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Abstract 
 
A new approach to classical statistical mechanics is presented; this is based on a new method of specifying 
the possible “states” of the systems of a statistical assembly and on the relative frequency interpretation of 
probability. This approach is free from the concept of ensemble, the ergodic hypothesis, and the assumption 
of equal a priori probabilities. 
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1. Introduction 
 
The object of classical statistical mechanics is to explain 
the (statistical) properties of an assembly of a large 
number of identical particles in terms of the (determinis-
tic) laws of classical mechanics. Such a theory has been 
developed by Gibbs in the first decade of the last century 
[1]. The Gibbs approach, presented by Tolman [2], has 
been accepted as the conventional approach to classical 
statistical mechanics. The theory presented by Tolman 
and the subsequent authors [3,4] is based on: 1) the con-
cept of “state” of a many-particle system as defined by 
classical mechanics in the sense that the state of a 
N-particle system at any instant of time can be specified 
by a point in 6N dimensional phase space and 2) the no-
tion of probability prevalent at the beginning of the last 
century according to which probability refers to a many- 
particle system “chosen at random from the ensemble” of 
many-particle systems.  

In this paper we present a new approach to classical 
statistical mechanics based on the significant progress 
made during and after the third decade of the last century 
in the theory of probability (a branch of pure mathemat-
ics) and the methods of statistical analysis (a branch of 
applied mathematics) [5,6]. This new approach is based 
on: 1) a new method of specifying the possible “states” 
of an assembly of particles which (method) is consistent 
with the requirements of statistical analysis, and 2) on 
the relative frequency interpretation of probability. The 
present approach is an independent approach and should 
be viewed as such. For the sake of clarity, the distinctive 
features of the two approaches are also discussed in the 
text. 

2. Preliminary Considerations 
 
For the sake of clarity we may just mention the main 
features of statistical analysis and the relation between 
statistical analysis and probability theory. A large num-
ber of physical entities (such as adult men in a popula-
tion) are said to form a collective, or a population, or a 
statistical assembly [5], if each entity (or member) of the 
assembly exists in one of the many (at least two) possible 
states Sn’s (such as the state of parenthood of having n 
number of children) and the states of the members col-
lected in any systematic manner lead to a random se-
quence of these possible states, in which each entry be-
longs to one member. If Nn is the number of times the 
state Sn occurs in the random sequence having a total 
number of N0 entries, then Nn/N0 is the relative frequency 
of the state Sn. As there can be many different systematic 
ways of collecting the data, there would be many random 
sequences of the same states (relevant to the given as-
sembly). In all these random sequences the relative fre-
quencies of the states would have approximately (in the 
statistical sense) the same set of values; such sequences 
are said to be statistically equivalent. One important fea-
ture of all statistical properties is that they are independ-
ent of such details as: 1) which particular member of the 
assembly is in which particular state, 2) the regions of 
space within which the individual members exist in the 
assembly (such as the places of residence of men), and 3) 
the total number of members of the assembly. Evidently, 
the relative frequencies of the possible states in a random 
sequence possess these properties.  

In the theory of probability, statistical properties are 
dealt with in a more abstract and general manner by as-
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sociating probabilities with the possible states per se; 
these probabilities are treated as unspecified constants 
with the understanding that, with reference to any ran-
dom sequence of states (relevant to a statistical assem-
bly), the numerical values of the relative frequencies of 
the states in the sequence are approximately equal to the 
numerical values of the corresponding probabilities. It is 
extremely important to appreciate the point that (the rela-
tive frequencies as well as) the probabilities are associ-
ated with the possible states and not with the members of 
the assembly. With this background we consider classi-
cal statistical mechanics. 

