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Abstract 
 
Generalized solutions of the standard gauge transformation equations are presented and discussed in physical 
terms. They go beyond the usual Dirac phase factors and they exhibit nonlocal quantal behavior, with the 
well-known Relativistic Causality of classical fields affecting directly the phases of wavefunctions in the 
Schrödinger Picture. These nonlocal phase behaviors, apparently overlooked in path-integral approaches, 
give a natural account of the dynamical nonlocality character of the various (even static) Aharonov-Bohm 
phenomena, while at the same time they seem to respect Causality. For particles passing through nonvanish-
ing magnetic or electric fields they lead to cancellations of Aharonov-Bohm phases at the observation point, 
generalizing earlier semiclassical experimental observations (of Werner & Brill) to delocalized (spread-out) 
quantum states. This leads to a correction of previously unnoticed sign-errors in the literature, and to a natu-
ral explanation of the deeper reason why certain time-dependent semiclassical arguments are consistent with 
static results in purely quantal Aharonov-Bohm configurations. These nonlocalities also provide a remedy 
for misleading results propagating in the literature (concerning an uncritical use of Dirac phase factors, that 
persists since the time of Feynman’s work on path integrals). They are shown to conspire in such a way as to 
exactly cancel the instantaneous Aharonov-Bohm phase and recover Relativistic Causality in earlier “para-
doxes” (such as the van Kampen thought-experiment), and to also complete Peshkin’s discussion of the elec-
tric Aharonov-Bohm effect in a causal manner. The present formulation offers a direct way to address 
time-dependent single- vs double-slit experiments and the associated causal issues—issues that have recently 
attracted attention, with respect to the inability of current theories to address them.  
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1. Introduction 
 
The Dirac phase factor—with a phase containing spatial 
or temporal integrals of potentials (of the general form 

d c td  A x  )—is the standard and widely used so-
lution of the gauge transformation equations of Electro-
dynamics (with A and   vector and scalar potentials 
respectively). In a quantum mechanical context, it con-
nects wavefunctions of two systems (with different po-
tentials) that experience the same classical fields at the 
observation point (r, t), the two more frequently dis-
cussed cases being: either systems that are completely 
gauge-equivalent (a trivial case with no physical conse-
quences), or systems that exhibit phenomena of the 
Aharonov-Bohm type (magnetic or electric) [1] —and 
then this Dirac phase has nontrivial observable conse-

quences (mathematically, this being due to the fact that 
the corresponding “gauge function” is now multiple- 
valued). In the above two cases, the classical fields ex-
perienced by the two (mapped) systems are equal at 
every point of the accessible spacetime region. However, 
it has not been widely realized that the gauge transfor-
mation equations, viewed in a more general context, can 
have more general solutions than simple Dirac phases, 
and these lead to wavefunction-phase-nonlocalities that 
have been widely overlooked and that seem to have im-
portant physical consequences. These nonlocal solutions 
are applicable to cases where the two systems are al-
lowed to experience different fields at spacetime points 
(or regions) that are remote to (and do not contain) the 
observation point (r, t) (these regions being physically 
accessible to the particle, unlike genuine Aharonov-Bohm 
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cases). In this article we rigorously show the existence of 
these generalized solutions, demonstrate them in simple 
physical examples, and fully explore their structure, pre-
senting cases (and closed analytical results for the wave-
function-phases) that actually connect (or map) two 
quantal systems that are neither physically equivalent nor 
of the usual Aharonov-Bohm type. We also fully inves-
tigate the consequences of these generalized (nonlocal) 
influences (on wavefunction-phases) and find them to be 
numerous and important; we actually find them to be of a 
different type in static and in time-dependent field-con- 
figurations (and in the latter cases we show that they lead 
to Relativistically causal behaviors, that apparently re-
solve earlier “paradoxes” arising in the literature from 
the use of standard Dirac phase factors). The nonlocal 
phase behaviors discussed in the present work may be 
viewed as a justification for the (recently emphasized [2]) 
terminology of “dynamical nonlocalities” associated with 
all Aharonov-Bohm effects (even static ones), although 
in our approach these nonlocalities seem to also respect 
Causality (without the need to independently invoke the 
Uncertainty Principle) - and, to the best of our knowl-
edge, this is the first theoretical picture with such char-
acteristics. 

In order to introduce some background and further 
motivation for this article let us first remind the reader of 
a very basic property that will be central to everything 
that follows, which however is usually taken to be valid 
only in a restricted context (but is actually more general 
than often realized). This property is a simple (U(1)) 
phase-mapping between quantum systems, and is usually 
taken in the context of gauge transformations, ordinary 
or singular; here, however, it will appear in a more gen-
eral framework, hence the importance of reminding of its 
independent, basic and more general origin. We begin by 
recalling that, if 1  and 2  are solutions of 
the time-dependent Schrödinger (or Dirac) equation for a 
quantum particle of charge q that moves (as a test parti-
cle) in two distinct sets of (predetermined and classical) 
vector and scalar potentials ( 1 1

( , )t r ( , )t r

,A ) and ( 2 2,A ), that are 
generally spatially- and temporally-dependent [and such 
that, at the spacetime point of observation (r, t), the 
magnetic and electric fields are the same in the two sys-
tems], then we have the following formal connection 
between the solutions (wavefunctions) of the two sys-
tems  

 
 

 
,

2 ,
q

i t
ct e t


  
r

r 1 , ,r          (1) 

with the function  required to satisfy  ( , )t r

     
     

2 1

2 1

, , ,

,1
and , , .

t t t

t
t t

c t
 

  


  



r A r A r

r
r r

    (2) 

The above property can be immediately proven by 
substituting each i  into its corresponding (ith) time- 
dependent Schrödinger equation (namely with the set of 
potentials ( i ,( , tA r ) i ( , )t r ): one can then easily see that 
(1) and (2) guarantee that both Schrödinger equations are 
indeed satisfied together (after cancellation of a few 
terms and then elimination of a global phase factor in 
system 2). [In addition, the equality of all classical fields 
at the observation point, namely  

       2 2 1 1, , ,t t t    B r A r A r B r, t  

for the magnetic fields and  
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c t
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t t
c t


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
  




   


A r
E r r

A r
r E r

 

for the electric fields, is obviously consistent with all 
equations (2) (as is easy to see if we take the curl of the 
1st and the grad of the 2nd)—provided, at least, that 

( , )t r  is such that interchanges of partial derivatives 
with respect to all spatial and temporal variables (at the 
point (r, t)) are allowed]. 

As already mentioned, the above fact is of course 
well-known within the framework of the theory of quan-
tum mechanical gauge transformations (the usual case 
being for 1 1= = 0A

( ,

, hence for a mapping from a sys-
tem with no potentials); but in that framework, these 
transformations are supposed to connect (or map) two 
physically equivalent systems (more rigorously, this be-
ing true for ordinary gauge transformations, in which 
case the function )t r , the so-called gauge function, 
is unique (single-valued) in spacetime coordinates). In a 
formally similar manner, the above argument is also of-
ten used in the context of the so-called “singular gauge 
transformations”, where   is multiple-valued, but the 
above equality of classical fields is still imposed (at the 
observation point, which always lies in a physically ac-
cessible region); then the above simple phase mapping 
(at all points of the physically accessible spacetime re-
gion, that always and everywhere experience equal fields) 
leads to the standard phenomena of the Aharonov-Bohm 
type, where unequal fields in physically inaccessible 
regions have observable consequences. However, we 
should keep in mind that that above property ((1) and (2) 
taken together) can be more generally valid—and in this 
article we will present cases (and closed analytical re-
sults for the appropriate phase connection ) that 
actually connect (or map) two systems (in the sense of 
(1)) that are neither physically equivalent nor of the 
usual Aharonov-Bohm type. And naturally, because of 
the above provision of field equalities at the observation 
point, it will turn out that any nonequivalence of the two 

( , )t r

Copyright © 2011 SciRes.                                                                                 JMP 



 
1252 K. MOULOPOULOS 

systems will involve remote (although physically acces-
sible) regions of spacetime, namely regions that do not 
contain the observation point (r, t) (and in which regions, 
as we shall see, the classical fields experienced by the 
particle may be different in the two systems). 
 
2. Motivation 
 
One may wonder on the actual reasons why one should 
be looking for more general cases of a simple phase 
mapping of the type (1) between nonequivalent systems. 
To answer this, let us take a step back and first recall 
some simple and well-known results that originate from 
the above phase mapping. It is standard knowledge, for 
example, that, if we want to find solutions  ,x t  of 
the t-dependent Schrödinger (or Dirac) equation for a 
quantum particle (of charge q) that moves along a (gen-
erally curved) one-dimensional (1-D) path, and in the 
presence (somewhere in the embedding 3-dimensional 
(3-D) space) of a fairly localized (and time-independent) 
classical magnetic flux  that does not pass through 
any point of the path, then we formally have  



  
 

  
d

00,

xq
i

c x ,x t e x t
 

  
 A r r

A
       (3) 

(the dummy variable r' describing points along the 1-D 
path, and the term “formally” signifying that the above is 
valid before imposition of any boundary conditions 
(meaning that these are to be imposed only on   A  
and not necessarily on ). In (3), (0)   0

,x t  is a 
formal solution of the same system in the case of absence 
of any potentials (hence with magnetic flux 0   
everywhere in the 3-D space). The above holds because, 
for all points r' of the 1-D path, the particle experiences a 
vector potential  A r  of the form       A r

0 
r  

(since the magnetic field is  for all r', by 
assumption), in combination with the above phase-map-  

  A r 

ping (with a phase  q

c



r ) between two quantum  

systems, one in the presence and one in the absence of a 
vector potential (i.e. the potentials in (2) being 1 0A  
and 2 , together with 2 1A A 0  

  r

 if we decide to 
attribute everything to vector potentials only). In this 
particular system, the obvious  that solves the 
above     A r r

r

1

 (for all points of the 1-D space 
available to the particle) is indeed 

     0
0

d     
r

r
r r A r  

(since ), and this gives (3)       2

1
d 2        r r

(if r denotes the above point x of observation and 0  the 
arbitrary initial point 

r

0x  (both lying on the physical 

path), and if the constant  is taken to be zero).  0 r
What if, however, some parts of the magnetic field 

that comprise the magnetic flux  actually pass through 
some points or a whole region (interval) of the path 
available to the particle? In such a case, the above stan-
dard argument is not valid (as A cannot be written as a 
grad at any point of the interval where the magnetic field 



0 A ). Are there however general results that we 
can still write for   ,x t

A

 t

 , if the spatial point of ob-
servation x is again outside the interval with the nonvan-
ishing magnetic field? Or, what if in the previous prob-
lems, the magnetic flux (either remote, or partly passing 
through the path) is time-dependent ? (In that case 
then, there exists in general an additional electric field E 
induced by Faraday’s law of Induction on points of the 
path, and the usual gauge transformation argument is 
once again not valid). 

 t

Returning to another standard (solvable) case (which 
is actually the “dual” or the “electric analog” of the above), 
if along the 1-D physical path the particle experiences 
only a spatially-uniform (but generally time-dependent) 
classical scalar potential  , we can again formally 
map   ,x t

  to a potential-free solution   0
,x t ,  

through a  t  that now solves 
   1

=
t

t
c t







, and 

this gives , leading to the 

“electric analog” of (3), namely  

     0t t t 
0

=
t

t
c   dt

       0
d 0

, ,
t
t

q
i t t

x t e x t
   

           (4) 

with obvious notation. (Notice that, for either of the two 
mapped systems in this problem, the electric field is zero 
at all points of the path). What if, however, the scalar 
potential has also some x-dependence along the path 
(that leads to an electric field (in a certain interval) that 
the particle passes through)? In such a case, the above 
standard argument is again not valid. Are there however 
general results that we can still write for   ,x t

 , if 
the spatial point of observation x is again outside the 
interval with the nonvanishing electric field? 

