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Abstract 
The purpose of the present study is to develop a counterpart of the special re-
lativity theory that is consistent with the existence of a preferred frame but, 
like the standard relativity theory, is based on the relativity principle and the 
universality of the (two-way) speed of light. The synthesis of such seemingly 
incompatible concepts as the existence of preferred frame and the relativity 
principle is possible at the expense of the freedom in assigning the one-way 
speeds of light that exists in special relativity. In the framework developed, a 
degree of anisotropy of the one-way speed acquires meaning of a characteris-
tic of the really existing anisotropy caused by motion of an inertial frame rela-
tive to the preferred frame. The anisotropic special relativity kinematics is 
developed based on the symmetry principles: 1) Space-time transformations 
between inertial frames leave the equation of anisotropic light propagation 
invariant and 2) a set of the transformations possesses a group structure. The 
Lie group theory apparatus is applied to define groups of transformations 
between inertial frames. Applying the transformations to the problem of cal-
culating the CMB temperature distribution yields a relation in which the an-
gular dependence coincides with that obtained on the basis of the standard 
relativity theory but the mean temperature is corrected by the terms second 
order in the observer velocity. 
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1. Introduction 

Special relativity underpins nearly all of present day physics. Lorentz invariance 
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is one of the cornerstones of general relativity and other theories of fundamental 
physics. It is thus very crucial to investigate its fundamentals and its potential 
violation. It seems evident that, if one wishes to contemplate the possibility of 
Lorentz symmetry violation within the context of a physical theory, then one will 
have to abandon the relativity principle which leads to the view that there exists 
a preferred universal rest frame. Also, the discovery of the cosmic microwave 
background (CMB) radiation has shown that (at least) cosmologically a preferred 
frame of reference does exist—it is the frame in which the CMB is isotropic. 
Acceptance of the view that there exists a preferred frame of reference seems to 
unambiguously abolish (besides the principle of relativity) another basic 
principle of the special relativity theory, namely, the principle of universality of 
the speed of light. 

Correspondingly, the modern versions of experimental tests of special 
relativity and the “test theories” of special relativity (theoretical frameworks for 
analyzing results of experiments to verify special relativity [1] [2]) presume that 
a preferred inertial reference frame, identified with the CMB frame, is the only 
frame in which the two-way speed of light (the average speed from source to 
observer and back) is isotropic while it is anisotropic in relatively moving frames. 
Furthermore, it seems that accepting the existence of a preferred frame forces 
one to abandon the group structure for the set of space-time transformations 
between inertial frames. In the test theories, transformations between “moving” 
frames are not considered, only the transformation between a preferred “rest” 
frame and a particular moving frame is postulated. 

The purpose of the present study is to develop a counterpart of the special 
relativity kinematics, that is consistent with the existence of a preferred frame 
but, like the standard relativity theory, is based on the relativity principle and 
universality of the (two-way) speed of light, and also preserves the group 
structure of the set of transformations between inertial frames. The analysis 
shows that the reconciliation and synthesis of those principles with the existence 
of a preferred frame is possible, and, what is more, such a possibility is naturally 
present in the framework of the relativity theory. Because of the freedom in 
assigning the one-way speeds of light (any one-way speeds, consistent with the 
two-way speed equal to c, are acceptable), a preferred frame can be defined as 
the frame in which the one-way speed of light is isotropic while, in any inertial 
frame moving with respect to the preferred frame, the one-way speed of light is 
anisotropic. It is similar to a definition accepted in a number of analyses, in 
which the existence of a preferred frame is assumed, but an important difference 
of the present analysis from others is that a degree of anisotropy of the one-way 
speed of light acquires meaning of a characteristic of the really existing 
anisotropy caused by motion of an inertial frame relative to the preferred frame. 
It seems to be contradictory to the common view that, because of the inescapable 
entanglement between remote clock synchronization and one-way speed of light 
(see, e.g., [3] [4] [5] [6]), the one-way speed of light is irreducibly conventional. 
Nevertheless, in the framework developed, the one-way speed of light in a 
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specific inertial farme is a physical quantity determined by a physical law in 
which the anisotropy parameter depends on the frame velocity with respect to a 
preferred frame. The entanglement between remote clock synchronization and 
one-way speed of light, in the case if the remote clocks are set using light signals, 
only implies that the synchronization procedure is implemented using the 
one-way speed of light determined by that law. If another method of synchroni- 
zation, as for example, “external synchronization” [2], is used it changes the 
form of transformations for the space-time variables but the one-way speed of 
light is not altered by changing the synchronization method. 