A physical entity having finite non-zero mass bound to 
a time-independent potential is said to form a conserva-
tive system; to the extent the internal structure and the 
external dimensions of the entity do not play any role in 
the phenomenon under consideration, we can regard the 
entity as a particle, a point-mass. We can attribute many 
physical properties to such a system; the sum-total of all 
the physical quantities which can be attributed to the 
system at any instant of time is said to specify fully the 
“instantaneous state” of the system at that instant. As 
time passes, the system evolves through a continuous 
sequence of successive instantaneous states as governed 
by the laws of classical mechanics; such a sequence may 
be called a dynamical state of the system. Each dynami-
cal state is determined by one solution of Newton’s sec-
ond law of motion which (solution) is specified by two 
constants, r0 and p0 , the position and the momentum of 
the particle at some “initial” instant of time t0. A dy-
namical state may be denoted as S(r0, p0, t0; r, t) which 
gives the position r of the particle as a function of time t ; 
once r is given as a function of time, all the physical 
quantities attributable to the system at any instant t, as 
well as their variations with t, can be derived mathe-
matically from the function. In the case of a conservative 
system in a dynamical state, the energy E of the system 
remains constant so long as the system is in that dy-
namical state. There can be infinite number of such pos-
sible dynamical states for the given system, though a 
system exists, over a duration of time, in only one possi-
ble dynamical state. In some special cases, the system 
(such as a simple or conical pendulum, or a particle in a 
closed Kepler orbit) may go repeatedly through the same 
sequence of successive instantaneous states; such a dy-
namical state may be called a cyclic dynamical state.  

Our object of study in classical statistical mechanics is 
a statistical assembly consisting of a large number of 
identical independent conservative systems which obey 
the laws of classical mechanics. Such systems may be: 
free particles (helium atoms), rigid rotators (diatomic 
molecules), harmonic oscillators (atoms in a crystal lat-
tice), etc. In all these cases, first we have to identify the 

possible states of the systems relevant to the statistical 
properties of the given assembly and then use the laws of 
probability to determine the probabilities associated with 
these states. As our object is to present the new approach, 
we consider only an assembly of free particles. 
 
3. An Assembly of Free Particles in  

Statistical Equilibrium 
 
For the sake of definiteness let us consider an assembly 
of a large number N0 of identical particles confined (by 
what is normally referred to as the walls of a container) 
within a fixed volume of field-free space of macroscopic 
dimensions. Evidently, over a duration of time each par-
ticle would be in a dynamical state characterized by a 
pair of constants such as r0, p0, with the understanding 
that all such pairs of constants specifying all the possible 
dynamical states (of all the particles) correspond to the 
same initial instant of time t0. Though we have referred 
to them as particles, they are indeed physical entities 
having non-zero spatial extension and hence they would 
collide with one another exchanging energy and mo-
mentum. As a result, a particle would travel along a 
segment of a straight line belonging to a particular dy-
namical state, collide with another particle, exchange 
energy and momentum, make a transition to another par-
ticular dynamical state, travel along a segment of a 
straight line belonging to the new dynamical state to col-
lide again, and so on; every particle would go through 
such a process incessantly. It is envisaged that as a result 
of such repeated transitions (from one dynamical state to 
another) made by all the particles over a sufficiently long 
initial duration of time, a “state of dynamic equilibrium” 
would be reached in the sense that the fractions of the 
total number of particles of the assembly in different 
possible dynamical states would remain almost constant 
over subsequent durations of time. Such an assembly is 
said to be in statistical equilibrium. Our interest is only in 
the equilibrium state and not in how equilibrium is 
reached from an initial non-equilibrium state [7]. 

As mentioned at the outset, first we have to specify the 
possible states of the particles in a manner that is consis-
tent with the laws of classical mechanics as well as with 
the methods of statistical analysis. According to classical 
mechanics, the dynamical state of a (free) particle be-
tween two successive collisions is specified by the mo-
mentum of the particle and by the coordinates of the par-
ticle at the two points of collision. According to the 
methods of statistical analysis the positions of the parti-
cles within the volume of space of the assembly have no 
relevance to the statistical properties of the assembly. 
This means that, so far as the statistical properties of the 
assembly are concerned, we need specify each possible 
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state by momentum only. We refer to them as momen-
tum states. Evidently, the possible values of momentum 
p have a continuous range (both in magnitude and direc-
tion).  

We associate probability P(p) dp with the states corre- 
sponding to momentum lying between p and p + dp; here 
dp is an element of constant magnitude dpx dpy dpz. Evi-
dently, P(p) corresponds to unit interval of p values. Our 
object now is to find this probability distribution using 
the laws of probability and the methods of statistical 
analysis. We treat (to begin with) P(p) as an unspecified 
function of p and then derive a general expression for it 
by making use of the properties of the equilibrium state 
of the assembly and the results of probability theory.  