We state here directly that this article will provide af-
firmative answers to questions of the type posed above, 
by actually giving the corresponding general results in 
closed analytical forms. 

At this point it is also useful to briefly reconsider the 
earlier mentioned case, namely of a time-dependent 
 t  that is remote to the 1-D physical path, because in 

this manner we can immediately provide another motiva-
tion for the present work: this time-dependent problem is 
surrounded with a number of important misconceptions 
in the literature (the same being true about its electric 
analog, as we shall see): the formal solution that is usu-
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ally written down for a  is again (3), namely the 
above spatial line integral of A, in spite of the fact that A 
is now t-dependent; the problem then is that, because of 
the first of (2),  must now have a t-dependence and, 
from the second of (2), there must necessarily be scalar 
potentials involved in the problem (which have been by 
force set to zero, in our pre-determined mapping between 
vector potentials only). Having decided to use systems 
that experience only vector (and not scalar) potentials, the 
correct solution cannot be simply a trivial t-dependent 
extension of (3). A corresponding error is usually made 
in the electric dual of the above, namely in cases that 
involve r-dependent scalar potentials, where (4) is still 
erroneously used (with 

 t

 t



  replaced by  , t r ), 
giving an r-dependent , although this would necessar-
ily lead to the involvement of vector potentials (through 
the first of (2) and the r-dependence of ) that have 
been neglected from the beginning – a situation (and an 
error) that appears, in exactly this form, in the descrip-
tion of the so-called electric Aharonov-Bohm effect [1,3] 
as we shall see. 





Speaking of errors in the literature, it might here be the 
perfect place to also point to the reader the most common 
misleading statement often made in the literature (and 
again, for notational simplicity, we restrict our attention 
to a one-dimensional system, with spatial variable x, al-
though the statement is obviously generalizable to (and 
often made for systems of) higher dimensionality by 
properly using line integrals over arbitrary curves in 
space): It is usually stated [e.g. in Brown & Holland [4], 
see i.e. their Equation (57) applied for vanishing boost 
velocity v = 0] that the general gauge function that con-  

nects (through a phase factor 
 ,

q
i x t

ce


 ) the wavefunc-  
tions of a quantum system with no potentials (i.e. with a 
set of potentials ) to the wavefunctions of a quan-
tum system that moves in vector potential 

( ,0 0)
 ,x tA  and 

scalar potential  ,x t  (i.e. in a set of potentials 
( , )A ) is the obvious combination (and a natural exten-
sion) of (3) and (4), namely  

 
0 0

, = d
x t

x t

 0 0,  ,  d ,,x t x t t x c    x  A x t t    (5) 

which, however, is incorrect for x and t uncorrelated 
variables: it does not satisfy the standard system of gauge 
transformation equations  

       , .
,x t1

and, ,x t xA t x t
c t


  


    (6) 

The reader can easily see why: 1) when the   op-
erator acts on Equation (5), it gives the correct  ,A x t  
from the 1st term, but it also gives some annoying addi-
tional nonzero quantity from the 2nd term (that survives 

because of the x-dependence of  ); hence it invalidates 
the first of the basic system (6). 2) Similarly, when the  

1

c t





 operator acts on Equation (5), it gives the correct  

 ,x t  from the 2nd term, but it also gives some an-
noying additional nonzero quantity from the 1st term 
(that survives because of the t-dependence of A); hence it 
invalidates the second of the basic system (6). It is only 
when A is t-independent, and   is spatially-independent, 
that Equation (5) can be correct (as the above annoying 
terms do not appear and the basic system is satisfied), 
although it is still not necessarily the most general form 
for  , as we shall see. [An alternative form that is also 
widely thought to be correct is again Equation (5), but 
with the variables that are not integrated over implicitly 
assumed to belong to the initial point (hence a 0  re-
places t in A, and simultaneously an 0

t
x  replaces x in 

 ). However, one can see again that the system (6) is not 
satisfied (the above differential operators, when acted on 
 , e giv  0,x t  A d an  ,0x t nce not the values of 
the potentials at the point of observation  ,

, he
x t hey 

should), this not being an acceptable solution either]. 
Wha

 as t

t is the problem here? Or, better put, what is the 
deeper reason for the above inconsistencies? The short 
answer is the uncritical use of Dirac phase factors that 
come from path-integral treatments. It is indeed obvious 
that the form (5) that is often used in the literature in 
canonical (non-path-integral) formulations where x and t 
are uncorrelated variables (and not correlated to produce 
a path  x t ) is not generally correct, and that is one of 
the mai ints that has motivated this work. We will 
find generalized results that actually correct Equation (5) 
through extra nonlocal terms, and through the proper 
appearance of 0

n po

x  and 0t  (as in Equation (11) and 
Equation (12) to be found ater in Section 3), and these 
are the exact ones (namely the exact  , ,

 l
x t  that at the  

end, upon action of   and 
1 

   exactly the  
c t

satisfies

 systembasic system (6), viewed as a  of Partial Differen-
tial Equations (PDEs)). And the formulation that gives 
these results is generalized later in the article, for 
 ,x y  (in the 2-D static case) and also for  , ,x y t  

ull dynamical 2-D case), and leads to  
(nontrivial) forms of the phase function   that satisfy 
(in all cases) the system (6)—with the direct verification 
(i.e. proof, by “going backwards”, that these forms are 
indeed the exact solutions of (6)) also being given for the 
reader’s convenience. [For the “direct” and rigorous 
mathematical derivations see [5].] 

This article gives a full explorati

(in the f  the exact

on of issues related to 
the above motivating discussion, by pointing to a “prac-
tical” (and generalized) use of gauge transformation 
mapping techniques, that at the end lead to these gener-
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. 1-D Dynamic Case 

et us begin with the simplest case of 1-D systems but in 

alized (and, at first sight, unexpected) solutions for the 
general form of  . For cases such as the ones discussed 
above, or even m e involved ones, there still appears to 
exist a simple phase mapping (between two inequivalent 
systems), but the phase connection   seems to contain 
not only integrals of potentials, but also “fluxes” of the 
classical field-differences from remote spacetime regions 
(regions, however, that are physically accessible to the 
particle). The above mentioned systems are the simplest 
ones where these new results can be applied, but apart 
from this, the present investigation seems to lead to a 
number of nontrivial corrections of misleading (or even 
incorrect) reports of the above type in the literature, that 
are not at all marginal (and are due to an incorrect use of 
a path-integral viewpoint in an otherwise canonical 
framework—an error that appears to have been made 
repeatedly since the original conception of the path-in- 
tegral formulation, as we shall see). The generalized 
 -forms also lead to an honest resolution of earlier 

aradoxes” (involving Relativistic Causality), and in 
some cases to a new interpretation of known semiclassi-
cal experimental observations, corrections of certain 
sign-errors in the literature, and nontrivial extensions of 
earlier semiclassical results to general (even completely 
delocalized) states. [As a byproduct, we will also show 
that—contrary to what is usually stated in earlier but also 
recent popular reports—the semiclassical phase picked 
up by classical trajectories (that are deflected by the 
Lorentz force) is opposite (and not equal) to the so-called 
Aharonov-Bohm phase due to the flux enclosed by the 
same trajectories; we will also provide 2 figures to visu-
ally assist the detailed proof of this result as well as to 
facilitate an elementary physical understanding of this 
opposite sign relation]. Most importantly, however, the 
new formulation seems capable of addressing causal is-
sues in time-dependent single- vs double-slit experiments,
an area that seems to have recently attracted attention [2, 
6,7]). 
 

or

3
 
L
the most general dynamic environment, i.e. a single 
quantum particle of charge q, but in the presence of arbi-
trary (spatially nonuniform and time-dependent) vector 
and scalar potentials. Let us actually consider this parti-
cle moving either inside a set of potentials  1 ,A x t  and 
 1 ,x t  (case 1) or inside a set of potentials  ,2A x t  

 ,and 2 x t  (case 2), and try to determine t  
gene ge function 


ral 

he most
gau  ,x t  that takes us from 

(maps) the wavefunctions particle in case 1 to 
those of the same particle in case 2 (meaning the usual 
mapping (1) between the wavefunctions of the two sys- 

tems through the phase factor 

of the 

 ,
q

x t ). [As already  
c

 that for thinoted, we should keep in mind s mapping to 
be possible we must assume that at the point  ,x t  of 
observation (or “measurement” of   or the w nc-  

tion 

avefu

) we have equal electric fields (
1

= i
i i

A
E 

c t


 


),  

nam   ely

       2 2 1 1, , ,1 1
=

x ,t A x t x t A x t

x c t x c t

  
   

   
 (7) 

(so that the A’s and



  ’s in (7) can indeed satisfy the 
n

 
basic system of equatio s (2), or equivalently, of the sys-
tem of equations (10) below—as can be seen by taking 

the 
1

c t



 


 of the 1st and the 

x


 of the 2nd of the sys- 


 (10) and ad ethtem ding them tog er). But again, we will 

not exclude the possibility of the two systems passing 
through different electric fields in other regions of space-
time (that do not contain the observation point), i.e. for 
   , ,x t x t   . In fact, this possibility will come out 

 a careful solution of the basic system (10); 
it is for example straightforward for the reader to imme-
diately verify that the results (11) or (12) that will be 
derived below (and will contain contributions of electric 
field-differences from remote regions of spacetime) in-
deed satisfy the basic input system of equations (10), 
something that will be explicitly verified below]. 

Returning to the question on the appropriate 

naturally from

  that 
takes us from the set 1 1( , )A   to the set 2 2( ,A ) , we 
note again that, in ca  static vecto tials 
(

ses of r poten
 A x ’s) and spatially uniform scalar potentials (  t ’s) 

th rm usually given for e fo   is the well-known  

       dx t

0 0
0 0

, , d
x t

x t x t A x x c t t            (8) 

with      2 1=A x A x A x  and      2 1=t t    
tion of (3) and (4),

t

s already noted, even in the most general case, 
w

(and ombina  
being immediately applicable to the description of cases 
of combined magnetic and electric Aharonov-Bohm ef-
fects). 

But a

it can be viewed as a c

ith t-dependent A’s and x-dependent  ’s (and with the 
variables x and t being completely u orrelated), it is 
often stated in the literature that the appropriate 

nc
  has 

a form that is a plausible extention of (8), namely 
x

 

       

   

0 0 2 1

0

2 1

0

, = , , , d

, , d ,

x

t

t

x t x t A x t A x t

c x t x t t 

     x  

     




  (9) 

[with Equation (57) of Ref. [4], taken for v = 0, being a 
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very good example to point to, since that article does not 
use a path-integral language, but a canonical formulation 
with uncorrelated variables]. And as already pointed out 
in Section 2, this form is certainly incorrect for uncorre-
lated variables x and t (the reader can easily verify that 
the system of equations (10) below is not satisfied by (9) 
—see again Section 2, especially the paragraph after 
Equation (6)). We will find in the present work that the 
correct form consists of two major modifications of (9): 
1) The first leads to the natural appearance of a path that 
continuously connects initial and final points in space-
time, a property that (9) does not have [indeed, if the 
integration curves of (9) are drawn in the  ,x t -plane, 
they do not form a continuous path from , 0 0x t  to 
 ,x t ]. 2) And the second modification is hi on-

: it consists of nonlocal contributions of classical 
electric field-differences from remote regions of space-
time. We will discuss below the consequences of these 
terms and we will later show that such nonlocal contri-
butions also appear (in an extended form) in more gen-
eral situations, i.e. they are also present in higher spatial 
dimensionality (and they then also involve remote mag-
netic fields in combination with the electric ones); these 
lead to modifications of ordinary Aharonov-Bohm be-
haviors or have other important consequences, one of 
them being a natural remedy of Causality “paradoxes” in 
time-dependent Aharonov-Bohm experiments. 

