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Abstract 
The Schrödinger equation (SE) for a certain class of symmetric hyperbolic po-
tentials is solved with the aid of the Fröbenius method (FM). The bound state 
energies are given as zeros of a calculable function. The calculated bound state 
energies are successively substituted into the recurrence relations for the ex-
panding coefficients of the Fröbenius series representing even and odd solutions 
in order to obtain wave functions associated with even and odd bound states. As 
illustrative examples, we consider the hyperbolic Pöschl-Teller potential 
(HPTP) which is an exactly solvable potential, the Manning potential (MP) and 
a model of the Gaussian potential well (GPW). In each example, the bound state 
energies obtained by means of the FM are presented and compared with the ex-
act results or the literature ones. In the case of the HPTP, we also make a com-
parison between exact bound state wave functions and the eigenfunctions ob-
tained by means of the present approach. We find that our results are in good 
agreement with those given by other methods considered in this work, and that 
our class of potentials can be a perfect candidate to model the GPW. 
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1. Introduction 

The exact solution of the Schrödinger equation (SE) can be obtained only for a 
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few particular forms of potentials. In other cases, one has to appeal to approxi-
mations or numerical techniques. 

Many approximation methods have been developed for solving problems in 
one-dimensional space, among which the power series method and its extension 
were known as the Fröbenius method (FM) [1]. 

The power series method is the standard method for solving linear ordinary 
differential equations with variable coefficients. It gives solutions in the form of 
a power series expansion about any desired point 0x x= . The FM generalizes 
the power series one. It gives solutions in the form of a power series expansion, 
multiplied by a logarithm term 0ln x x−  or a fractional power ( )0

rx x−  [2]. 
In this paper, we show that highly accurate solutions to the SE can be deter-

mined for various types of symmetric hyperbolic potentials by the use of the FM. 
The potentials we consider here belong to a class of hyperbolic potentials given 
by 

( ) ( )2

1
sech

K
j

j
j

V X B Xα
=

=∑                    (1) 

where 0K ∈ , ] [0,α ∈ +∞  and coefficients jB , 1,2, ,j K= 
 are not si-

multaneously zero. This potential can be reduced to the hyperbolic 
Pöschel-Teller potential (HPTP) [3] [4] [5] which occurs in the study of solitons 
[6] [7] and the Manning potential (MP) [8] which can be used to study polya-
tomic molecular vibrations [8] [9]. We can verify that it also contains the family 
of potentials ( ),p qV X  defined by 

( ) ( )
( )

2

, 0 2

sinh
cosh

q

p q p

X
V X V

X
α
α

= −                   (2) 

where ] [0 , 0,V α ∈ +∞  and 1,2, ,q p= 
. Furthermore, the class of potentials  

under consideration has another interesting aspect that it can be used to model 
the Gaussian function of the form 

( ) ( )2expGf X X= − −                      (3) 

by suitably choosing the values of , Kα  and jB , 1,2, ,j K= 
. 

Based on the foregoing, it can be said that the class of potentials (1) is com-
posed of many types of hyperbolic potentials and several approximations of the 
Gaussian function. It therefore has the ability to explain various physical phe-
nomena. Consequently, it is of considerable interest to find general solutions of 
its associated SE. In this work, we aim to present Fröbenius series solutions of 
this equation and discuss several members of the family of potentials under con-
sideration. 

The rest of this paper is organized as follows. In section 2, we convert the SE 
into a dimensionless eigenvalue problem which can be solved by means of the 
FM, and give recurrence relations for the expanding coefficients of the genera-
lized power series for the wave functions. We also show how to determine bound 
state energies and wave functions. Furthermore, we derive the normalization 
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constants for odd and even bound state eigenfunctions. In section 3, we present 
and comment results for two special cases, i.e., the case of the HPTP and that of 
the MP. In section 4, we apply the FM to a potential of type (1) modeling the 
function ( )2exp X− − , with an application to the Gaussian potential well 
(GPW). The conclusion is given in Section 5. 