If we consider at any one instant of time t1, the states 
of different particles (which exist at different points 
within the volume of the assembly) one after the other in 
any systematic manner, we get a random sequence of the 
possible momentum states p’s. This random sequence 
has N0 number of elements corresponding to N0 number 
of particles in the assembly. If the states corresponding 
to momentum lying  between p and p + dp occur N1(p) 
number of times in the sequence, the relative frequency 
w1(p) = N1(p)/N0 of these states in the sequence  would 
be approximately (in the statistical sense) equal to the 
probability P(p) dp. If we consider the states at another 
instant of time t2 (after an interval of time long enough 
for particles to undergo transitions) we get another ran-
dom sequence of the same states in which also the rela-
tive frequency w2(p) is approximately equal to the prob-
ability P(p) dp. Such random sequences are statistically 
equivalent. Thus because of the dynamic nature of equi-
librium, we get a large number of statistically equivalent 
random sequences of the same states p’s, the random 
sequences being relevant to the “state” of the assembly at 
the instants of time t1, t2, . 

Let us consider the random sequence at the instant of 
time t1. Now we define (what is referred to in statistical 
analysis [5,6] as) a binomial random variable R(p) which 
assumes the value 1 if a state in the random sequence 
belongs to momentum between p and p + dp and as-
sumes the value 0 if it does not. This leads to a (derived) 
random sequence of 1’s and 0’s. Evidently, R(p)  is 
the total number N1(p) of the particles having momentum 
between p and p + dp at the instant t1. Corresponding to 
the random sequence at t2, we get another value N2(p). 
Thus corresponding to random sequences at different 
instants of time t1, t2, , we get different values of N(p). 
Since a well defined (time-independent) probability P(p) 
dp is associated with the states between p and p + dp, 
these values of N(p) would have a well defined distribu-
tion characterized by the probability P(p) dp. According 
to the central limit theorem of the probability theory 

[5,6], the probability P{N(p)} that the quantity R(p)  
has (at the conceptual instant of time) the value N(p) is 
given by  





  
    2 2

0

0

exp 2

2

N p N p N
P N

N



 

    p ,   (1) 

where N (p) is exactly equal to P(p) dp N0 and 2 (p) = 
P(p) dp {1 – P(p) dp}. Here N (p) is the most probable 
value and, the distribution being symmetric, N (p) is also 
the mean value of N(p) taken over this distribution (which, 
in effect, is over a duration of time); σ is the standard 
deviation. This shows that because of the dynamic nature 
of the equilibrium distribution, the number N(p) of parti-
cles having momentum between p and p + dp fluctuates 
leading to a time-independent Gaussian distribution of 
values with the mean value N (p) and the standard de-
viation σ. Evidently, this is true of each possible value of 
p. 

It is interesting to consider the state of a particular sin-
gle particle of the assembly at different instants of time. 
Because of collisions, the particle would be in different 
momentum states at different (well separated) instants of 
time, leading to a random sequence of momentum states; 
this sequence would have the same number of elements 
as the number of instants of time at which the state of the 
particle is considered. Since the probability distribution 
P(p) dp is associated with the possible states per se (and 
not with the particles) this random sequence would be 
statistically equivalent to the random sequence of states 
of the particles of the assembly at one instant of time. So, 
the relative frequency distribution w(p) in any long seg-
ment of this sequence also would be approximately equal 
to the probability distribution P(p) dp. We may regard 
this sequence as being made up of a large number of 
successive segments each segment having 0 number of 
elements. With reference to the first segment,  R(p) is 
the total number (p)1 of instants of time (out of 0 
number of instants) at which this particle has momentum 
between p and p + dp; with reference to the second seg-
ment we get another number (p)2; and so on. All these 
numbers are approximately equal to P(p) dp 0. These 
numbers lead to a Gaussian distribution similar to (1). 
Again, the mean number of instants of time  (p) (out of 
a total number of instants of time 0) at which the par-
ticular particle has momentum between p and p + dp is 
exactly equal to P(p) dp 0. This is true of every possible 
momentum p of this particular particle under considera-
tion. All this is true also of every other particle in the 
assembly. Significance of this result is that the mean 
value of a physical quantity taken over the states of a 
large number of particles of the assembly at any one in-
stant of time is approximately equal to that taken over 
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n

the states of any one particular particle at equally large 
number of instants of time. 