The form (9) commonly used is of course 

ghly n
trivial

motivated 
by   the well-known Wu & Yang [8] nonintegrable phase 
factor, that has a phase equal to d d dA x A x c t

     ,  

a form that appears naturally w f ithin the framework o
path-integral treatments, or generally in physical situa-
tions where narrow wavepackets are implicitly assumed 
for the quantum particle: the integrals appearing in (9) 
are then taken along particle trajectories (hence spatial 
and temporal variables not being uncorrelated, but being 
connected in a particular manner  x t  to produce the 
path; all integrals are therefore basically only time-inte-
grals). But even then, Equation (9) is valid only when 
these trajectories are always (in time) and everywhere (in 
space) inside identical classical fields for the two 
(mapped) systems. Here, however, we will be focusing 
on what a canonical (and not a path-integral or other 
semiclassical) treatment leads to; this will cover the gen-
eral case of arbitrary wavefunctions that can even be 
completely spread-out in space, and will also allow the 
particle to travel through different electric fields for the 
two systems in remote spacetime regions (e.g.  2 ,E x t  

 1 ,E x t  if <t t  etc.). 
erefore clear that findinIt is th g the appropriate  ,x t  

that achieves the above mapping in full generality will 
require a careful solution of the system of PDEs (2), ap-
plied to only one spatial variable, namely  

       ,
, ,1

, and
x t x t

A x t 
 

   x t
x c t 

   (10) 

(with     2 1, , ,A x t A x t A x t   and  
     2 1, ,,x t

m e only have knowledge of 
x t x t   ). Th

n the sense that w
is system is underdeter-

ined i   
at an initial point  0 0,x t  and with no further bounda  
conditions (hence m cities of solutions being gener-
ally expected, see below). By following a careful proce-
dure of integrations [5] we finally obtain 2 distinct solu-
tions (depending on which equation we integrate first): 
the first solution is  

   

ry
ultipli

   

     

0 0 0

0 0

0

0 0

, , , d ,

d d ,

x t

x t

t x

t x

dx t x t A x t x c x t

c t x E x t g x t





      

       
  

 

 

t



 (11) 

with  g x  required to be chosen so that the quantity  

   
t x

0 0

d d ,
t x

c t x E x t g x
      
 
 


(from an inverted route of integrations) the second solu-

d

 is independent of x, and  

tion turns out to be  

       

     

0 0 0

0 0

0

0 0

, , , d ,

ˆd d ,

x t

x t

x t

x t

x t x t A x t x c x t

c x t E x t g t x





      

         
  

 

 

t

 (12) 

with  ĝ t  

0 0

d d
x t

c x

to be chosen in such a way that  

   ˆ,
t

t E x t g t
x       

  
   is independent of t. 

In the above  2 1E E E   
wo systems, w

is the difference of elec-
tric fields in the t hich can be nonvanishing 
at regions remote to the observation point  ,x t  (see 
examples later below). (Note again that at the point of 
observation  , 0E x t  , signifying the basic fact that 
the fields in t ems are identical at the observa-
tion point 

he two syst
 ,x t ). The constant last terms in both solu-

tions can be n to be related to possible multiplicities 
of 

 show
  (for a full discussion see [5]) and they are zero in 

sim -connected spacetimes. Also note again that the 
integrations of potentials in (11) and (12) indeed form 
paths that continuously connect  0 0,

ple

x t  to  ,x t  in 
the xt-plane (the red-arrow and g row  of 
Figure 1(a)), a property that the incorrectly used solution 
(9) does not have. 

By “going backwards” one can directly verify that (11)
or

reen-ar paths

 

(10), even for 
 (12) are indeed solutions of the basic system of PDEs 

any nonzero  ,E x t   (in regions  ,x t   
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 ,x t ). Indeed, if we call our first solution (Equation 
(11)) for simple-connected s e 1 , namely

       1 1 0 0 0, = , , d , d
x t

pacetim   

 
0 0

d d ,
t x

t x

 

0 0x t

x t x t A x t x c x t t      

c t x E x t g
     




  x



 



 (13) 

with  g x  chosen so that 


  

pend ave (eve r 

   
0 0

,
t x

t x

c t E x t g x
    

 d dx 

n fois inde ent of x, then we h  , 0E x t    
for   , , x t x   t ): 

1)
 

  
,x t1 ,A x t

x



 (because

 is inde


 satisfied trivially  

the quantity   pendent of x). 

2) 
     1

0

0

, ,1 1
= d

A x t
,

x

x

x t
x x t

 
 

c t c t

 
   

   
0

1
, d

x

x

g x
E x t x

c t


  

 ,  

(the last term being trivially zero, 
 

= 0
g x

t




), and then 

with the substitution 

     
, ,1 A x

c t

  


 
,

t x t
E x t

x


 


 

we obtain 

       

 

11 x t
0

0 0

0

, ,
= d , d ,

, d .

x x

x x

x

x

x t
x E x t x x t

x

E x t x





   



 

 


 

a) We see that the 2nd and 4th terms of the rhs cancel 
each other, and 

c t




 

b) the 1st term of the rhs is  

     0

0

,
d

x x t
, , .

x

x x t





  x t
x




  

Hence finally 

   1 ,1
, .

x t
x t

c t



  


 

We have directly shown therefore th  basic sys-
tem of PDEs (10) is indeed satisfied by our generalized 
so

at the

lution  1 , ,x t  even for any nonzero  ,E x t   (in 
regions    , ,x t x t   ). (Once again note, however, that 
at the po servation  , = 0E x t , indicating the 
essential ields in the two systems are equal 

(recall that 2 1=E E E

int of ob
 fact that the f

 ) at th on point e observati  ,x t ). 
It should be noted that the function  g x  owes its ex-
istence to the fact that the spacetime point of obser  vation
 ,x t  is outside the E-distribution ce the term 
“nonlocal”, used for the effect of the field-difference E 

 phases), and the reader can clearly see this in the 
“striped” E-distributions of the examples that follow later 
in this Section. 

In a completely analogous way, one can easily see that 
our alternative s

 (hen

tion (12)) also satisfies the 

on the

ba
olution (Equa

sic system of PDEs above. Indeed, if we call our sec-
ond (alternative) solution (Equation (12)) for simple- 
connected spacetime 2 , namely  

     2 2 0 0 0, = , , d
x t

 

 

,

,  

0 0

ˆ

x t

0 0

d d
x t

x t

dx t x t A x t x  c

g t

 

   
  

  x

t E x t



   

t t 

(14) 

c x   

with  ĝ t  chosen so that   

pen have (e

  ,
x t

c x x t   ĝ t
  
 
  0 0

d d
x t

t E  

ven for is ind dent of t, then we e  , 0t E x   
for    , ,x t x t ):  

1) 
   

,1
,

x t2 x t


satisfied trivially 
c t

 


  (be-

cause the quantity    is independent of t). 

2) 
     2

0

, ,
= , d

x t x t

0

t

t

A x t c t
x x

  


   

   
0

ˆ
, d

t

t

g t
c E x t t

x


  

 ,  

 last term being trivially zero, (the
 ˆ

= 0
g t

x




), and then 

with the substitution 

     , ,1
,

x t

x c

 A
E x t

t

x t 
  


 

ain 

 
 

we obt

       

 

0

0 0

0

,
, , d d

, d .

t t

t t

t

t

A x t2 ,x t
A x t c E x t t t

c E x t t


    



 

 


 

We see that the 2nd and 4th terms of the rhs cancel 
her, and 

x t


 

a) 
each ot

b) the 3rd term of the rhs is  

   
,

d =
A x t

t A x
t

 0

0

, , .
t

t A x t
t 


   
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Hence finally 

   2 ,
, .

x t
A x t

x


 


 

Once again, all the above are true for any nonzero 
 (in regions  ,E x t     , ,x t x  

 the remote fiel
t ) for arbitrary ana-

 dependence of d-difference on its 
ar

Let us in (11) and (

lytical
guments. 

 now note that 12) the placement of 

0x  and 0t  gives a “path-sense” to the line integrals in 
each solution (each path consisting of 2 perpendicular 
line segments connecting  0 0,x t  to  ,x t , with solu-

n (11) having a clockwise and solution (12) a counter- 
clockwise sense, see red and green arrow paths in Figure 
1); this way a natural recta form ithin which 
the enclosed “electric fluxes” in spacetime appear to be 
crucial (showing up as nonlocal contributions of the 
electric field-differences from regions  ,

tio

ngle is ed, w

x t   of space 
and time that are remote to the observation point  ,x t ). 
These nonlocal terms in   have a direct effect on the 
wavefunction-phases at  ,x t . The actual manner in 
which this happens is determined by the functions  g x  
or  ĝ t -these must be cho n in such a way as to satisfy 
their respective conditions 1) and (12). To see how 
these functions ( 

se
 in (1

g x  or  ĝ t ) are actually determ  
and what form the above solutions take in nontrivial 
cases (and how they give new results, i.e. not differing 
from the usual ones by ere c ant) let us first take 
examples of striped E-distributions in spacetime: 

1) For the case of the extended vertical strip (parallel 
to the t-axis) of Figure 1(a) (the case of a one-dimen- 
sional capacitor that is (arbitrarily and variably) charg

ined,

 a m onst

ed 
for all time), then, for x located outside (and on the right  

of) the capacitor, the quantity  
0 0

d d ,
t x

t x

c t x E x t


      in 1  

is already independent of x (since a ment of the 

 

 displace
 ,x t -corner of the rectangle   to the right, along the

on, does not change the enclosed “electric flux”, x-directi
see Figure 1(a)); hence in this case the function  g x  

 taken as can be   0g x   (up to a constant C), because 
then the condition for  g x  stated in the solution (11) 
(namely, that the quantity in brackets must be indep
ent of x) is indeed satisfied. (Note again that the above 
x-independence of the e ed “electric flux” is impor-
tant for the existence of 

end-

nclos
g x ). 

So for this setup, the nonlocal term in solution 1  sur-
vives (the quantity in brackets is nonvanishing), but it is 
not constant: this enclos ux ed fl depends on t (si ce the 
en

n
closed flux does change with a displacement of the 

 ,x t -corner of the rectangle upwards, along the t-direc- 
tion). Hence, by looking at the alternative solution  2 ,x t ,  

t

 ,x t

x

 0 0,x t

 
(a) 

 
y

x

 ,x y

 0 0,x y  
(b) 

Figure 1. (Color online): Examples of simple field-con ure- 
tions (in simple-connected regions), where the nonlocal terms 
exist and are nontrivial, but  easily be determined: (a) a 

fig

can
striped case in 1 + 1 spacetime, where the electric flux enclosed 
in the “observation rectangle” is dependent on t but independ-
ent of x; (b) a triangular distribution in 2-D space, where the 
part of the magnetic flux inside the corresponding “observa-
tion rectangle” depends on both x and y. The appropriate 
choices for the corresponding nonlocal functions  g x  and 

 ĝ t  for case (a), or  g x  and  h y  for case (b), are given 

in the text (Sections 3 and 4 respectively). 
 

the quantity  d d ,
x t

x t

c x t E x t
0 0

      is dependent on t, so that 

 ĝ t  must   d d ,be chosen as ˆ
0 0

x t

x t

g t c x t E x t        

- ence, so that its own co

 

(up to the same constant C) in order to cancel this t-de-
pend ndition stated in the solu-
tion (12) (namely, that the quantity in brackets must be 
independent of t) is indeed satisfied; as a result, the quan-
tity in brackets in solution 2  disappears and there is 
no nonlocal contribution in 2  (for C = 0). (If we had 
used a 0C  , the nonlocal contributions would be dif-
ferently shared between the two solutions, but without 
changing the Physics when we take the difference of the 
two solu see below). 