The analysis is based on the requirements of invariance of the equation of 
(anisotropic) light propagation and the group structure of a set of transformations 
between inertial frames which follow from the principles of special relativity. In 
those transformations, the anisotropy parameter k for the one-way speed of light 
is a variable that takes part in the transformations. Therefore the fact, that the 
one-way speed of light is a physical quantity determined by the frame velocity 
relative to a preferred frame, does not violate the relativity principle. Nothing 
distinguishes the frame in which k = 0 from others and the transformations 
from/to that frame are members of a group of transformations that are 
equivalent to others. 

The space-time transformations between inertial frames derived as a result of 
the analysis differ from the Lorentz transformations. Since the theory is based on 
the special relativity principles, it means that the Lorentz invariance is violated 
without violation of the relativistic invariance. The theory equations contain one 
undefined universal constant q such that the case of q = 0 corresponds to the 
standard special relativity with isotropic one-way speed of light in all inertial 
frames. The measurable effects following from the theory equations can provide 
estimates for q and define deviations from the standard relativity that way. 

Applying the theory to the problem of calculating the CMB temperature 
distribution eliminates the inconsistency of the usual approach when formulas of 
the standard special relativity, which does not allow a preferred frame, are used 
to define effects caused by motion with respect to the preferred frame. The CMB 
temperature angular dependence predicted by the present theory coincides with 
that obtained on the basis of the standard relativity equations while the mean 
temperature is corrected by the terms second order in the observer velocity. 

The paper is organized, as follows. In Section 2, following the Introduction, 
the issue of anisotropy of the light propagation in special relativity is discussed 
in more details. In Section 3, the conceptual framework of the analysis is 
presented. In Section 4, the method is outlined and the coordinate transformations 
between inertial frames incorporating anisotropy of the light propagation, with 
the anisotropy parameter varying from frame to frame, are derived. In Section 5, 
the transformations are specified using the argument that the anisotropy of the 
light propagation is due to the observer motion with respect to the preferred 
frame. Consequences of the transformations are considered in Section 6. In 
Section 7, the results are applied to the problem of calculating the CMB effective 
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temperature distribution as seen by a moving observer. The approach and results 
are discussed in Section 8. 

2. Anisotropy of the Light Propagation in Special Relativity 

Anisotropy of the one-way speed of light is traditionally placed into the context 
of conventionality of distant simultaneity and clock synchronization [3] [4] [5] 
[6]. Simultaneity at distant space points of an inertial system is defined by a 
clock synchronization that makes use of light signals. Let a pulse of light is 
emitted from the master clock and reflected off the remote clock. If 0t  and Rt  
are respectively the times of emission and reception of the light pulse at the 
master clock and t is the time of reflection of the pulse at the remote clock then 
the conventionality of simultaneity is a statement that one is free to choose the 
time t to be anywhere between 0t  and Rt . This freedom may be parameterized 
by a parameter k , as follows 

( )0 0
1 ; 1

2 R
kt t t t k+

= + − <
                   (1) 

Any choice of 0k ≠  corresponds to assigning different one-way speeds of 
light signals in each direction which must satisfy the condition that the average 
is equal to c. Speed of light in each direction is therefore 

1
cV
k± = ± 

                         (2) 

The “standard” (Einstein) synchronization entailing equal speeds in opposite 
directions corresponds to 0k = . If the described procedure is used for setting 
up throughout the frame of a set of clocks using signals from some master clock 
placed at the spatial origin, a difference in the standard and nonstandard clock 
synchronization may be reduced to a change of coordinates [3] [4] [5] [6] 

( ) ( ),s sk xt t x x
c

= + =                      (3) 

where ( ) ( )0 2s
Rt t t= +  is the time setting according to Einstein (standard) 

synchronization procedure. 
The analysis can be extended to the three dimensional case. If a beam of light 

propagates (along straight lines) from a starting point and through the reflection 
over suitable mirrors covers a closed part the experimental fact is that the speed 
of light as measured over closed part is always c (Round-Trip Light Principle). In 
accordance with that experimental fact, if the speed of light is allowed to be 
anisotropic it must depend on the direction of propagation as [4] [5] 

1 1 cos k

c cV
k θ

= =
+ +k n 

                    (4) 

where k  is a constant vector and kθ  is the angle between the direction of 
propagation n  and k . Similar to the one-dimensional case, the law (4) may 
be considered as a result of the transformation from “standard” coordinatization 
of the four-dimensional space-time manifold, with 0k = , to the “nonstandard” 
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one with 0k ≠ : 

( ) ( ),s st t
c

= + =
k r r r                       (5) 

The conventionality of simultaneity in the special theory of relativity, and the 
related issue of anisotropy of the one-way speed of light, have been much 
debated issues. A common view is that, due to freedom in the choice of the 
anisotropy parameter k , the one-way speed of light is irreducibly conventional. 
The purpose of the following discussion is to show that, if there is an anisotropy 
in a physical system, the arguments for conventionality of the one-way speed of 
light are not valid and, what is more, a specific value of the one-way speed of 
light, together with corresponding synchronization, is selected in some objective 
way. 