2. Derivation of Even and Odd Series Solutions 
2.1. Dimensionless Schrödinger Equation 

The time-independent Schrödinger equation for a particle of mass m that moves 
in one dimension ( )X−∞ < < +∞  under the effect of the potential (1) is 

( ) ( ) ( ) ( )
22

2
2

1

d
sech

2 d

K
j

j
j

X
B X X E X

m X
ψ

α ψ ψ
=

 
− + = 

 
∑           (4) 

or 

( ) ( ) ( )
2

2
2

1

d
sech 0

d

K
j

j
j

x
b x x

x
ψ

ε ψ
=

 
+ − = 
 

∑                (5) 

where 

2 2 2 2

2 2, , j j
m mx X E b Bα ε
α α

= = =
 

.                (6) 

Rewriting Equation (5) with a new variable of the form ( )2sech xξ = , such 
that the domain x−∞ < < +∞  maps to 0 1ξ< <  and  

( ) ( ) ( )
2 2

2 2
2 2

d d d4 1 4 6 ,
dd d

x
x

ψ ψ ψ
ξ ξ ξ ξ

ξξ
= − + −             (7) 

we obtain 

( ) ( )
2

2 2
2

1

d 3 d 11 1 0.
2 d 4d

K
j

j
j

bψ ψ
ξ ξ ξ ξ ε ξ ψ ξ

ξξ =

  − + − + − =  
   

∑       (8) 

2.2. Expansion around a Regular-Singular Point 

It is clear that 0ξ =  and 1ξ =  are both regular-singular points for the diffe-
rential Equation (8). The FM can therefore be applied with the wave function 
represented as 

( )
0

n
n

n
aδψ ξ ξ ξ

∞

=

= ∑ , 0 0a ≠                   (9) 

or 

( ) ( ) ( )
0

1 1 n
n

n
aδψ ξ ξ ξ

∞

=

= − −∑ , 0 0a ≠ .            (10) 

Let us seek ( )ψ ξ  in the form (10). We first make the substitution 1η ξ= − . 
The resulting differential equation, i.e. 

( ) ( ) ( ) ( )
2

2 3 2
2

0

d d1 3 12 2 0,
2 2 d 4d

K
j

j
j

c
ψ η ψ η

η η η η η ε η ψ η
ηη =

  + + + + + − − =  
   

∑  (11) 
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can be solved near 0η =  by writing 

( )
0

.n
n

n
aδψ η η η

∞

=

= ∑                       (12) 

It is worth noting that the jc  coefficients that appear in Equation (11) are 
calculated from the two following expressions: 

0
1

,
K

j
j

c b
=

= ∑                           (13) 

K

i j
j i

j
c b

i=

 
=  

 
∑ , 1,2, ,i K=                    (14) 

where 
j
i

 
 
 

 denotes the number of combinations of j objects taken i at a time. 

Putting Equation (12) and its two first derivatives into Equation (11) we get, 
after some reduction: 

( ) ( )

( )

21 0

0 0

1 21 2
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0
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2 4 4
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0.
4

n n
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n n
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δ δ

δ δ
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δ δ η δ η

δ η η

η

∞ ∞
+ − +

= =
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+ + + +

= =

∞
+ +

=

  + + − + + − +      
 + + + +  

+ + =

∑ ∑

∑ ∑

∑

    (15) 

The smallest power is 1xδ − . It appears in the first series. By equating its coef-
ficient to zero, we obtain the indicial equation 

1 0
2

δ δ − = 
 

                       (16) 

whose solutions are 1 0δ =  and 2 1 2δ = . We can therefore conclude that the 
two solutions of the SE obtained as generalized series, one with 1δ δ=  and the 
other with 2δ δ= , are linearly independent. The value of δ  determines the 
behavior of ( )ψ η  for 1η → −  ( )X →±∞  and 0η =  ( )0X = . Clearly, only 

2δ δ=  is acceptable for odd states since in this case ( )0 0Xψ = = . On the 
other hand, 1δ δ=  is suitable for even states. 