With these choices of  ˆ
tions, 

g t  and  g x , we already 
have new results (compared to the standard ones of the 
integrals of potentials). i.e. one of the two solutions, 
namely 1  is affected no ally by nclosed flux nloc  the e
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nd this flux is not const  Spelle t clearly, the 
two results are:  

       1 1 0 0 0

0 0

, , , d , d
x t

x t

t

 
0 0

d d ,
x

t x

x t x t A x t x c x t t

t x E x t C

        
(15) 

     

       2 2 0 0 0

0 0

, , , d , d
x t

x t

.x t x t A x t x c x t t         
(16) 

C  

And now it is easy to note that, if we subtract the two 
solutions  and (and of course assume, as usual
single- ess o at the initial point 

1
valuedn

2  
f 

, 
  0 0,x t , i.e. 

   , ,1 0 0 2 0 0x t x
pe

a cancell  effe

t ) t 

ation

he result is zero (

on

ation time instant t > T) are 
ba

i.e. it so 

 abo

hap-
ns that the electric flux determined by the poten-

tial-integrals is exactly cancelled by the nonlocal term of 
electric fields (i.e. the term that survives in 1 ve)), 

hat is important and that will be 
generalized in later Sections. 

2) In the “dual case” of an extended horizontal strip - 
parallel to the x-axis (that corresponds to a n zero elec-
tric field in all space that has however a finite duration T), 
the proper choices (for observ

ct t

sically reverse (i.e. we can now take  ˆ 0g t   and 

   
0 0

d d ,
t x

t x

 

g x c t x E x t        (since the “electric flux”  

enclosed in the “observation rectangle” now ds on 
x

depen
, but not on t), with both choices always up to a com-

mon constant) and once ag
subtraction of the two solutions, a similar cancellation 

ain we can easily see, upon 

effect. In this case again, the results are also new (a 
nonlocal term survives now in 2 ). Again spelled out 
clearly, these are:  

       1 1 0 0 0

0 0

, = , , d , d
x t

x t

x t x t A x t x c x t t C          

(17) 

       

 

2 2 0 0 0

0 0

0 0

, = , , d , d

d d ,

x t

x t

x t

x t

x t x t A x t x c x t

c x t E x t C

 t     

    

 

 



their difference also being zero. 
3) And if we want cases that are more involved (wit

the nonlocal contributions appearing nontrivially in both 
solutions  and  and with 

(18) 

h 

1 2   g x  and  ĝ t
ain consi

 not 
e st ag der 

di

in u  the

being “immediately visible”) w  mu
fferent shapes of E-distribution. One such case (a tri-

angular E-distribution) is shown in Figure 1(b) (for the 

correspond g magnetic case to be disc ssed in  next 
Section, which however is completely analogous); in this 
case the enclosed flux depends on both x and t (but can 
be shown to be separable, so that the functions  g x  
and  ĝ t  still exist and can easily be found in closed 
analytical form, see next Section). As for the last con-
stant terms  0t  and  0x  (what we will call “mul-
tiplicities”), these are only present (nonvanishing) when 
  i ected to be multivalued, i.e. in cases of motion 
in multiple-connected spacetimes, and are then related to 
the fluxes i
Aharonov-Bohm setup, the prototype of multiple-con- 

tivity in spacetime [9], it turns out [5] that 

s exp

n the inaccessible regions: in the electric 

nec  0t   
 0x   enclosed (and here inaccessible) “electric 

flux”, and if these values are substituted in (11) and (12) 
they cancel out the new nonlocal terms and lead to the 
usual electric Aharonov-Bohm result (of mere in  

tials). As for other, more esoteric properties of 
the new solutions in simple-connected spacetimes, it can 
be rigorously shown [5] that solutions (11) and (12) are 
actually equal, because 

tegrals
over poten

 g x  turns out to be equal to 
the t-independent bracket of (12), and  ĝ t  turns out to 
be equal to the x-independent bracket of (11), the nonlo-
cal terms having therefore the tendency to exactly cancel 
the “Aharonov-Bohm term this being true for arbitrary 
shapes and analytical form of  ,E x t ). 
 
4. 2-D Static Case 
 

fter having discussed fully le

s” (

A the simp  , x t

 

-c
uclidian

ase, let 
-ro- us for completeness give

tated in 4-D spacetime
 th

) deri
e analog
vation for 

ous (E
,x y

e 

-variables 
ler static and briefly discuss the properties of the simp

solutions in spatial two-dimensionality. W ill simply 
need to apply the same methodology (of solution of a 
system of PDEs) to such static spatially two-dimensional 
cases (so that now different (remote) magnetic fields for 
the two systems, perpendicular to the 2-D space, will 
arise). For such cases we need to solve the system of 
PDEs that is now of the form  

w

       
, ,

, and , .x y

x y x y
A x y A x y

x y

 
 

 
 (19) 

By following then a similar proced

 

 

ure of
solution 

 

y

 integ
the followi

r

 

 

ations 
[5] we obtain 

 

ng general 

,

 

0

0 0

d d

x

z
y x

0 0 0

0 0

, d , dx y, ,
x y

y x

x y x y

y x f 
  
 

A

B x





x y

y g

 

 

x A

x



 
 

  x

y

y y 



  

 

 

(20) 
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with  g x  chosen so that  :  

is independent of x, a result that applies to cases where 
the particle goes through different perpendicular mag-
netic fields

   
0 0

d d ,
y x

z
y x

y x B x y g x
       
  
 

 2B  and 1B  
ontain

in spatial regions that are re-
mote to (i.e.  not c ) the observation point  do  ,x y  
(and in the above  2 1z z

B  B B
f (20) 

pe dicular se

). The reader
are the (total) Di

phase alo o gments that co

 should 
rac

ntinu-
note that the first 3 terms o  

ng tw rpen
ously connect the initial point  0 0,x y  to the point of 
observation  ,x y , in a clockwise sense (see for exam-
ple the red-a w path in Figure 1(b)). But apart from 
this Dirac phase, we also have nonlocal contrib  
from 

rro s 
utions

zB  and its flu bservation rectangle” 
(see i.e. the rectangle being formed by the red- and 
green-arrow paths in Figure 1(b))). Below we will di-
rectly verify that (20) is indeed on of (19) (even 
for  , 0zB x y  for    , ,

x within the “o

a soluti
  x y x y   ). Alternatively, 

by following the reverse route of integrations, we finally 
obtain the following alternative general solution  

       

  

0 0 0

0 0

0

0 0

, , , d , d

ˆ

yx

x y
x y

yx

x y

  d d ,z

x y x y A x y x A x y y

x y h xB x y h y

       

 
  

  

 
  

      

(21) 

with  chosen so that   h y
y

   
0 0

d d ,
x

z
x y

x y B x y h y
      
 
  :


 is independent of y, and  

again the reader should note that, apart from the first 3 
terms (the (total) Dirac phase along the two other (alter-
native) perpendicular segments (connecting  0 0,x y  to 
 ,x y w in a countercloc), no kwise sense (t r- 

in Figure 1(b))), we also have 
rom the flux of 

he green-a
nonlocal con-row paths 

tributions f zB
e”

 that is enclosed within the 
same “observation rectangl  (that is naturall by y defined 
the four segments of the two solutions (Figure 1(b)). 

In all the above, xA  and yA  are the Cartesian com-
ponents of        2 1,x y  A r A A r A r ,  al-

 mentioned, 
and, as

ready zB  is the difference between (per-
pendicular) magnetic fields that the two systems may 
experience in regions that do  contain the observation 
point  ,

 not
x y  i.e.  

      
   

2 1, , ,

,

z

, ,

z

y x

B x y x x yy

A x y A x y   


x y






  

 

and, although at the point of observation  ,

      B B

x y  we 
have  , 0  (already emphasized in the Intro-

ductory tions), this  Sec can be nonzero for  ,zB x y   
   , ,x y x y   . It shou  that it is because of ld be noted
 , 0zB x y   that  and  h y

tions th

ciated analytical 

the functions  g x  of (20) 
ound w solu erefore 

ntrivial). patient reader, sim-
o

and (21) can be f
exist (and are no
ple physical exam

, and the ne
For the im

ples with the ass
forms of  g x  and  h y  (derived in detail) are given 
later in this Section. 

One can again show th olutions are equal for 
ed space (when the last constant terms 

at the 2 s
simple-connect
 0f y  and  0ĥ x  are vanish  and f ultiple- 

connectivity the values of the multiplicities 
ing), or m

 0f y  and 
 0ĥ x  cancel out the nonlocalities and reduce the above 

to the usual result of mere A-integrals along the 2 paths 
(i.e. two s  Dirac p s). 

A direct “backwar
imple

do

hase
ds” verification that (20) and (21) 

zB x y 

 indeed satisfy the basic system (19) (even for cases 
with 0zB   in remote regions of space) can be made 

imilar to the ones of the last Section: for 
simple-connected space, let us call our solutio  3

along s lines 
0)n (2  , 

 

       3 3 0 0, = , , d , d
y

namely 

   

0 0

0 0

d d ,

0

x

x y
x y

y x

z
y x

x y x y A x y x A x y y       

y x B x y g x
       
  
 

 ( 2) 

with 

2

 g x  ch

ent of x. We 

osen depend-  

then

so 

 ha

that z 
ve (even fo

  xB g

r 

 is in

 y , 0zB x   for 
   , ,x y x y  

1) 

): 
   3 ,

,x

x y
A x y  satisfied 

x




trivial ly  (because 

the quantity    is independent of x). 

2) 
     0y

y , ,
,

x
xx y A x3

0x

dx A x y
y y

 
   

 

   
0

z
x

, d ,
gx x

y

in

B x x  
y

(the last term g trivially zero, 
 


 

 be 0 ), a
g x

y




nd then 

with the substitution 

     y  
,,

= ,z

A x yy
B x

y x





y

 
xA x

we obtain 

   

   
0

,

, , d .

x x

z

x

y z
x

y
3

0 0

= d d
x x

0

,yA x( , )x y
x B x

y B x y

y

x

x
y x

A x

   
 



 

  
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a) We see that the 2nd and 4th terms of the right-hand- 
side (rhs) cancel each other, and  

t term of the rhs is  

we obtain 

b) the 1s

     0

0

,
d ,

x
y

y y
x

A x y
, .x A x y A x y

x


  

  

Hence finally 

   3 ,
= , .y

x y
A x y

y

We have directly shown theref


  

ore (by “going back-
w DEs (19) is indeed 
satisfied by our generalized solution 

ards”) that the basic system of P
 3 , ,x y

ns  
 even for 

any nonzero  (in regio ,zB x y   , ,x y x

 to look at

y ; 
recall that always  
ab  is ag  
the cases of “

 
). To fully appreciate the

ain urged


 , 0y 

der
zB x

of, the rea
striped” 

ove simple pro

zB
rvation ,

-distri
 

bu e 
point of obse

tions later below, th
x y  

functio
always lying ou

 
tside the 

strips, so that n  the above g x  can easily be 
de

n easi
tion ( also satisfies th
Es above. In

termined, and the new solutions really exist - and they 
are nontrivial. 