The arguments for conventionality of the one-way speed are based first on the 
possibility of introducing the transformations treated as replacing the Lorentz 
transformations of special relativity in the case of the anisotropic one-way speed 
of light (2) with 0k ≠ . Such transformations have been repeatedly derived in the 
literature using kinematic arguments, the works [7] [8] [9] should be mentioned 
first. In what follows, they will be called the “-Lorentz transformations”, the name 
is due to [8] [9]. Although the -Lorentz transformations can be obtained from 
the standard Lorentz transformations by a change of coordinates (3) and so they 
are in fact the Lorentz transformations of the standard special relativity 
represented using the “nonstandard” coordinatization of the four-dimensional 
space-time manifold, they are usually considered as describing the special 
relativity kinematics in an anisotropic system (for example, the most highly cited 
paper by Edwards [7] is entitled “Special relativity in anisotropic space”). Below, 
the arguments are presented showing that 1) the -Lorentz transformations, 
commonly considered as incorporating anisotropy, are in fact not applicable to 
an anisotropic system and 2) in the case of isotropic system, the particular case 
of the transformations corresponding to the isotropic one-way speed of light and 
Einstein synchronization (standard Lorentz transformations) is privileged. 

The first statement is related to the issue of invariance of the interval. 
Invariance of the interval is commonly considered as an integral part of the 
physics of special relativity which is used as a starting point for derivation of the 
space-time transformations between inertial frames. Nevertheless, invariance of 
the interval is not a straightforward consequence of the basic principles of the 
theory. The two principles constituting the conceptual basis of the special 
relativity, the principle of relativity which states the equivalence of all inertial 
frames as regards the formulation of the laws of physics and universality of the 
speed of light in inertial frames, taken together lead to the condition of 
invariance of the equation of light propagation with respect to the coordinate 
transformations between inertial frames. Thus, in general, not the invariance of 
the interval but invariance of the equation of light propagation should be a 
starting point for derivation of the transformations. Therefore the use of the 
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interval invariance is usually preceded by a proof of its validity (see, e.g., [10] 
[11]) based on invariance of the equation of light propagation. However, those 
proofs are not valid if an anisotropy is present and the same arguments lead to 
the conclusion that, in the presence of anisotropy, the interval is not invariant 
but modified by a conformal factor [12]. The “-Lorentz transformations”, like 
the standard Lorentz transformations, leave the interval invariant and therefore 
they are applicable only to the case of no anisotropy. 

The second statement, that, in the case of isotropy, the particular case of the 
isotropic one-way speed of light and Einstein synchronization is privileged, 
relies on the correspondence principle. The correspondence principle was taken 
by Niels Bohr as the guiding principle to discoveries in the old quantum theory. 
Since then it was considered as a guideline for the selection of new theories in 
physical science. In the context of special relativity, the correspondence principle 
is traditionally mentioned as a statement that Einstein’s theory of special 
relativity reduces to classical mechanics in the limit of small velocities in 
comparison to the speed of light. Being applied to the special relativity 
kinematics, the correspondence principle implies that the transformations 
between inertial frames should turn into the Galilean transformations in the 
limit of small velocities. The “-Lorentz transformations” do not satisfy the 
correspondence principle unless 0k =  [12] which means that the isotropic 
one-way speed of light and Einstein synchrony are selected if no anisotropy is 
present in a physical system. Similarly, in the case of an anisotropic system, there 
should also exist a privileged value of the one-way speed selected by the size of 
the anisotropy. 

The above comments are related to the case when synchronization is imple- 
mented using light signals. Nevertheless, if another method of synchronization, 
as, for example, the “external synchronization” [2], is used it cannot change the 
value of the one-way speed of light. It can change the form of transformations 
for the time and space variables but, again, changing the synchronization 
method is equivalent to a change of coordinates (see more details in Section 8). 

