrected Tm3+ 
free-ion eigenstates we have found the proper solution of 
(Equation (5)). By means of the least square deviations 
Gauss method we have obtained in [(cm–1)2]: , 

, and . The second moments 
calculated for these values of Sk are: 70120, 36440, 
45280, 30170, 3715, 13060, 84940 and 13740, respec-
tively. Taking into account all possible inaccuracies in 
the estimated 

2
2 = 121980S

2
4 = 578760S 2

6 = 93240S

2  and in the calculated kA , as well as 
their wide ranges of variation, the presented calculations 
reproduce the observed 2  quite accurately. 

The role of the capabilities kA  in the approach is 
readable. It is proper to add that there is no solution of 
Equation (5) in the case of kA  for the pure RS eigen-
states of Tm3+ ion. 

The presented example highlights the 2  additivity 
principle which ensures the appropriate multipole mo-
ments yielded by the surroundings of Tm3+ ion in Y2O3 
crystal lattice. Additionally, it evidences a good quality 
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fitting of the CF levels given in [21] and the correctness 
of the RE3+ free-ion electronic eigenstates composition 
calculated by M. Reid [7]. 

The CFPs for Tm3+:Y2O3 given in Table IV [21] yield 
the following 2 in [(cm–1)2]: , , 
and , which differ from those obeying the 

kS
718

2
2 124613S  2

4 352704S 
2
6 28S 

2  additivity. Although the corresponding CFPs repro-
duce the considered CF splitting diagrams [21] suffi-
ciently well they do not represent the proper multipolar 
characteristics of the  site in Y2O3. 2

Similar breaking of the multipolar additivity of 
C

2 , 
calculated from the fitted parametrization of the corre-
sponding CF Hamiltonian, has been evidenced previ-
ously for Nd3+:Y2O3 [20]. One can therefore suspect a 
remarkable part of published CFH  parametrizations to 
suffer from this type of physical shortcoming. This can 
be also a source of the overwhelming inflation of for-
mally good but non-equivalent CFH  parametrizations. 
Concluding, the capabilities kA  for the free-ion eigen-
states of tripositive rare-earth ions given in Table 1 are 
crucial in order to verify any related CF Hamiltonian. 
 
6. Discussion  
 
The calculated asphericities ( )= k

kA C   of the 
trivalent 4 Nf  ions are not the actual ones due to ap-
proximate nature of the applied eigenfunctions  , but 
their reliability can be improved replacing the initial 
functions (e.g. those of the RS type) by their various su-
perpositions. In the case of simultaneous diagonalisation 
of the interaction matrix including the Coulomb repul-
sion and the spin-orbit coupling these are the superposi-
tions of the RS functions with the same J but different L 
and S quantum numbers [7]. The kA  variations seen in 
Table 1 are limited mainly by the scale of the component 
admixtures. Additional role is played by magnitudes of 
the relevant diagonal and off-diagonal matrix elements of 
the  operator within the superposition, as well as 
the mutual competition between the corrections. In most 
cases the amplitudes of the admixtures are rather small. 
Therefore, for the majority of the lower lying eigenstates 
(about 80%) of the trivalent lanthanide ions there appear 
only insignificant differences between the k

( )kC

A  calcu-
lated for the model RS states [6] and those including 
their J-mixing (Table 1). Nevertheless, for certain part of 
the eigenstates, particularly the exited ones, the observed 
changes become essential, indeed. They illustrate well 
the types of the resultant J-mixing effects mentioned in 
Section 2. Some instructive mechanisms leading to such 
variations are analyzed in details for several chosen ex-
amples below. 

Let us consider the 6th state of Pr3+ ion (Table 1) of 
the composition:  

3 3
4 40.8087 0.1225 0.5753 1

4F H G   

with the dominant 3
4F  component. The diagonal con-

tributions to the 2A  amount to:  

   2
0.8087 0.4672 0.3778 ,  

   2
0.1225 1.2367 0.0186   ,  

   2
0.5753 0.3058 0.1012    , 

and the only off-diagonal input  

     23 3
4 40.8087 0.1225 0.0141F C H   . 

The accumulation of the three negative corrections re-
duces the 2A  from 0.4672 down to 0.2439. The diago-
nal contributions to the 4A  are negative and reach:  

   2
0.8087 0.2906 0.1901   ,  

   2
0.1225 0.7395 0.0111   ,  

   2
0.5753 1.2150 0.4021    ,  

and the off-diagonal element  

     43 3
4 40.8087 0.1225 = 0.0549F C H .  