To sum up: 
• Odd solutions contain only the series with 2 1 2δ δ= = , and in the following 

will be denoted by 

( ) 2
0

0
, n

n
n

aδψ η ε η η
∞

=

= ∑                      (17) 

where the dependence on the eigenvalue is explicitly marked. The coefficients 

na  are given by the ( )2K + -term recurrence relation 

( )( )

2
0

1

1
1

2

1 12
3 2 1 2 4 4

1 1
2 4 4

n n

K

n j n j
j

ca n a
n n

cn n a c a

ε
+

− −
=

 −   = + − +   + +    
  + − + +      

∑
            (18) 
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with the understanding that 1 1 0K Ka a a− − + −= = = = . 
• An even solution can be written as a power series 

( )
0

, n
e n

n
aψ η ε η

∞

=

= ∑                       (19) 

where the coefficients na  are given by the ( )2K + -term recurrence relation 

( )
( )2 0 1

1 1

2

1 12 1
1 4 4 2 41
2

1
4

n n n

K

j n j
j

c ca n a n n a
n n

c a

ε
+ −

−
=

−     = − + + − − +           + + 
 


+ 


∑

   (20) 

2.3. Bound State Energies and Wave Functions 

The function ( ),oψ η ε  has an important property that ( )0, 0oψ η ε= = , which 
can be regarded as a boundary condition for odd wave functions. For even wave 
functions, we choose ( ) 00,e aψ η ε= =  as boundary condition at this point. 
These conditions are sufficient to ensure that ( ),oψ η ε  and ( ),eψ η ε  are li-
nearly independent. 

If ( ),oψ η ε  (resp. ( ),eψ η ε ) is associated with a bound state, it has another 
important property, i.e. ( )1, 0oψ η ε= − =  (resp. ( )1, 0eψ η ε= − = ), which can 
be considered as the boundary condition for bound state wave functions at 
x = ±∞ . It means that for arbitrary ε , the wave functions ( ),oψ η ε  and 
( ),eψ η ε  obtained from Equations (17) and (19) are not square integrable. In 

other words, this condition determines the energies of the discrete spectrum. 
Substituting the calculated bound state energy to the recursion relation (18) or 
(20), the coefficients of the generalized series (17) or the power series (19) can be 
successively determined in order to obtain the wave function as a sum of the se-
ries. 

We have to emphasize that in practice, the function ( )1,oψ η ε= −  (resp. 
( )1,eψ η ε= − ) has to be approximated by truncating the series in Equation (17) 

(resp. (19)) at suitably high order N. The truncated function is a polynomial of 
degree N in the variable ε  whose zeros correspond to bound state values of ε . 
If for two neighboring values of ε  the wave function takes values of different 
signs, we can deduce that one bound state reduced energy ( ε ) lies between these 
two values. The bound state reduced energy in question can be computed nu-
merically by means of the dichotomy method [10] with an arbitrary chosen pre-
cision. 

2.4. Bound State Wave Function Normalization Constants 

In order to facilitate the calculation of odd and even wave function normaliza-
tion constants, we consider only the first 1N +  terms in the generalized series 
(17) and the power series (19), N being sufficiently large. More precisely, we 
write the wave functions ( ),o xψ ε  and ( ),e xψ ε  in the forms 
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( ) ( ) ( )( ) ( ) ( )
1 22 2

0
, 1 sech 1 tanh

N n odd n
o o n

n
X N X a Xψ ε ε α α

=

= − −∑      (21) 

and 

( ) ( ) ( ) ( )2

0
, 1 tanh

N n even n
e e n

n
X N a Xψ ε ε α

=

= −∑               (22) 

where we have used the fact that ( )( ) ( ) ( )( )2 2sech 1 1 1 sech
n nnX Xα α− = − −  

and ( )( ) ( )2 21 sech tanhX Xα α− = . Note that the parity of the wave functions  

are explicitly marked in the ja  coefficients, and that ( )oN ε  and ( )eN ε  de-
sign the normalization constants for odd and even states respectively. These 
constants are obtained from the equations 

( ) 2
, d 1o x xψ ε

+∞

−∞

=  ∫                      (23) 

and  

( ) 2
, d 1e x xψ ε

+∞

−∞

=  ∫ .                    (24) 

In view of the boundary condition for bound state wave functions at x = ±∞ , 
we have the following approximate equations: 