It is worth to mention, in connection with the issues of the correspondence 
principle and synchronization problem, a discussion in the literature (see, e.g., 
[13] [14] [15] [16]) initiated by the paper of Ohanian [13] “The role of dynamics 
in the synchronization problem”. Ohanian argued that dynamical considerations, 
applied to inertial systems, necessarily entail the standard synchronization rule. 
He shows that the nonstandard synchronization procedure, when discussing 
Newtons (classical) mechanics, would result in a change in the mathematical 
form of the equation of motion such that the Newtons second law involves what 
he calls “pseudo-forces”. He concludes that in an inertial reference frame any 
synchronization, other than the Einsteinian one, is forbidden. 

Ohanian’s approach has been criticized by several authors (for example, by 
Macdonald [14] and Martinez [15], see also a reply of Ohanian [16] to 
comments by Macdonald and Martinez) but their analyses are too concentrated 
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on such issues as a synchronization convention and the origin of the Einsteinian 
synchronization while more apparent inconsistencies of Ohanian’s analysis are 
not sufficiently emphasized. Below we briefly discuss some of them. First, the 
Newtons second law of classical mechanics is used as a relation for choosing a 
synchronization rule or, in other terms, for choosing the value of anisotropy 
parameter for the one-way speed of light. The issues of light speed and its 
anisotropy are alien to Newtonian mechanics with absolute time and so such an 
approach is an inconsistent mixture of relativistic and classical concepts. (It 
would be more consistent to use in that context the correspondence principle as 
applied to dynamical equations of relativistic physics but, in general, using 
dynamical equations in the problem of clock synchronization is doubtful, see 
comments below.) Next, there is no reason for choosing Newtons second law, 
even if it were in a relativistic form, as a basic relation and considering it as more 
fundamental than any kinematics in the context of such purely kinematic issues 
as clock synchronization and light speed. Note also that (as emphasized in [14] 
and [15]) it is in contradiction with a consensus on considering the law of inertia 
as independent and prior to the force law in the definition of inertial frames. 
Further, a change in the mathematical form of dynamical equations resulting 
from different synchrony conventions do not correspond to any differences 
whatsoever in the actual material behavior of physical systems and so using the 
requirement that a dynamical equation took a specific form (even if it is the 
simplest one) as a basis for distinguishing a specific synchronization is not 
justified. 

3. Conceptual Framework 

The special relativity kinematics applicable to an anisotropic system should be 
developed based on the first principles of special relativity but without refereeing 
to the relations of the standard relativity theory. The principles constituting the 
conceptual basis of special relativity, the relativity principle, according to which 
physical laws should have the same forms in all inertial frames, and the 
universality of the speed of light in inertial frames, lead to the requirement of 
invariance of the equation of light propagation with respect to the coordinate 
transformations between inertial frames. In the present context, it should be 
invariance of the equation of propagation of light which incorporates the 
anisotropy of the one-way speed of light, with the law of variation of the speed 
with direction consistent with the experimentally verified round-trip light 
principle, as follows 

1 1 cos k

c cV
k θ

= =
+ +kn

                       (6) 

where k  is a (constant) vector characteristic of the anisotropy. The change of 
notation, as compared with (4), from k  to k is intended to indicate that k  is 
a parameter value corresponding to the size of the really existing anisotropy 
while k  defines the anisotropy in the one-way speeds of light due to the 
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nonstandard synchrony equivalent to the coordinate change (5). The anisotropic 
equation of light propagation incorporating the law (6) has the form [12] 

( )2 2 2 2 2 2 2d d 2 d d 1 d d d 0s c t kc t x k x y z= − − − − − =          (7) 

where ( ), ,x y z  are coordinates and t is time. It is assumed that the x-axis is 
chosen to be along the anisotropy vector k . Note that although the form (7) is 
usually attributed to the one-dimensional formulation it can be shown that, in 
the three-dimensional case, the equation has the same form if the anisotropy 
vector k  is directed along the x-axis (see [12]). 

Further, in the development of the anisotropic relativistic kinematics, a 
number of other physical requirements, associativity, reciprocity and so on are 
to be satisfied which all are covered by the condition that the transformations 
between the frames form a group. Thus, the group property should be taken as 
another first principle. The formulation based on the invariance and group 
property suggests using the Lie group theory apparatus for defining groups of 
space-time transformations between inertial frames. 