A particle makes a transition to another momentum 
state, p' say, as a result of its collision with another parti-
cle and this process is independent of the momentum 
states of all the other particles in the assembly. So the 
fluctuations in the number N(p') of particles having mo-
mentum between p' and p' + dp would be independent of 
the fluctuations in the numbers relevant to all other mo-
mentum values (except for the weak condition that the 
sum of these numbers should remain constant at N0). So, 
the probability P{N(p')}, given by (1), that N(p') number 
of particles have momentum between p' and p' + dp is 
independent of the probability P{N(p'')} that N(p'') 
number of particles have momentum between p'' and p'' 
+ dp for any two distinct values of momentum p' and p''. 
The probability P{N(p)}for one value of p being inde-
pendent of that for another value, the probability P(N1, 
N2, , Nn, ) that N1 number of particles have mo-
mentum between p1 and p1 + dp, and N2 between p2 and 
p2 + dp, , Nn between pn and pn + dp, , is given by  



 

       
 

1 2 1 2, , ,n

n
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P N



 

   
  (2) 

This is a multi-dimensional Gaussian distribution and 
its maximum (which corresponds to each Nn being equal 
to nN , the most probable value) may be specified by the 
condition 

 
      
      
      

1 2

1 2

1 2

1 2

, , ,

0.

n

n

n

n

P N N N

P N P N P N

P N P N P N

P N P N P N









 
 
 


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       (3) 

Here each term has not only the condition for the 
probability relevant to one value of momentum p being 
maximum, but also the probabilities relevant to all the 
other values as well. Thus the condition (3) is not con-
sistent with the fact that the probabilities P(Nn)’s are all 
independent of one another. So we consider, instead, the 
condition  1 2ln , , , 0nP N N N   . We have 

 
     

1 2

1 2

ln , , ,

ln ln ln 0,

n

n

P N N N

P N P N P N



      

 

 
 (4) 

where each term refers to one value of momentum only, 
consistent with P(Nn)’s being independent of one another. 
Thus though both the conditions (3) and (4) look mathe-
matically equivalent, only the condition (4) is physically 
appropriate. Importance of this result cannot be overem-
phasized.  

All that has been said so far is mere explication, in 
terms of the laws of probability, of what we should mean 
by (dynamic) statistical equilibrium, once we assume 
that time-independent probabilities associated with the 
possible “states” of the particles exist; in fact, no law 
physics is involved. A little reflection would show that 
the above reasoning is so general that it is applicable not 
only to momentum p but also to energy E. The properties 
of a statistical assembly are better understood in terms of 
energy (rather than momentum) of the particles. So we 
develop the theory by treating energy as the independent 
variable. 

If we associate probability P(En) dE with the states 
corresponding to the energy lying between En and En + 
dE, then the probability P(n1, n2, , nn, ) that n1 num-
ber of particles have energy between E1 and E1 + dE, n2 
between E2 and E2 + dE, , nn between En and En + dE, 

, is given by 

 




       
 

1 2 1 2, , ,

,

n n

n

P n n n P n P n P n

P n



 

   
    (5) 

which is a multi-dimensional Gaussian distribution and 
its maximum corresponds to each nn being equal to nn , 
the most probable value (which is also the mean value). 
Again, the appropriate condition for this probability be-
ing maximum is specified by 

 
     
1 2

1 2

ln , , ,

ln ln ln 0.

n

n

P n n n

P n P n P n



      

 

  
 (6) 

When we consider the random sequences of states of the 
systems at a large number of instants of time, the random 
sequence corresponding to each instant would be char-
acterized by one set of nn values. Since nn ’s are the 
most probable numbers, the number of random se-
quences having the set of nn  values should be larger 
than the number of those having any other set of possible 
nn values. Now we estimate the number of such se-
quences (having the set of nn  values). Let S1, S2, , 
SN0 be the sequence of particles of the assembly in some 
order. Each distribution of N0 number of energy states in 
this sequence of N0 number of particles leads to one se-
quence of energy states of the particles; there are N0! 
number of such sequences. But all of them are not dis-
tinct because the same states occur many times. For in-
stance, in any sequence the energy states between E1 and 
E1 + dE would occur 