Here, the strong diagonal input of the 1
4G  determines 

the magnitude and sign of the . In turn, 
the diagonal contributions to the 

4 0.2906A  
6A  are equal to:  

   2
0.8087 0.1558 0.1019 ,  

   2
0.1225 0.7706 0.0116 ,  

   2
0.5753 1.5299 0.5064    ,  

and the off-diagonal input is  

     63 3
4 40.8087 0.1225 0.1649F C H  .  

Again, as above, the diagonal negative input of the 1
4  

dominates and the ultimate 6  results from a 
partial compensation of all the contributions. 

G
0.2280A  

The 7th state of Nd3+ ion, is composed of  

   
   

3 4
9/2 9/2 9/2

2 2

9/2 9/2

2 2

9/2 9/2

0.3700 0.1458 0.1525

0.3381 1 0.2799 2

0.2805 1 0.7398 2

4F G I

G G

H H

  

 

 

 

with the prevailing  2

9/2
2H  state. All the weak di-

agonal contributions to the 2A  are almost compensated 
achieving in sum 0.0092 with respect to the dominant 
state input . The decisive 
are the positive off-diagonal terms  

   2
0.7398 0 0.0038  .0069
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         22 2

9/2 9/2
0.338 1 1 0.2799 2 0.1655G C G  ,  

along with  

         22 2

9/2 9/2
0.2805 1 0.7398 2 0.1225H C H  ,  

giving finally the 2 . Here, the dominant state 
input to the A4 amounts to  
and the sum of all the seven diagonal elements 0.1675 is 
somewhat less. In this situation the relatively large and 
negative off-diagonal element  

0.2920A 
   2
0.7398 0.4816 0.2636

       42 2

9/2 9/2
0.2805 1 0.7398 2 0.2508H C H    

decides both on the magnitude and sign of the A4 = 
–0.0638. Similarly, for the very small positive sum of the 
partial diagonal elements  0.0055 , the final A6 = –0.0732 
is determined by the prevailing, as for the modulus, 
negative off-diagonal element  

         62 2

9/2 9/2
0.2805 1 0.7398 2 0.1010H C H   . 

The 11th state of the Nd3+, is given by  

 
 

4 4 2
11/2 11/2 11/2

2 2
11/211/2

0.2407 0.0994 0.3573 1

0.8955 2 0.0515

G I H

H I

  

 
 

with the dominant  2

11/2
 component. The sum of 

the diagonal contributions to the A2 is –0.0740, including 
the input –0.0632 from the 

2H

 2

11/2
. The resultant 

2  is the outcome of mutual competition of 
the positive off-diagonal term given by  

1H
0.1289A 

         22 2

11/2 11/2
0.3573 1 0.8955 2 0.2080H C H   

and the negative diagonal contribution coming mainly 
from the state  2

11/2
. The sum of the diagonal 

elements combining to the A4 amounts to 0.4454 and is 
close to the contribution of the dominating 

1H

 2

11/2
 

state, i.e. . However, it is 
practically entirely compensated  by the 
sum of two negative off-diagonal elements:  

2H
   2
0.8955 0.5373 0.4309

4A  0.0001

         42 2

11/2 11/2
0.3573 1 0.8955 2

0.4314

H C H

 
 

and  

       44 4
11/211/2

0.2407 1 0.0994 0.0139G C I   . 

The resultant 6  is determined by relatively 
strong off-diagonal input  

0.2027A  

         62

11/2 11/2
0.3573 1 0.8955 2

0.1791.

H C H

 

2

 

All the diagonal elements contribute only –0.0081. 
The J-mixing of the RS states can activate some idle 

states making them susceptible to CF splittings. In other 
words, they lose their initial effective spherical symme-
try. As an example let us examine the 6th state od Er3+ 
ion consisting of  

   

4 4 4
3/2 3/2 3/2

2 2 2
3/2 3/2 3/2

0.8293 0.044 0.2390

0.4174 0.2797 1 0.0274 2 .