In a completely analogous way, one ca ly see that 
our alternative solu Equation (21)) e 
basic system of PD deed, if we call this sec-
ond static solution 4 , namely  

       4 4 0 0 0

0 0

, = , , d , d
yx

x y
x y

yx

   d d ,z

0 0x y

x y x y x y x A x y y     

     

 

A

x y B x y h y



  

 

 
  

(23) 

with  h y  chosen  that  so  B h y   is independ-  z

ent of y, then we have (even for  , 0zB x y    for 
  , ,x y x   y ): 

1) 
   4 ,x y

,yA x y
y




 satisfied trivially 


  (be-

cause the quantity  is independent of y). 

2) 

 
     4

0

0

,,
= , d

y
y

x
y

A x yx y
A x y y

x x




   

   
0

, d
y

z

h y
B x y y ,

y x


   

 

(th st term being trivially e la zero, 
 

0
h y

 ), a  then 

with the substitutio
x

nd

n 

     
, ,

,y x
z

A x y A x y
B x y

x y

  
 

 
 

     

   

4
0 '

0

0 0y y

a) We see that th
each other, and 

, ,
, d

, d , d .

y
x

x
y

y y

z z

x y A x y
A x y y

x y

B x y y B x y y

 
 

 

    



 
 

e last two terms of the rhs cancel 

b) the 2nd term of the rhs is  

     0

0y


,
d = , , .

y
x

x x

A x y
y A x y A x y

y


 


 

Hence finally 

   4 ,
, .x

x y
A x y

x


 


 

Once again, all the above are true for any nonzero 
 ,zB x y   (in regions    , ,x y x   y ) for arbitrary 

analytical dependence of the remote field-difference on 
its arguments. And for a clear

oof let us now turn to the “stri
er understanding of this 

pr ped” examples promised 
earlier. 

In order to see again how the above solution  appear 
in nontrivial cases (and how they give completely new 
re iffering from the usual ones (i.e. from 
the Dirac phase) by a mere constant) let us first take ex-
amples of striped 

s

sults, i.e. not d

zB
e case of an ex

-distributions in sp e: 
1) For th tended vertical strip - parallel 

to
by y) (i.e. that the partic

ac

 the y-axis, such as in Figure 1(a) (imagine t replaced 
 for the case le has actually 

passed through nonzero zB , hence through different 
magnetic fields in the two (mapped) systems), then, for x 
located outside (and on the right of) the strip, the quan- 

tity

 

  
0 0

d d ,
y x

z
y x

y x B x y      in 3  is already independent of  

x (since a displacement of the  ,x y -corner of the rec-
tangle to the right, along the x-direction, does not change 
the enclosed magnetic flux—see Figure 1(a) for the 
analogous  ,x t -case discussed earlier). Indeed, in this 
case the above quantity (the enclosed flux within the 
“observation rectangle”) does not depend on the x-posi- 
tion of the observation point, but on the positioning of 
the boundaries of the zB -distribution in the x-direction 
(better, on the constant width of the strip)—as the x-in- 
tegral does not give any further contribution when the 
dummy variable x  go

ux depe
es ou of the strip. In fact, in this t 

case the en as we discuss below closed fl nds on y 
r this(but, again, not on x). Hence, fo  case, the function 

 g x  can be easily determined: it can be taken as 
  0g x   (up to a constant C), because then the condi-

tion for  g x  stated in solution (20) (namely, that the 
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quantity in brackets must be independent of x) is indeed 
satisfied. 

We see therefore above that for this setup, the nonlocal 
term in solution 3  survives (the quantity in brackets is 
nonvanishing), but it is not constant: as already noted, 
this enclosed flux depends on y (since the enclosed flux 
does change with displacement of the  ,a x y -corner of 
the rectangle upwards, along the y-direction, as the 
y-integral is affected by the positioning of y—the higher 

sitioning of the observation point the more flux is 
 inside the observation rectangle). Hence, by 

looking at the alternative solution  4 , ,

the po
enclosed

x y  the quan- 

tity  d
yx

 

0 0x y

d ,zx y B x y       is dependent on y, so that  h y  

must be chosen as    
0 0

d d ,
yx

z
x y

h y x y B x y        (up to 

the same constant C) in order to cancel thi pendence, 
so that its own condition stated in solution (21) (namely, 
that the quantity in brackets must be independent of y) is 
indeed satisfied; as a result, the quantity in brackets in 
solution 4  disappears and there is no nonlocal contri-
bution in 4  (for = 0C ). (If we had u 0C

 

s y-de

sed a  , the 
nonlocal contributions would be shar en the two ed betw

io diffe  the
ons 

(see belo The int in the above for the ex-

e
gsolut anner, but without changin  

Physics when difference of the two soluti

istence of  

ns in a 

w)). [

rent m
we take the 

crucial po
g x  and fact that  h y   is, once again, the 

= 0zB  at  ,x y , combined with the shar ies p boundar
of the nonvanishing zB -region]. 

With these choices of  h y  and  g x , we already 
have new results (compared to the standard ones of the 
integrals of potentials). i.e. one of the two solutions, 
namely is affected nonlocally by the enclosed flux 
(and this x is not constant). Spelled out clearly, the 
two results are:  

       

 

3 0 0 0

0 0

0 0

, = , , d , d

d ,

yx

x y
x y

y x

z
y x

3  
flu

d

x y x y A x y x A x y y

y x B x y C

      

    

 


 

 

(24) 

     

 

4 4 0 0 0

0

, = , , d

, d .

x

x
x

y

0

y
y

x y x y A x y x

A x y y C

   

  




    (25) 

And now it is easy to note that, if we subtract the two 
solutions  and , the result is zero (because the 
line or potential A in the two solu-
tions are in opposite senses in the 

3
integrals of 

4
the vect

 ,x y  plane, hence 

their difference leads to a closed line integral of A, which 
is in turn equal to the enclosed magnetic flux, and this 
flux always happens to be of opposite sign from that of
the enclosed flux that explicitly appears as a nonlocal 
contribution of the 

 

zB -fields (i.e. the term that survives 
in 3  

 cour
 of

above). he two solutions are equal. [
of se everywhe umed, as usual, single-va
ness  

Hence, t
re ass

We 
lued- 

at the initial point  0 0,x y ,  i.e.  1 0 0,x y  
 02 0 , ;x y  ma mutters of ltivaluedness of   at the 

obs  pervation oint  ,x y

 of the two solutions is 

 will ssed
It is interesting that, form n  

 be addre
ally speaki

due to the 

 late
g, the above
fact that the 

r below]. 

equality
x-independent quantity in brackets of the 1st solution (20) 
is equal to the function  h y  of the 2nd solution (21), 
and the y-independent quantity in brackets of the 2nd 
solution (21) is equal to the function   g x  of the first 
solution (20). This turns out to be a general behavioral 
pattern of the two solutions in simple-connected space, 
that is valid for any shape (and any analytical form) of 

zB -distribution. But most importantly, it should be noted 
that this vanishing of    3 4, ,x y x y   is a cancella-
tion effect that is emphasized further later below and 
discussed in completely physical terms. 

2) In the “dual case” of an extended horizontal stri  - 
parallel the x-axis, the proper choices (for y a ove the 
strip) are basically reverse (i.e. we can now take 

p
bto 
  0h y    

y

and    
0 0

d d ,
x

z
y x

g x y x B x y        (since the flux enclosed  

in the rectangle now depends on x, but not on y), with 
both choices always up to a common constant) and once 
again we can easily see, upon subtraction of the two so-
lutions, a similar cancellation effect. In this case as well, 
the results are again new (a nonlocal term survives now 
in 4 ). Again spelled out clearly, these are:  

     

 

3 3

0

, , , d

, d

x

y

0 0 x
x

0

0

y
y

x y x y A x y x

A x y y C

    

  
      (26) 



 

      4 4 0 0 0, = , , d ,
y

x y d
0y

0 0

d d ,z
x y

yx

x y x y A x y x A x      y y

x y B x y C 

(27) 

(their difference also being zero). Again here the crucial 
point is that, because the 

    

 

zB -configuration does not 
con n the point tai  ,x y , a displacement of this observa-

ux inside the 
new solutions 

tion point upwar not  the fl
“observation rectangle”; this

d es s do  change
 makes the 
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 g x
want ca

ntrib

3 and 

 and ) exist. 
3) And if we ses ore involved (i.e. 

with the nonlocal co utio ng no
both solutions 

  h y
that are m
ns appeari

 and with 
ntrivially in 

 4  g x  h y  
r dif-

 and 
not being “im st conside
ferent shapes 

me
of 

diately visible”), we mu

zB
that is sho

nd with 

-distributions. On
n Figure

, and with 
 point of

e such
 1(b)

th
 observa

 
triangular one  (for 
ity an equilateral triangle e initial point 

e tion 

case is a 
simplic-wn i

th   0 0, 0x y  ,0 ) a  ,x y  
n the 

the 
ngle” 

being fairly
figure. Note th
magnetic flux
(defined by the

 close to
at fo

 
 r

 the t
r such

that is inside t
ight uppe

r
 a c

iangle’s ri
onfiguration, 
he “obse

r corner 

ght 

rvatio
 ,

side as i
the part of 

n recta
x y ) depends on 

both x and y. It turns out, however, that this (x and y)— 
dependent enclosed flux can be written as a sum of 
separate x- and tributions, so that appropriate 
 

y-con
g x  and  h y  can still be found (each one of them 
must be chosen so that it only cancels the corresponding 
variable’s depende f the enclosed fluxnce o ). For a ho-
mogeneous zB  it is a rather straightforward exercise to 
determine this enclosed part, i.e. the common area be-
tween the obser ion rec gle and the lateral 
gle, and from this we can find the appropriate 

vat tan  equi trian-
 g x  

that will cancel th x-dependence, and the appropriate 
 h y  that will cancel the y-dependence. These appro-

priate choices turn out to be  

 

e 

2 23 3
= 3

2 4zg x B ax x a C
  
         

  (28) 

and  

 
2

23
=

43
z

y
h y B ay a C

  
    

   
     (29) 

with a being the side of the equilateral triangle. We 
should emphasize that expressions (28) and (29), if com-
bined with (20) or (21), give the nontrivial nonlocal con-
tributions of the field-difference zB  of the remote 
magnetic fields on   of each solution (hence on the 
phase of the wavefunction of each wavepacket travelling 
along each path) at the observation point  ,x y , that 
al a s lies outside the w y zB -triangle. (We mention again 
that in the case of completely spread-out states, the 
equality of the two solutions at the 

 uniquenes
-connec

above ca
 given later 

fficult” geom

observation point 
essentially demonstrates the s (single-valued- 
ness) of the phase in simple ted space). 
physical discussion of the ncellations, and a 

ssical interpretation, is below. 
Finally, in more “di etries, i.e. when the 

shape of the 

Further 

semicla

zB
t d

suc

-distribution is such that th
flux does no ecouple in  separate
contributions, h as ca ularly shaped

e enclosed 
 x- and y- 

- 

 s

a sum of
ses of circ  zB

distributions, it is advantageous to solve the system (19) 

directly in non-Cartesian (i.e. polar) coordinates [5]. A 
general comment that can be made for general shapes is 
that, depending on the geometry of hape of the zB - 
distribution, an appro riate change of variables (to a new 
coordinate system) may first be needed, so that general-
ized solutions of the system (19) can be foun mely, 
so that the enclosed flux side the transformed observa-
tion rectangle (i.e. a slice of an annular section in the 
case of polar coordinates) can be written as a sum of 
separate (transformed) variables), and then the same 
methodology (as in the above Cartesian cases) can be 
followed. 