( )
0

1 0
N n odd

n
n

a
=

− ≈∑ , ( )
0

1 0
N n even

n
n

a
=

− ≈∑ .              (25) 

Using these approximations, we can rewrite Equations (21) and (22)
 
as 

( ) ( ) ( )( ) ( ) ( )( )1 2 12 2

1
, 1 sech 1 1 tanh

N n odd n
o o n

n
X N X a Xψ ε ε α α+

=

= − − −∑   (26) 

and 

( ) ( ) ( ) ( )( )1 2

1
, 1 1 tanh

N n even n
e o n

n
X N a Xψ ε ε α+

=

= − −∑          (27) 

By inserting Equation (26) (resp. (27)) in the left hand side of Equation (23) 
(resp. (24)) and then using the remarkable identities 

1 1 1 1

m n m n

i i i j
i j i j

x y x y
= = = =

   =  
  
∑ ∑ ∑∑                   (28) 

and 

( )
1

0
1 1 ,

n
n i

i
a a a

−

=

− = − ∑                     (29) 

we obtain: 

( )( ) ( ) ( )2

1 1
1 d 1,

N N j p odd odd
o j p

j p
N a a f X Xε

+∞
+

= = −∞

− =∑∑ ∫           (30) 

( )( ) ( ) ( )2

1 1
1 d 1

N N j p even even
e j p

j p
N a a g X Xε

+∞
+

= = −∞

− =∑∑ ∫           (31) 

with 
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( ) ( )( ) ( ) ( )( )
1

2 2 2 2

0
1 tanh tanh 1 tanh ,

j
q p

q
f X x x xα α α

−
+

=

= − −∑        (32) 

( ) ( )( ) ( ) ( )( )
1

2 2 2

0
1 tanh tanh 1 tanh .

j
q p

q
g X X X Xα α α

−

=

= − −∑        (33) 

Changing variables from x to ( )tanhu xα=  and using the fact that 
1 1

2 2

1 0

2d 2 d
2 1

n nu u u u
n−

= =
+∫ ∫ ,                   (34) 

we find  

( )( ) ( )
1 12

1 1
1 1 0 0

2 1 1
j jN N j p odd odd

o j p q q p
j p q q

N a a I Iε
α

− −
+

+ + +
= = = =

 
− − = 

 
∑∑ ∑ ∑ ,       (35) 

( )( ) ( )
1 12

1 1 0 0

2 1 1
j jN N j p even even

e j p q q p
j p q q

N a a I Iε
α

− −
+

+
= = = =

 
− − = 

 
∑∑ ∑ ∑         (36) 

where ( )
1

12

0

d 2 1q
qI u u q −= = +∫ . 

It follows immediately from Equations (35) and (36) that 

( ) ( )
1 2

1 1

1 1
1 1 0 0

1
2

j jN N j p odd odd
o j p q q p

j p q q
N a a I Iα

ε
−

− −
+

+ + +
= = = =

  
= − −  

   
∑∑ ∑ ∑       (37) 

and 

( ) ( )
1 2

1 1

1 1 0 0
1

2

j jN N j p even even
e j p q q p

j p q q
N a a I Iα

ε
−

− −
+

+
= = = =

  
= − −  

   
∑∑ ∑ ∑ .       (38) 

3. Numerical Results for Two Special Cases 
3.1. Hyperbolic Pöschl-Teller Potential 

In order to test the reliability and efficiency of the FM for the class of poten-
tials (1), we here consider the HPTP 

( ) ( )2
0sechV X V Xα= − , 0 , 0V α >                 (39) 

which corresponds to the special case where 1K =  and 1 0B V= − . This po-
tential is exactly solvable. The bound state energies are given by [3] [11]: 

22 2 1 1 1 1, 0,1, ;
2 2 4 4 2nE n n n

m
α

ν ν
  
 = − + − + = < + −     



       (40) 

with ( )2 2
02mVν α=  . The associated wave functions can be written as 

( ) ( ) ( )( )2 1
1sech , 4 1 ;1 ; 1 tanh
2

n
n n nx N x F n n xβψ α ν β α = − + − + − 

 
   (41) 

where  

1 1
4 2n nβ ν= + − − .                        (42) 