1n  number of times and permuta-
tion of these states among themselves does not lead to a 
new sequence of states; this is so with respect to each of 
the other states as well. So the total number of distinct 
sequences of states with 1n  number of particles in the 
energy states between E1 and E1 + dE, 2n  between E2 
and E2 + dE, ,  nn  between En and En + dE,  is 
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given by 

   1 2 0 1 2, , , ! ! ! ! .m n nn n n N n n n   N     (7) 

Since nn ’s are the most probable numbers of particles 
in the relevant states, the number m  is larger than the 
number N corresponding to any other set of nn values; 
the subscript m denotes this. So this number m  should 
be proportional to 

N

N
 , , ,P n n n 

m

1 2m n  which is the 
most probable value of the probability (5). Since it is 
appropriate to express the equilibrium condition in terms 
of ln Pm (rather than Pm), let us consider lnN . We have 
from (7) 

0ln ln ! ln !.m N n N n            (8) 

Using the Sterling approximation for the factorial of a 
large number , given by ln ! =  ln – , (8) may be 
put as 

0 0ln ln ln .m N N n n N n n          (9) 

Thus we see that each of the following three condi-
tions characterize the (same) equilibrium state of the 
statistical assembly. When each nn assumes its most 
probable value nn : 1) the probability P(n1, n2, , nn,   
has its maximum value P(

)

1 2, , ,nn n n  ), 2) the number 
 has its largest value m , and 3) the quantity 

 has its minimum value 
N


N
lnnn nn lnn n

In statistical physics we are interested in properties 
which can be attributed to an assembly over a time scale 
which is large compared to the time scale relevant to 
transitions in the “states” of the constituent systems. 
Such properties depend on (the physical properties rele-
vant to) the possible states of the systems and on the 
probabilities associated with these states. As mentioned 
before the states are determined (for the systems of the 
given assembly) by the laws of physics, and the prob-
abilities (or equivalently the most probable numbers of 
systems in different states) are to be determined by us-
ing the laws of probability (consistent, of course, with 
the basic properties of the assembly under considera-
tion).  

n n .  

We recognize that the two basic properties of the as-
sembly of particles under consideration are that the total 
number N0 and the total energy E0 of the particles remain 
constant at all instants of time. Since the most probable 
numbers nn ’s are also one set of possible numbers nn’s,  

0nn N                 (10a) 

and 

0n nn E E  .              (10b) 

Thus nn ’s should satisfy the three conditions given in 
(9) and (10). Now m  being the largest number, and N0 
and E0 being constants, we have 

N

 ln ln 1 0m n nn n    N ;        (11) 

0 and

0,
n n

n n n n

n n

n E E n

 
 
   

   
           (12) 

where nn ’s are small deviations from the equilibrium 
values nn ’s. These three conditions should be satisfied 
simultaneously. Using Lagrange’s method of undeter-
mined multipliers, we may express them as a single 
equation. We have 

 ln 0n n nn E n      ,         (13) 

where  and  are constants. Since (13) is to be satisfied 
for any arbitrary set of nn ’s, we should have 

ln 0n nn E    ,            (14) 

which means that  

 1 expnn   nE    .          (15) 

Here nn  is the most probable, as well as the mean, 
number of particles in the energy range between En and 
En + dE. Using the well-known arguments we may iden-
tify the constant  as 1/kT, where k is the Boltzmann 
constant and T the thermodynamic temperature. By vir-
tue of (10a),  can be expressed in terms of other quanti-
ties as Z = N0 exp  =  exp (–En/kT); Z is called the 
partition function. Thus we arrive at the Maxwell-Boltz- 
mann distribution law for energy. 
 