As we saw in the above examples, in case of a 

p

d (na
 in

str  
di

iped-
stribution of the magnetic field difference zB , the 

functions  g x and   h y  in (20) and (21) have to be 
chosen in ways that are compatible with their corre-
sponding constraints (stated after (20) and (21)). By t  
taking the difference of (20) and (21)) we obtain that the 
“Aharonov-Bohm phase” (the one originating from the 
closed line integral of A’s) is exactly cancelled by the 
additional nonlocal term of the magnetic fields (that the 
particle passed through). This is quite reminiscent of the 
cancellation of phases observed in the early experiments 
of Werner & Brill [10] for particles passing through a 
magnetic field (a cancellation between the “Aharonov- 
Bohm phase” and the semiclassical phase picked up by 
the trajectories), and our method seems to provide a 
natural explanation: as our results are general (and for 
delocalized states in simple-connected space they basi-
cally demonstr

hen

 are also ate the u ness of ), they
va

 &
lar 

nique  
lid and applicable to states that describe wavepackets 

in classical motion, as was the case of the Werner  Brill 
experiments. (A simi cancellation of an electric 
Aharonov-Bohm phase, that has never been noted in the 
literature, also occurs for particles passing through a 
static electric field, and this we will independently prove 
below, again for semiclassical states). We conclude that, 
for static cases, and when particles pass through nonvan-
ishing classical fields, the new nonlocal terms reported in 
the present work lead quite generally to a cancellation of 
Aharonov-Bohm phases that had earlier been only 
sketchily noticed and only at the semiclassical (magnetic) 
level. 

What is however more important to point out here is 
that the above cancellations can be understood as a com- 
patibility between the Aharonov-Bohm fringe-displace- 
ment and the trajectory-deflection due to the Lorentz 
force (i.e. the semiclassical phase picked up due to the 
optical path difference of the two deflected trajectories 
exactly cancels (is opposite in sign from) the “Aharonov- 
Bohm phase” picked up by the same trajectories due to 
the flux that they enclose). This opposite sign seems to 
have been rather unnoticed: In Feynman’s Figure 15-8 
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pposite signs (see our own Figure 2 and the dis-
cu

[11], or in Felsager’s Figure 2.16 [12], the classical tra-
jectories are deflected after passing through a strip of a 
magnetic field placed on the right of a double-slit appa-
ratus. Both authors determine the semiclassical phase 
picked up by the deflected trajectories and find it consis-
tent with the Aharonov-Bohm phase. One can see on 
closer inspection, however, that the two phases actually 
have o

ssion that follows below, where this is proved in de-
tail). Similarly, in the very recent review of Batelaan & 
Tonomura [13], their Figure 2 shows wavefronts associ-
ated to the deflected classical trajectories where it is 
stated that “the phase shift calculated in terms of the 
Lorentz force is the same as that predicted by the 
Aharonov-Bohm effect in terms of the vector potential”. 
Once more, however, it turns out that the sign of the 
classical phase-difference is really opposite to the sign of 
the Aharonov-Bohm phase (see proof below). The 
phases are not equal as stated by the authors. And it turns 
out that even “electric analogs” of the above cases also 
demonstrate this opposite-sign relationship (see proof 
further below). All the above examples can be viewed as 
a manifestation of the cancellations that have been found 
in the present work for general (even completely spread- 
out) quantum states (but in these examples they are just 
special cases for narrow wavepacket-states in classical 
motion).  

Let us give a brief elementary proof of the above 
claimed opposite sign-relationships: Indeed, in our Fig-
ure 2, the “Aharonov-Bohm phase” due to the flux en-
closed between the two classical trajectories (of a parti-
cle of charge q) is  

0

2π ,AB q

e
 

 


            (30) 

with 0 =
hc

e
  the flux quantum, and BWd   the  

enclosed flux between the two trajectories (for small 
trajectory-deflections), with the deflection originating 
from the presence of the magnetic strip B and the associ-
ated Lorentz forces. On the other hand, the semiclassical 
phase difference between the same 2 classical trajectories 

is 

 
2πsemi l


   , with 
h

mv
   being the de Broglie  

wavelength (and v being the speed of the particle, taken 
almost constant (as usually done) due to the small de-  

flections), and with l  being sin cx
l d d

L
    ( cx   

being the (displaced) position of the central fringe on the 
screen). We have therefore  

2π
.semi cx

d
L




              (31) 

X Xc

0X 
 

l

B L 

B

B

W

Electron
Source

d

 

Figure 2. (Color online): The standard
tus with an additional strip of a perp
field B of width W placed between the slit-region and the 
observation screen. In the text we deal for simplicity with 
the case so that deflections (of the semiclassical 
trajector  to the Lorentz force, shown here for a 
negative charge q, are very small. 
 

Now, the Lorentz force (exerted only during the pas-
sage through the thin magnetic strip, hence only during a  

time interval 

 double-slit appara-
endicular magnetic 

 W L  
ies) due

=
W

t
v

 ) has a component parallel to the  

screen (let us call it x-component) that is given by  

 x x

q q BWq
F vB

Wc c c
v

       
BWq

c t
v B    (32) 

which shows that there is a change of kinematic mo-

mentum (parallel to the screen) equal to ,
BWq

c
  or, 

equivalently, a change of parallel speed  

x

BWq
v

mc
                  (33) 

which is the speed of the central fringe’s motion (i.e. its 
di

, this d

splacement over time along the screen). Although this 
has been caused by the presence of the thin deflecting 
magnetic strip isplacement is occuring uniformly  

during a time interval ,t
v

  and this time interval 
L

must satisfy  

c
x

x
v

t
                   (34) 

of the time in uniform motion, i.e. ). We there-
fore have that the central fringe displacement must be  

(as, for small displacements, the wavepackets travel most 
t t 
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,c x

BWq L
x v t

cm v
     and noting that 

h
mv


 , we 

finally have  

.c

BWqL
x

hc


               (35) 

By susbstituting (35) into (31), the lengths L and   

cancel out, and we finally have 

 

2π ,semi q BWd
hce
e

    

which with 0

hc

e
   the uantum, and BWd flux q     

the enclosed flux (always for small trajectory-deflections) 
gives (through comparison with (30)) our final proof that  

0

2π .semi q AB

e
 

             (36) 

posite 

difference is zero at f the c
(bright) fringe (after it ue to th

ction), and in this sense the above minus 
sign should be rather expected.] 

The “electric analog” of the above
lined below, now with a homogeneous electric field 

d
on for only a finite duration T) on the right of a dou-

 3): In this case the
electric Lorentz force qE is exerted on the trajectories 
only during the small time interval  which we 

uch shor e of trave



[It should be noted that such an op sign relation 
actually tells us that the total (semiclassical + AB) phase 

the new position o entral 
has been displaced d e tra-

jectories’ defle

 exercise is also out-

(pointing downwards everywhere in space, but switche  

ble-slit apparatus (see our Figure  

take to be m ter (T t ) than the tim l  
= ,t T

L
t

v
  (we now have a thin electric strip in time rather  

than the thin magnetic strip in space that we had earlier). 
The electric type of “Aharonov-Bohm phase” is now  

0

2π ,
e

  


             (37) 

with V  being the electric potential difference be-
tween the two trajectories, hence V Ed   (again for 
small trajectory-deflections). On the other hand, the 
semiclassical phase difference between the two trajecto-
rie

AB q cT V

s is again given by (31), but the position cx  of the 
central fringe must now be determined by the electric 
field force qE: The change of kinematic momentum (al-
ways parallel to the screen) is now qET, hence the analog 
of (33) is now  

x

qET
v

m
                 (38) 

which if combined with (3 hat is obviously valid in 

X Xc

0X d

Electron
Source

 

l

L 

E (for duration T)  

Figure 3. (Color online): The analog of Figure 2 (again for a 
negative q) but with an additional
the observation screen that is turne

 electric field parallel to 
d on for a time interval 

T. In the text we deal for simplicity with the case 
L

T
v

  

(with 
h

v
1

 , λ  the de Broglie wavelength), so that 
m λ

deflections (of the semiclassical trajectories) due to the 
electric fo  small. For both Figure 2 and 3, 
it is shown in the text that  hence we 
observe an extr us sign  usually 
reported in the literature. 
 

rce are again very

a min
 semiclassical ABφ φ   ,

 compared to what is

t T t   ), and always with 
L

t
v

 , gives that the cen-

displacement must be tral fringe c x

qET L
x v t

m v
   , 

gain and using a
h

mv


 , we finally have the following 

analog of (35)  

.c

qETL
x

h


               (39) 

By substituting (39) into (31), the lengths L and   
again cancel out, and we finally have  

4) (t
this case as well, again for small deflections, due to the  

2π 2πsemi qETL q EdcT
d

e

   , which with 0

hc

e


hch e
   

the flux quantum, and through comparison with (37) leads 
once again to our final proof that  

.semi      (40) 

We note therefore that 

AB         

even in the electric case, the 
emiclassical phase difference (between two trajectories) 

picked up 
once again lectri

ctories (due to th

s
due to the Lorentz force (exerted on them) is 
 opposite to the e c “Aharonov-Bohm 

phase” picked up by the same traje e 
electric flux that they enclose). 
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int out 
e elem
tion of narrow wavepackets, in this pa-

per we have given a more general un
above opposite sign-relationships t
(even completely delocalized) states, and that originates 

l
come out of our 

new solutions, in cases more g hose of
Werner & Brill, including both m
fields, both static and t-dependent situations, and both 

cancellations that we 
found above give an explanation of why ce
arguments (invoking the past t-depen

 [14], where in his Equa-
tio

 work – 
alt

We should po once again, however, that al-
though the abov entary considerations apply to 
semiclassical mo

derstanding of the 
hat applies to general 

from what could be called “ generalized Werner & Bri l 
cancellations” (the cancellations that 

eneral than t  
agnetic and electric 

semiclassical and spread-out quantum states). 
In a slightly different vein, the 

rtain classical 
dent history of an 

experimental setup) seem to be successful in giving at 
the end an explanation of Aharonov-Bohm effects (namely 
a phase consistent with that of a static Aharonov-Bohm 
configuration). However, there is again an opposite sign 
that seems to have been largely unnoticed in such argu-
ments as well (i.e. in Silverman

n (1.34) there should be an extra minus sign). Our 
above observation essentially describes the fact that, if 
we had actually used a t-dependent magnetic flux (with 
its final value being the actual value of our static flux), 
then the induced electric field (viewed now as a nonlocal 
term of the present work) would have cancelled the static 
Aharonov-Bohm phase. Of course now, this t-dependent 
experimental set up has not been used (the flux is static) 
and we obtain the usual magnetic Aharonov-Bohm phase, 
but the above argument (of a “potential experiment” that 
could have been carried out) takes the “mystery” away 
of why such history-based arguments generally

hough they have to be corrected with a sign. The above 
also gives a rather natural account of the “dynamical 
nonlocality” character [2] attributed to the various 
Aharonov-Bohm phenomena (magnetic, electric or com-
bined), although—in the present work—this dynamical 
quantum nonlocality seems to simultaneously respect 
Causality, as will be seen in the next Section. This is a 
rather pleasing characteristic of this theory that, as far as 
we are aware, has no parallel in other formulations. 
 