S D F

P D D

 

  
 

The prevailing element 4
3/2S  is characterized by zero 

asphericities 2A , 4A  and 6A . However, the corrected 
eigenstate acquires the asphericity 2  by 
accumulation of the negative diagonal contributions:  

0.1689A  

   2
0.2390 0.3578 0.0204   ,  

   2
0.4174 0.2981 0.0519    ,  

   2
0.2797 0.5707 0.0446    ,  

and the off-diagonal ones:  

     24 4
3/2 3/20.0443 0.8293 0.0480D C S   ,  

         22 2

3/2 3/2
0.2797 1 0.0274 2

0.0045.

D C D 

 
 

The states 4
3/2S  and 4

3/2D  do not bring any di-
agonal inputs, and the state  2

3/2
2D  gives only 

0.0005. 
The ground state of Pr3+ ion is given by  

3 1
4 40.9856 0.1662 0.0311 3

4H G F    

and its A2 and A4 asphericities change only slightly with 
respect to the parameters for the pure 3

4H  state. 
However, the 6A  asphericity is noticeably reduced. 
The diagonal contribution of the 1

4G  state  

   2
0.1662 1.5299 0.0423   ,  

and the off-diagonal term  

     63 3
4 40.9856 0.0311 0.0510H C F    

weaken the positive input of the 3
4H  upper state 

 down to the value of 0.6555. 
It corresponds to attenuation of the state capability for 
the CF splitting by CF

   2
0.9856 0.7706 0.7486

 6H . An increase in both the 3
4F  

and 1
4  admixtures deepen the tendency. It is worth 

to remember analyzing the CF splitting of the 
G

 4 25U f  
ion ground state. 

As is seen in Equation (3) the multipole characteristics 
of the electron eigenstates along with their CF splitting 
diagrams sheds a new light on the crystal matrix multi-
pole structure and vice versa. Based on the CF splitting 
diagrams for several electron eigenstates of known mul-
tipole characteristics in a specified crystal matrix (with a 
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definite CFH ), as well as the CF splitting diagrams of a 
specified eigenstate in various CF matrices, we can rec-
oncile the actual kA  for the considered electronic states 
and the k  for the CF Hamiltonians, respectively. A 
great facilitation in such estimations is an incomplete 
multipolar structure of the analyzed eigenstates. Such 
incompleteness may result either from the triangle rule 
for J, J, k numbers (e.g. for 

S

= 1,3 2J  and  or = 4,6k
= 5 2J  and ) or from accidental cancelation of 

some multipoles due to the J-mixing effect, as it is ob-
served for the 11th state of Nd3+ and the 4th state of Er3+ 
ions in Table 1. Furthermore, in some CF Hamiltonians 
the three-component multipole structure is not always 
complete, like e.g. in the cubic 

= 6k

CFH  which has no 
quadrupolar component. 

In order to properly classify the multipolar character-
istics of both the electronic eigenstates and the actual CF 
Hamiltonians we have to apply such kind of comprehen-
sive reconciliations. The fitted CFP sets, that well repro-
duce the experimental spectrum of energy levels for in-
tentionally approximated initial eigenfunctions, have by 
definition an effective character. Therefore, applying the 
same approximation for all eigenfunctions coming from 
different energy ranges will undoubtedly lead to errors. 
Presumably, this is the main reason for difficulties asso-
ciated with minimization of rms deviations in fitted CFP 
sets. There are some phenomenological attempts to im-
prove the fitting accuracy. In one of them the two-elec- 
tron correlation CF is introduced, which may be simply 
expressed by an effective one-electron CF Hamiltonian 
being dependent on the considered electronic term. In 
another one the mean k powers of the unpaired electron 
radii kr  is made variable with respect to the electron 
term [5,22-24]. Both the above approaches are formally 
admissible, but they can be physically ungrounded. 

Yet another reflection arises. The dichotomic structure 
of the CF Hamiltonian [6] and random diversity of the 
asphericities by no means do not entitle us to exploit the 
concept of convergence of the CFH  multipole series. 
The CFH  approximation reducing its multipole struc-
ture only to the first quadrupolar term is groundless. An 
exception could be perhaps a unique case when A2 = A4 = 
A6. Obviously, the CFH  three-multipole (k = 2, 4, 6) 
series is a finite one, and not truncated. The higher mul-
tipoles do not contribute at all. The second independent 
factor that controls to a similar extent as the external 
multipoles the resultant hierarchy of the three CF Ham-
iltonian terms is the capability kA  of the state for the 
CF splitting. 
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