4. The Conventional Approach and the New 

Approach 
 

The development of statistical physics has been reviewed 
by Lebowitz [8]. Here we compare the distinctive fea-
tures of the conventional approach (CA) and the new 
approach (NA). In CA [2] the object of our study is N0 
number of identical particles confined within a macro-
scopic volume of space; we refer to it as a many-particle 
system. The “state” of the many-particle system at any 
instant of time is specified by the position and momen-
tum of the particles at that instant and changes continu-
ously as a function of time as governed by (deterministic) 
laws of classical mechanics; the many-particle system 
per se is not regarded as being in statistical equilibrium. 
Because of the difficulties in determining the exact state 
of this many-particle system (due to “our incomplete 
knowledge” of the system), statistical approach is 
adopted. This conventional approach is based on three 
basic assumptions. 1) First we select (rather mentally) a 
large number of identical many-particle systems (which 
have “the same structure as the one of actual interest” 
and “are selected in such a manner as to agree with our 
partial knowledge as to the precise state of the actual 
system of interest”, and) which exist in all the different 
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accessible states; these are said to form a “representative 
ensemble” of many-particle systems. The concept of 
ensemble is the most distinctive feature of CA. [9]. 2) 
Next, the time-averaged values of physical quantities 
relevant to the actual many-particle system of our inter-
est are assumed to be the same as the respective values 
averaged, at one instant of time, over the states of the 
many-particle systems of the ensemble. This is known as 
the ergodic hypothesis. 3) In taking the average over the 
accessible states of the many-particle systems of the en-
semble, the same “weight” is given to all the states; this 
is the assumption of equal a priori probabilities. All the 
physical reasoning and mathematical derivations refer to 
the representative ensemble of many-particle systems. In 
this approach probability refers to a (many-particle) sys-
tem selected at random from among an ensemble of 
(many-particle) systems; this is consistent with the no-
tion of probability prevalent at the beginning of the last 
century. 

In the new approach also our object of study is N0 
number of identical particles confined within a macro-
scopic volume of space; we refer to it as an assembly of 
many particles. The main features of the present ap-
proach are: 1) We do accept (following classical me-
chanics) that the “state” of an assembly of particles is 
specified by the position and  momentum of the parti-
cles, but in recognition of the statistical properties being 
independent of where the particles exist within the as-
sembly, we specify the  “state” by momentum of the 
particles only. 2) At the outset we recognize that colli-
sions induce repeated transitions in the dynamical states 
of the particles and the assembly per se is identified as 
being in statistical equilibrium. All the physical reason-
ing and mathematical derivations refer to this assembly 
(only). 3) Though collision between two particles is 
strictly governed by deterministic laws of classical me-
chanics, when we consider the momentum states of the 
particles of the assembly (at any instant of time) in any 
systematic spatial order, they lead to a random sequence 
of these possible states. This justifies introduction of the 
concepts of randomness and probability into the theory 
(within the conceptual framework of classical determin-
ism). 4) Probability of a state is identified as the relative 
frequency of the state in a random sequence of possible 
states. 5) The mean number nn  of particles in the as-
sembly having energy between En and En + dE, is shown 
to be the same as the most probable number of particles 
having energy in that range. The values of physical quan-
tities relevant to a statistical assembly in equilibrium 
depend on the (time-averaged time-independent) mean 
numbers of particles in the various energy states, whereas 
the condition for statistical equilibrium is specified in 
terms of the most probable numbers of particles in these 

energy states. If the theory is to be regarded as being 
logically consistent, these two sets of numbers should be 
shown to be equal. In the present approach this has been 
achieved by using the central limit theorem of the prob-
ability theory. 6) The mean value of a physical quantity 
taken over the states of the particles in the assembly at 
any one instant of time, is shown to be approximately the 
same as the mean value taken over the different states of 
any single particle of the assembly at equally large num-
ber of instants of time. 7) The reason for maximizing ln 

m (N 1 2, , ,nn n n  ) is justified, and not just accepted as 
a matter of convenience. In fact, only as a result of maxi- 
mizing ln mN  (instead of maximizing m ) do we get 
the exponential function in (15). A little reflection would 
show that maximizing ln m  as a matter of convenience 
is tantamount to assuming what is to be derived. And 8) 
it is shown that the minimum possible value of the quan-
tity n

N

N

lnnn n  given by lnn nn n  (also) specifies the 
equilibrium condition of the assembly. This is “Boltz-
mann’s famous H-theorem” which, according to Tolman, 
“may be regarded as among the greatest achievements of 
physical science”. 
 
5. Concluding Remarks 
 
In conclusion we may state that by making use of the 
modern theory of probability and statistics, it is possible 
to develop a new approach which is free from the con-
cept of ensemble, the ergodic hypothesis, and the as-
sumption of equal a priori probabilities (of the conven-
tional approach). However, this is only an alternative 
approach which leads to the same final results as the well 
established conventional approach. 
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