5. Full (x,y,t)-Case 
 
Finally, let us look at the most general spatially-two- 
dimensional and time-dependent case. This combines 
effects of (perpendicular) magnetic fields (which, if pre-
sent only in physically-inaccessible regions, can have 
Aharonov-Bohm consequences) with the temporal 
nonlocalities of electric fields (parallel to the plane) 
found in previous Sections. By working again in Carte-
sian spatial coordinates, we now have to deal with the 

full system of PDEs  

   

   

   

, ,
, , ,

, ,
, , ,

, ,1
, , .

x

y

x y t
A x y t

x
x y t

A x y t
y

x y t
x y t

c t












 



         (41) 

This exercise is considerably longer than the previous 
nes but important to solve, in order to see in what man-

system are able to combine the 
local effects found above. There 



o
ner the solutions of this 
patial and temporal nons

are now 3! = 6 alternative integration routes to follow for 
solving this system (and, in addition to this, the results in 
intermediate steps tend to proliferate). The corresponding 
(rather long) procedure for solving the system (41) is 
described in detail in [5], and 2 out of the 12 solutions 
that can be derived turn out to be the most crucial for the 
discussion that will follow. First, by following steps 
similar to the ones of Section 4, the following temporal 
generalization of (21) is obtained  

     

 

  

0

0

0

0 0

, , = , , , , d

, , d

d d , , ,

x

x
x

y

y
y

yx

z
x y

x y t x y t A x y t x

A x y t y

 0 ,

x y B x y t G y t

   

 

f x t

        
  





 



with 

 (42) 

 ,G y t  such that  

   
0 0

d d , , ,
yx

z
x y

x y B x y t G y t
       
  
   is independent of y, 

and from this point on, the third equation of the system 
(41) is getting involved to determine the nontrivial effect 
of scalar potentials on 

 

 ,G y t  Indeed, by combining it 
with (42) there results a wealth of patterns, one of them 
leading finally to our first solution, namely  

     0 0 0, , , , , , d
x

x
x

x y t x y t A x y t x
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0

0

0 0 0
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y yx

y z
y x y

t t x

x
t t x

yt

y
t y

     

0

A x y t y x y B x y t G y t

c x y t t c t x E x y t

c t y E x y t F x y f x t



       

      

     

  

  

 

  

(43) 
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with t tions  0,G y t  ,F x y
ollowing 3

 to be chosen 
in such a way  the f  independent 
conditions:  

 and the 
rn out to be of the form  

 as to satisfy

   0 0

0 0

, d d , , : is independent of ,
yx

z
x y

G y t x y B x y t y
      
  

 

(44) 

which is of course a special case of the condition on 
 ,G y t  above (see after (42)) applied at 0t t ,

other 2 tu

   
0 0

, d d , , : is independent of ,
t x

x
t x

F x y c t x E x y t x
      
  

 

(45) 

   
0 0

, d d , , : is independent of .
yt

y
t y

F x y c t y E x y t y
      
  

 

(46) 

(It is probably important to note that for the above re
As fo

sults 
the Faraday's law is crucial [5]). r the constant 
quantity  0 0,f x t  appearing in (43), it again describes 
possible effects of multiple-connectivity at the instant t  
(which are ab

0

 sent for simple-connected spacetimes, but
will be crucial in the discussion of the van Kampen 
thought-experiment to be discussed later below). 

Equation (43) is our first solution. It is now crucial to 
note that an alternative form of solution (with the f

can be d



unc-
tions G and F satisfying the same conditions as above) 

erived, and it turns out to be  

    
x



    

   

     

0 0 0 0

0

0 0

0 0 0

0 0 0

0 0 0

, , , , , , d

, , d d d , , ,

, , d d d , ,

d d , , , , .

x
x

y yx

y z
y x y

t t x

x
t t x

yt

x y t x y t A x y t x

0 0

0 0

y
t y

A x y t y x y B x y t G y t

c x y t t c t x E x y t

c t y E x y t F x y f x t



    

       

      

     



  

  

 

 

(47) 

In this alternative solution we note that, in comparison 
with (43), the line-integrals of E have changed to the 
other alternative “path” (note the difference in the 
placement of the coordinates of the initial point  0 0,x y  
in the arguments of xE  and yE  compared to (43)) and 
they happen to have the same sense as the A-integrals, 
while simultaneously the magnetic flux difference shows 
up with its value at the initial time t  rather than at t. 
This alternative form will be shown to

0

 be us
where we want to directly compare physical situations in 

the present (at time t) and in the past (at time , and 
the above noted change of sense of E-integrals om-
pared to (43)) will be crucial in the discussion t at fol-
lows below. (It is also important here to note
form (47), the electric fields have already inco orated 
the effect of radiated 

eful in cases 

0t )
 (c
h

 that, in the 
rp

zB -fields in space (thr h th  
Maxwell’s equations, see [5]), and this is why at the end 
only the 

oug e

zB
 again t
deed s

s but rathe



 at explicitly). 
Once d n directly verify th 3) or 

(47) in a  the c input system (41) (This 
verification is considerably more tedious th
one r htf ard). 

0t
he rea
tisfy

straig

 appears 
er ca

basi

orw

at (4
. 

an the earlier 

But a last mathematical step remains: in order to dis-
cuss the van Kampen case, namely an enclosed (and 
physically inaccessible) magnetic flux (which however is 
time-dependent), it is important to have the analogous 
forms through a reverse route of integrations (see [5]), 
where at the end we will have the reverse “path” of 
A-integrals (so that by taking the difference of the re-
sulting solution and the above solution (43) (or (47)) will 
lead to the closed line integral of A, which will then be 
immediately related to van Kampen’s magnetic flux (at 
the instant t)). By following then the reverse route, and 
by applying a similar strategy at every intermediate step, 
we finally obtain the following solution (the spatially 
“dual” of (43)), namely  

     

 

0 0 0

0

, , , , , , d

, , d d ,

x

x
x

y yx

y z

x y t x y t A x y t x

  ˆd , ,

   

0 0

0 0 0

0 0 0

0 0 0

, , d d d , ,

y x y

t t x

x
t t x

     0 0

0 0

ˆd d , , , ,
yt

y
t y

A x y t y x y B x y

    

      



   t tG x

c x y t t c t x E x y t         
  

t y E x y t F x y h y t      
(48) 

with the functions  0
ˆ ,G x t  and  ,F x y  to be chosen 

in such a way as to satisfy the following 3 independent 
conditions:  

   0 0

0 0

ˆ , d d , , : is independent of ,
y x

z
y x

G x t y x B x y t x
      
  

 

(49) 

   
0 0

, d d , , : is independent of ,
t x

x
t x

F x y c t x E x y t x
      
  

 

(50) 

   , d d , , : is independen of ,
t

0 0

y
'

t y

tyF x y y x y t y
      
  

c t  E

(51) 
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where again for the above results the Faraday’s law is 
crucial. The corresponding analog of the alternative form 
(47) (where zB

on that f
 appears at ) is more important for 

the discussi ollows an rns out to be  



 0t
d tu

     

    

   

0 0 0

0

0

0 0 0

0 0

, , , , , , d

ˆ, , d d d , , ,

, , d d d , ,

x

x
x

y yx

y z
y x y

t t x

x

x y t x y t A x y t x

   

0

 

0 0 0

0 0 0

0 0

ˆd d , , , ,

t t x

yt

y
t y

0A x y t y x y B x y t G x t

c x y t t c t x E x y t

    

       

      



  

  
 

c t y E x y t F x y h y t      
(52) 

with  and  0
ˆ ,G x t  ,F x y  

ltiplicities

following the same 3 con-

 term  again

ble mu  at the i ; it is ab-

sent for simple-connected spacetimes, but will be crucial 
in the discussion of the van Kampen thought-experim

In (48) (and in (52)), note the “alternative pat
(compared to solution (43) (and (47))) of line integrals of 
A’s (or of E’s). But the most crucial element for what 
follows is the need to exclusively use the forms (47)

ditions above. The constant

scribes possi

  0 0
ˆ ,h y t

nstant 0t

 de-

ent. 
hs” 

 and 
(52) (where zB  only appears at 0t ), and the fact that, 
within each solution, the sense of A-integrals is the same 
as the sense o the E-integrals. (This is not true in the 
other solutions where  ,zB t  appears, as the reader 
can directly see). These facts will be crucial to t

f 

he dis-
cussion that follows, which briefly addresses the so 
called “van Kampen paradox”. 

In [15] van Kampen considered a magnetic Aharonov- 
Bohm setup, but with an inaccessible magnetic flux that 
is t-dependent: he envisaged turning on the flux very late, 
or equivalently, observing the interference of the tw  
wavepackets on a distant screen very early, earlier than 
the time it takes light to travel the distance to the screen  

(i.e. 

o

<
L

t
c

), hence using the (instantaneous nature of the)  

Aharonov-Bohm phase to transmit information (on
presence of a confined flux somewhere in space) su

ally. Ind e Aharo  

 the 
per-

lumin eed, th nov-Bohm phase at any t is 

determined by differences of  ,
q

c



th tr  wi  , :t r  

 
0

, dt 
r

r
A r r  (basically a special case of (5)). However,  

if we use, instead, our results (47) and (52) above (that 
contain the additional nonlocal terms), it turns out that, 
for a spatially-confined magnetic flux  t , the func-
tions G, Ĝ  and F in the above solutions can then all be 

taken zero: 1) their conditions are all satisfied for a flux 
 t  that is ot spatially-extende  (hence, from the 2 

conditions on G and Ĝ  (Equation (44) and (49)) we 
obtain ˆ 0G G

 n d

   since the integrals in brackets are all  

independent of x and y), and 2) for 
L

t
c

 , the integrals  

of xE  and xE  in the corresponding conditions (Equa-
tion (45) and (46)) are already independent of both x and  

y (since    , , , , 0x yE x y t E x y t    for all < <
L

t t
c

 , 

with 

 

 ,x y  the observation point [the essential point 
being that at instant t, the E-field has not yet reached the 
spatial point  ,x y  of the screen, and therefore all inte-
grations of xE  and xE  with respect to x  and y  
will be contributing only up to a light-cone (see Figure 4) 
and they erefore give results that are independent will th
of the integration upper limits x and y – basically a gen-
eralization of the striped cases that we saw earlier but 
now to the case of 3 spatio-temporal variables (with now 
the spatial point  ,x y  being o the light-cone 
defined by t (see Figure 4; in this figure the initial spatial 

utside 

point  0 0,x y , taken 
d to be

for simplicity at 0,0 , has been 
 in the area of the inaccessible flux 

 
suppose  t ,  

so that, for    2 2 2 2
0 0x x y y x y L      , we  

have indeed that <ct L , as written on the gure))]; we 
therefore rigorously obtain 0F  ). Moreover, the 
Aharonov-Bohm multiplicities (at 0t ) lead to cancella-
tio f the 

fi

n o zB -terms (always at 0t ), with the final result 
(after subtraction of the  solutions) being  

     , , d , , d
y

2

   0

0 0

, d , , d
yx

x y

   , , d , ,
y



, ,

,

d d

x

x

t

  

0

0 0 0

0

0 0

d , , d , , .

x y
x y

yx

x y
x y

0

0 0

x y
x y

x y

t

x y t

y

c t x

x

A x y t x A x y t y

A x t x A x y t y

E y t y E x y t

y

x

x E t y E x y t

    





  

       

 

 


       


 

This can equivalently be written as 

     
0

, , , d d , d
t

t

x y t t c t t

 
 (53) 

           A r r E r r   (54) 

which, with  tr  d t   A r,  the instantaneous 

enclosed magnetic flux and with the help of Faraday’s 

law    d1
, d ,

d

t
t

c t


    

 E r r  gives  

          0 0 ., ,x y t t t t t        (55) 
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t

d t

 0 0 0, ,x y t

y

y

E

2 2L
t L x y d ct L

c
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Electric field path I 

Electric field path II 

 

Figure 4. (Color online): The analog of paths of Figure 1 but now in 2 + 1 spacetime for the van Kampen thought-experiment, 
when the instant of observation t is so short that the physical information has not yet reached the spatial point of observation 
(x, y). The two solutions (that, for wavepackets, have to be subtracted in order to give the phase difference at (x, y, t)) are 
given in the text, and are here characterized through their electric field E-line integral behavior: “electric field path (I)” (the 
red-arrow route) denotes solution (52), and “electric field path (II)” (the green-arrow route) denotes solution (47). Note that 
the strips of Figure 1(a) have now given their place to a light-cone. At the point of observation (that lies outside this light-cone) 
the Aharonov-Bohm phase difference has now become “causal” due to cancellations between the two solutions (the two 
“electric field paths” above).  
 