The normalization constants nN  are obtained from the equation  
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( ) 2
d 1n x xψ

+∞

−∞

=  ∫  and can be expressed as follows: 

( ) ( ) ( ) ( )
( )

1 2

0
0

4, ,
2 2

nn
n n

n
j n
p

j p
N D n j D n p

j p

β β β
α β

−

=
=

 Γ + + Γ =  Γ + +
  
∑          (43) 

with  

( )
( ) ( )

( )
4 1

,
1 !
j j

n j

n n
D n j

j

ν

β

− + −
=

+
                   (44) 

where ( ) ja  is the Pochhammer symbol, i.e.,  

( ) ( ) ( ) ( )
( )

1 1j

a j
a a a a j

a
Γ +

= + + − =
Γ

 , ( )0 1a = .         (45) 

Table 1 displays bound state energies for em m= , 0 1.6128V = −  and 
0.24α =  in atomic units ( 1=  and 1em = ), where em  designs the electron 

mass. The exact energies ( exact
nE ) are reported in the second column; those cal-

culated by means of the FM are given in the third, fourth and fifth columns for 
three values of N ( 1 500N = , 2 1000N =  and 3 2000N = ). We have chosen 

0 1a = . As expected, the FM leads to more accurate results as the truncation or-
der N goes to ∞ . Note that our calculations have been performed with 
quadruple precision. 

Figure 1 shows four normalized bound state wave functions as functions of X. 
We remark that there is a good agreement between analytical results and those 
obtained by the use of the FM, the number of terms in the series (17) and (19) 
being 3N . 

3.2. Manning Potential 

As an interesting application of the FM to a physical problem, we consider the 
MP that has been used in discussing vibrational energies of polyatomic mole-
cules such as ammonia [8], formamide [12], cyanamide [13] and their deute-
rated species. In order to study one of the vibrational normal modes of 3NH  
and 3ND , Manning [8] proposed a potential defined by the expression 

2 2 4 1
2

1 1 sech sech sech cm
2 2 2 2 2 2

V X X XD
hc k

β β
ρ ρ ρρ

−   = − + − −   
    

   (46) 

where 28πk c hµ= , µ  is the reduced mass of the molecule for the type of vi-
bration considered; X is the distance from the nitrogen atom to the plane of the 
hydrogen atoms; and ρ , β  and D are arbitrary constants. The SE for the vi-
bration is 

2 2
2 4

2 2 2

1
d 2 2 2 sech sech 0

2 2 2d

D
X D Xhc E

X k k

β β
ψ

ψ
µ ρ ρρ ρ

  + +    − + − − + =
 
  

  (47) 
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Figure 1. The normalized wave functions of the ground state, the first, fifth 
and sixth excited states contained within the HPTP described by the 
parameters 0 1.6228V =  atomic units and 0.24α =  atomic units. 

 
Table 1. Bound state energies (in atomic units) for the one-dimensional HPTP with 

0 1.6128V = −  and 0.24α = . 

n exact
nE  FM

nE  (N = 500) FM
nE  (N = 1000) 

FM
nE  (N = 2000) 

0 −1.4112 −1.41120000000000 −1.41120000000000 −1.41120000000000 

1 −1.0368 −1.03680000000000 −1.03680000000000 −1.03680000000000 

2 −0.7200 −0.71999999999792 −0.71999999999994 −0.72000000000000 

3 −0.4608 −0.46080000000000 −0.46080000000000 −0.46080000000000 

4 −0.2592 −0.25920020140700 −0.25920002534412 −0.25920000317865 

5 −0.1152 −0.11520000000000 −0.11520000000000 −0.11520000000000 

6 −0.0288 −0.02711385566710 −0.02797214839035 −0.02839059824400 

 
where E is the energy in cm−1. If we define 2x X ρ= , we obtain the dimen-
sionless Schrödinger Equation (5) with 

24k Eε ρ= , 2K = , ( )1 1 4b Dβ β= − + +    and 2 4b D= .     (48) 

Following Manning [8], we choose 70β =  (91.4), 1920D =  (3261) and 
2 22.885 10kρ −= ×  ( )24.899 10−×  for 3NH  ( )3ND .  