Although  is generally t-dependent, we obtain the  

intuitive (causal) result that, for 



<
L

t
c

 (i.e. if the physi-  

cal information has not yet reached the screen), the 
phase-difference turns out to be t -independent, and leads 
to the magnetic Aharonov-Bohm phase that we would 
observe at The new nonlocal terms have conspired in 
such exactly cancel the Causality-violating 
Aharonov- hase (that would be proportional to the 
instantaneous ). This gives an honest resolution of 

0t . 
a way as to 

Bohm p
 t

the van Kampen “paradox” within a canonical formula-
tion, without using any vague electric Aharonov-Bohm 
argument (as there is no multiple-connectivity in the 
 ,x t -plane [9]). An additional physical element is that, 
for the above cancellation, it is not only the E-fields but 
also the t-propagation of the zB -fields (the full “radia-
tion field”) that plays a role [5]. 

Use of other 10 solution

times), drawing from this the above qualitatively correct 
conclusion on Causality. As it turns out, our treatment 
gives exactly what Peshkin describes in words (with the 
total “radiation field” outside the cages being once again 
crucial in recovering Causality), in a similar way as in 
the case presented above in this Section for the usual 
(magnetic) version of the van Kampen experiment. In 

s that rigorously come out 
r

state analogs (i.e. a

and only later switch on the field to cause a physical ef-
fect”. Although Peshkin uses his Equation (B.5) and (B.6) 
(based on the incorrect (5)), he carefully states that it is 
not the full solution; actually, if we view it as an ansatz, 
then it is understandable why he needs to enforce a con-
dition (his Equation (B.8), and later (B.9)) on the electric 
field outside the cages (in order for certain (annoying) 
terms (resulting from a minimal substitution due to the 
incorrect ansatz) to vanish and for (B.5) to be a solution). 
But then he notes that the extra condition cannot always 
be satisfied (hence (B.5) is not really the solution for all 

this “electric analog” that we are discussing now, the 

.

f om the basic system of PDEs can also address bound- 
 in t-dependent m gnetic flux-driven 

1-D nanorings, such as in [16]) or even “electric” ana-
logs of the above van Kampen case: In Peshkin’s review 
[3] on the electric Aharonov-Bohm effect, the author 
correctly states “One cannot wait for the electron to pass 

causally-offending part of the electric Aharonov-Bohm 
phase difference will be cancelled by a magnetic type of 
phase, that originates from the magnetic field that is as-
sociated with the t-dependence of the electric field E 
outside the cages  We conclude that our (exact) results 
accomplish precisely what Peshkin has in mind in his 
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y one of the many mis-
co

discussion (on Causality), but in a direct and fully quan-
titative manner, and with no ansatz based on an incorrect 
form. 

6. Discussion 
 
Returning for the moment to onl

nceptions briefly pointed out in this paper, we should 
emphasize further that improper uses of simple Dirac 
phases in the literature are not rare or marginal: even in 
Feynman[11] it is stated that the simple phase factor 

d dc t   A r  is valid even for dynamic fields; this is 
also explicitly stated in Erlichson’s review [17]— 
Silverman[14] being the only report that we are aware of 
with a careful wording about (5) being only restrictedly 
valid (for t-independent A and r-independent  ), al-
though even there the nonlocal terms have been missed. 

With respect to the presence of fields in the phases of 
quantum mechanical wavefunctions that we find, it 
should be stressed that at the level of the basic Lagran-  

gian      21
, , , ,

2

q
L t m t q t

c
   r v v v A r r  there are  

no fields present, and the view holds in the literature [18] 
that electric fields or magnetic fields cannot contribute 
directly to the phase. This view originates from the path- 
integral treatments widely used (where the Lagrangian 
determines directly the phases of Propagators), but, nev-
ertheless, our canonical treatment shows that fields do 
contribute nonlocally, and they are actually crucial in 
recovering Relativistic Causality. Moreover, path-inte- 
gral discussions[19] of the van Kampen case use wave 
(retarded)-solutions for A (hence in the Lorenz gauge) 
and are incomplete; our results take advantage of the 
retardation of fields E and B (true in any gauge), and not 
of potentials. In addition, Troudet [19] correctly states 
that his path-integral treatment is good for not highly- 
delocalized states in space, and that in case of delocaliza-
tion the proper treatment “would be much more compli-
cated, and would require a much more complete analy-
sis”. It is fair to state that such a complete analysis has 
ctually been provided in the present work. It should be 

n Kampen “paradox” seems to be still 
arkable” [20]. The present work has 

onsequen

P

ne

see that these nonlocal terms essential
the causal propagation of the radiation e

te for problems of 
th

 p
a
added that the va

ought of as “remth
provided a natural and general resolution, and most im-
portantly, through nonlocal (and Relativistically causal) 
propagation of wavefunction-phases. 

Finally, in trying to explore an even broader signifi-
cance of the new solutions, one may wonder about pos-
sible c ces of the nonlocal terms if these are in-
cluded in more general physical models that have a 
gauge structure (in Condensed Matter or High Energy 
Physics). It is also worth mentioning that if one follows 
the same “unconventional” method (of solution of DEs) 

with the Maxwell’s equations for the electric and mag-
tic fields (rather than with the PDEs of Equation (2) 

for the potentials that give  ), the corresponding nonlo- 
cal terms can be derived in a similar manner, and one can 
then ly demon-
strate lectric and 
magnetic fields outside physically inaccessible confined 
sources (i.e. solenoids or electric cages). Although this is 
of course widely known at the level of classical fields, a 
major conclusion that can be drawn from the present 
work (at the level of gauge transformations) is that a 
corresponding Causality also exists at the level of quan-
tum mechanical phases as well, and this is enforced by 
the nonlocal terms in t-dependent cases. It strongly indi-
cates that the nonlocal terms found in this work at the 
level of quantum mechanical phases reflect a causal 
propagation of wavefunction phases in the Schrödinger 
Picture (at least one part of them—the one containing the 
fields—which competes with the Aharonov-Bohm types 
of phases containing the potentials). This is an entirely 
new concept (given the local nature but also the nonre-
lativistic character of the Schrödinger equation) and de-
serves to be further explored. It would indeed be worth 
investigating possible applications of the above results 
(of nonlocal phases of wavefunctions, solutions of the 
local Schrödinger equation) to t-dependent single- vs 
double-slit experiments recently discussed by the group 
of Aharonov [6] who use a completely different method, 
with modular variables in the Heisenberg picture (pre-
sented as the sole method appropria

is type). One should also note recent work [7], that 
rightly emphasizes that Physics cannot currently predict 
how we dynamically go from the single-slit diffraction 
pattern to the double-slit diffraction pattern (whether it is 
in a gradual and causal manner or not) and where a rele-
vant experiment is proposed to decide on (address) ex-
actly this largely unknown issue. Application of our 
nonlocal terms to such questions in analogous experi-
ments (i.e. by introducing (finite) scalar potentials on 
slits in a t-dependent way) rovides a completely new 
formulation for addressing causal issues of this type, and 
is worth of further investigation. Furthermore, it is worth 
noting that, if E’s were substituted by gravitational fields 
and B’s by Coriolis force fields arising in non-inertial 
(rotating) frames of reference, the above nonlocalities 
(and their apparent causal nature) could possibly have an 
interesting story to tell about quantum mechanical phase 
behavior in a Relativistic/Gravitational framework. Fi-
nally, SU(2) generalizations would be an obviously in-
teresting extension of the above U(1) theory, and such 
generalizations are rather formally direct and not difficult 
to make; an immediate physically interesting question 
would then be whether the new nonlocal terms might  
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have a nontrivial impact on i.e. spin-
1

2
-states, since  

these terms would act asymmetrically on opposite spins 
(the nonlocal zB -terms being relevant for Zeeman in-
teractions, and the nonlocal E-terms possibly having a 
role if the above results were applied i.e. to Condensed 
Matter systems with strong spin-orbit coupling [21]). 
 
7. Conclusions 
 
We conclude that a nonlocal and causal behavior exists 
at the level of quantum mechanical phases, even for so-
lutions of the nonrelativistic (and local) Schrödinger 
equation and this behavior is enforced by the nonlocal 
terms derived in the present work (through the well- 
known causal behavior of fields). Our (exact and ana-
lytical) results accomplish precisely what Peshkin has in 
mind in his discussion (on Causality) of the electric 
Aharonov-Bohm effect, but in a direct and fully quanti-
tative manner, and with no ansatz based on an incorrect 
form. Another pleasing characteristic of our results that, 
as far as we are aware, has no parallel in other formula-
tions, is that they give a rather natural account of the 
“dynamical nonlocality” character [2] attributed to the 
various Aharonov-Bohm phenomena (magnetic, electric 
or combined), although—in the present work—this dy-
namical quantum nonlocality seems to simultaneously 
respect Causality in a “deterministic way”, i.e. without 
requiring the necessity of invoking the Uncertainty Prin-
ciple. The nonlocal terms found in this work at the level 
of   reflect a causal propagation of wavefunction- 
phases in the Schrödinger picture, with possible imme-
diate applications to t-dependent slit-experiments re-
cently discussed using the Heisenberg picture [6]. Ap-
plication of our nonlocal terms to such problems (i.e. by 
introducing t-dependent scalar potentials on the slits) 
provides a new and direct formulation for addressing 
causal issues of such t-dependent slit-sy tems. Finally, s
one cannot refrain from wondering about the analogs of 

po

 in 
e rapidly expanding area of Topological Insulators 

ought then arising from the present 
ork is that, if those emerging potentials are not of a 

these new nonlocalities in many areas of Physics where 
geometric or to logical phases [22] appear as the cen-
tral quantities (these always being of the form of inte-
grals of some effective (or emergent) potentials (that are 
determined by the system, i.e. by band structures, as
th
[21])). A natural th
w
type that would correspond to zero fields (in the physi-
cally accessible regions), but describe nonvanishing ef-
fective fields in (even remote) spacetime regions that are 
accessible to the particles, then one would expect that the 
new nonlocalities should be seriously taken into account 
—these having certain dynamical consequences that may 

have not received an entirely proper treatment in earlier 
works. Given the popularity and importance of these 
areas in the whole of Physics, issues such as the above 
would certainly deserve further study. 
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