Figure 2 shows the MP in cm−1 for both sets of parameters, as a function of x. 
This potential exhibits two minima and a barrier with maximum at x = 0. Al-
though the barriers appear to be rather low, there are several energies between a 
minimum of the potential and the maximum of the barrier. We have calculated 
these energies by means of the FM. Our results are reported in Table 2 and Table 
3, and compared with Manning’s ones [8] and those calculated by the use of the 
Wronskian method (WM) [14]. The remarkable agreement between the results of 
the two completely independent approaches shows that the present calculation is 
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sufficiently accurate. Note that nε  is defined by 2 2
8
n

n nk E ε
ε ρ= = . 

4. Application to the Gaussian Potential Well 

As another interesting application of the FM, we consider the one-dimensional 
SE for the attractive Gaussian potential 

( ) ( )2 2
0 0expGV X V X X= − − , ( )0 0, 0V X >              (49) 

i.e. 

( ) ( ) ( )
22

2 2
0 02

d
exp 0

2 d
X

E V X X X
m X

ψ
ψ − − + − = 

 .         (50) 

 

 
Figure 2. Manning potential for NH3 and ND3. 

 
Table 2. Energies of the Manning potential for NH3. 

n nε  (WM) nε  (FM) ( )02

2
nk
ε ε

ρ
−   (FM) Ref. [8] 

0 −643.845703 −643.84571 0 0 

1 −643.83502 −643.83499 0.742728866 0.83 

2 −630.4740 −630.47403 926.9789526 935 

3 −630.041077 −630.04109 956.9925447 961 

 
Table 3. Energies of the Manning potential for ND3. 

N nε  (WM) nε  (FM) ( )02

2
nk
ε ε

ρ
−   (FM) Ref. [8] 

0 −1096.739532 −1096.739503 0 0 

1 −1096.738464 −1096.738420 0.0442 <0.2 

2 −1078.470184 −1078.470125 745.8411 746 

3 −1078.404724 −1078.404795 748.5082 748.5 

4 −1062.958557 −1062.958552 1379.096 1379 

5 −1061.637298 −1061.637339 1433.034 1434 
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The GPW is not a long range potential, because it falls off faster then 21 X . 
However, it has a crucial advantage over the widely used “finite square well” po-
tential in that it is continuous throughout the entire range X−∞ < < +∞ , whe-
reas the finite square well goes to zero discontinuously. Furthermore, the Gaus-
sian well of the form (49) has been used by Bardsley and Comella [15] for de-
scribing model neutral atoms with a few bound states. 

It is worth noting that by an estimation based on the WKB method, the num-
ber of bound states supported by the potential (49) is approximated by [16] 

0 0
12 π 1
2

nbst X V = + +  
                   (51) 

where     represents the floor, which for positive numbers is simply the integer  

part. But so far, to the best of our knowledge, exact analytical forms of the bound 
state energies and wave functions of this potential have not been reported. 
Therefore, it is of considerable interest to find a good approximation for the so-
lution of the SE (50) which can be rewritten as 

( ) ( ) ( )
22

2
02 2

0

d
exp 0

2 d
E V

mX
ψ χ

χ ψ χ
χ

 − − + − = 
        (52) 

by changing variables from X to 0X Xχ = . 
The approximation solution we propose here relies on approximating the 

Gaussian function ( )2exp ξ− −  by a potential of type (1). More precisely, we 
write 

( ) ( )2 2

1
exp sech

K
j

j
j

Bχ αχ
=

− − ≈∑               (53) 

where 1 2, , , , KB B Bα   are adjustable parameters and K is a positive integer.  
In order to show that the above approximation for the Gaussian function is 

suitable, we choose K = 8 and impose α = 0.35. We then discretize the problem 

in the interval [ ]min max,χ χ  and evaluate the function ( )2exp χ− −  at 

mink khχ χ= +  (for 1,2, ,k p=  ) where p is the number of mesh points, h is 
the step size, and minχ  and maxχ  are the minimum and maximum values of 
the variable χ . We finally use the maple 18 Fit function to calculate the jB  
coefficients. With max min6χ χ= = −  and 0.01h = , we find: 

1

2

3

4

5

6

0.00056186637277292680096387645307
0.023603992393495810256516883997296

0.3203936279047603522539856166491
2.031520751522174095847244814245208

6.85096256835970745670929664345292
12.49340

B
B
B
B
B
B

=
=
=

−

−

=

=

−=

7

8

526371948028270841849878273
10.9323757769502446942988487237498

2.555762222221351947020248045060859
B
B










=

=

−






         (54) 

Using these parameters, we plot the variations of ( ) ( )
8

2

1
sechapprox j

G j
j

f Bχ αχ
=

≡∑  
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and ( ) ( )2expexact
Gf χ χ≡ − −  with χ . We also consider the difference between 

the two functions, i.e. ( ) ( ) ( )exact approx
G G Gf f fχ χ χ∆ = − . 

It is obvious from Figure 3 that the approximation (53) is a very good one. 
( )exact

Gf χ  and ( )approx
Gf χ  seem to coincide because the difference between 

them is of order 10−6 and hence very small. 
By inserting this approximation in Equation (52) and then changing variables 

from χ  to x αχ= , we obtain the dimensionless Schrödinger Equation (5) 
with 

2
0

2 2

2mX Eε
α

=


 end 
2
0

02 2

2
j j

mXb V B
α

=


, 1,2, ,j K= 
.         (55) 

In Table 4, we present bound state energies obtained with the FM for 

0 2.5V =  and 0 3.05X =  atomic units. This table contains also numerical re-

sults ( )diag
nE  obtained with the aid of the exact Hamiltonian diagonalization on 

the finite-real basis ( ){ } 1Ns MM
j j M

Xφ
+ −

=
 where 

( ) ( )
( ) ( )( )!

tanh
!

M M
j j

M j M
X P X

j M
α

φ α
−

=
+



 ; 0M ∈, j M≥ , 0α ≥ . (56) 

 
Table 4. Bound state energies of the Gaussian potential well for 0 2.5V =  atomic units 
and 0 3.05X =  atomic units. 

n diag
nE  FM

nE (N = 300) FM
nE  (N = 500) FM

nE  (N = 1000) 

0 −2.156866939625 −2.156871437809 −2.156868537378 −2.156868558806 

1 −1.513145173222 −1.513127087344 −1.513127087344 −1.513139193491 

2 −0.958808621450 −0.958794700980 −0.958794700980 −0.958794700980 

3 −0.504841844741 −0.504830341476 −0.504830341476 −0.504830341476 

4 −0.170334877363 −0.170345579080 −0.170345579080 −0.170345579080 

5 −0.002383210220 −0.002215413790 −0.002247696848 −0.002312262964 

 

 
Figure 3. Plots of the Gaussian function ( exact

Gf ), its approximation ( approx
Gf ) and the difference between them ( Gf∆ ). 
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We have chosen 500sN =  as the number of basis functions, 2M =  as the 
order of the associated Lengendre polynomials intervening in Equation (56), and 

40
0 10a −= . It is clear that our results are in good agreement with those obtained 

by means of the exact Hamiltonian diagonalization. 

5. Conclusion 
We have shown that the application of the Fröbenius method to the class of 

symmetric hyperbolic potentials of the form ( ) ( )2

1
sech

K
j

j
j

V X B Xα
=

=∑  allows 

an easy determination of the bound state energies and wave functions. The 
bound state energies associated with these potentials have been obtained nu-
merically as zeros of a function, calculated from its power series representation. 
Since the potential ( )V X  is even, the problem of computing its spectrum has 
been split into two calculations, dealing respectively with odd and even states. In 
order to demonstrate the performance of the FM on the potentials ( )V X , we 

have considered two special cases, namely the case of the HPTP which is an ex-
actly solvable potential, and the case of the MP suggested by several authors to 
study polyatomic molecular vibrations. The numerical and analytical results 
presented in this work show that our results are sufficiently accurate and that 
our family of potentials can be used to model the GPW of the form 

( ) ( )2
0 expGV X V X= − −  by suitably choosing the values of α , K and the jB  

coefficients.  
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