At this point, it should be clarified that there can exist two different cases: 1) 
The size of anisotropy does not depend on the observer motion and so is the 
same in all inertial frames (groups of transformations for this case are studied in 
[12]); 2) The anisotropy is due to the observer motion with respect to a preferred 
frame and so the size of anisotropy varies from frame to frame (it is a subject of 
the present study). In the latter case, the anisotropy parameter becomes a 
variable which takes part in the transformations so that groups of transformations 
in five variables { }, , , ,x y z t k  are studied. The preferred frame, commonly 
defined by that the propagation of light in that frame is isotropic, is naturally 
present in that framework as the frame in which k = 0. However, it does not 
violate the relativity principle since the transformations from/to that frame are 
not distinguished from other members of the group. Nevertheless, the fact, that 
the anisotropy of the one-way speed of light in an arbitrary inertial frame is due 
to motion of that frame relative to the preferred frame, is a part of the paradigm 
which is used in the analysis. 

The procedure of obtaining the transformations consists of the following steps: 
1) The infinitesimal invariance condition is applied to the equation of light 
propagation which yields determining equations for the infinitesimal group 
generators; 2) The determining equations are solved to define the group 
generators and the correspondence principle is applied to specify the solutions; 3) 
Having the group generators defined the finite transformations are determined 
as solutions of the Lie equations; 4) The group parameter is related to physical 
parameters using some obvious conditions; 5) Finally, the conceptual argument, 
that the size of anisotropy of the one-way speed of light in an arbitrary inertial 
frame depends on its velocity relative to the preferred frame, is used to specify 
the results and place them into the context of special relativity with a preferred 
frame. Note that implementing the steps 1)-4) for the case of no isotropy yields 
the standard Lorentz transformations [12]. 
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The transformations between inertial frames derived in such a way contain a 
scale factor and thus do not leave the interval between two events invariant but 
modify it by a conformal factor (square of the scale factor). Applying the 
conformal invariance in physical theories originates from the papers by Bateman 
[17] and Cunningham [18] who discovered the form-invariance of Maxwells 
equations for electromagnetism with respect to conformal space-time transfor- 
mations. Since then conformal symmetries have been successfully exploited for 
many physical systems (see, e.g., reviews [19] [20]). Transformations which 
conformally modify Minkowski metric have been introduced in the context of 
the special relativity kinematics in the presence of space anisotropy in [21] (see 
also references therein) and [22] (see also [23]). As a matter of fact, those works 
are not directly related to the subject of the present study as they consider the 
case of a constant anisotropy degree, not dependent on the frame motion. 
Nevertheless, it is worthwhile to note that in the works [21] [22] the assumption 
that the form of the metric changes by a conformal factor is imposed while, in 
the framework of the present analysis, conformal invariance of the metric arises 
as an intrinsic feature of special relativity based on invariance of the anisotropic 
equation of light propagation and the group property (see [12] for a more 
detailed discussion of the works [21] [22]). 

4. Transformations between Inertial Frames with a Varying 
Anisotropy Parameter 

In this section, groups of transformations between inertial frames that leave the 
equation for light propagation, incorporating the anisotropic law (6), form- 
invariant are defined. The parameter of anisotropy k is allowed to vary from 
frame to frame which, in particular, implies that there exists a preferred frame in 
which the speed of light is isotropic. The transformations are required to form a 
one-parameter group with the group parameter ( )a a v=  (such that 1v  
corresponds to 1a ). Note that the group property is used not as in the 
traditional analysis which commonly proceeds along the lines initiated by [24] 
and [25] which are based on the linearity assumption and relativity arguments. 
The difference can be seen from the derivation of the standard Lorentz 
transformations using the above procedure [12]. 

Consider two arbitrary inertial reference frames S and S' in the standard 
configuration with the y- and z-axes of the two frames being parallel while the 
relative motion is along the common x-axis. The space and time coordinates in S 
and S' are denoted respectively as { }, , ,X Y Z T  and { }, , ,x y z t . The velocity of 
the S' frame along the positive x direction in S, is denoted by v. It is assumed that 
the frame S' moves relative to S along the direction determined by the vector k  
from (6). This assumption is justified by that one of the frames in a set of frames 
with different values of k is a preferred frame, in which k = 0, so that the 
transformations must include, as a particular case, the transformation to that 
preferred frame. Since the anisotropy is attributed to the fact of motion with 
respect to the preferred frame it is expected that the axis of anisotropy is along 
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the direction of motion (however, the direction of the anisotropy vector can be 
both coinciding and opposite to that of velocity). 

The equations for light propagation in the frames S and S' are 

( )2 2 2 2 2 2d 2 d d 1 d d d 0,c T Kc T X K X Y Z− − − − − =             (8) 

( )2 2 2 2 2 2d 2 d d 1 d d d 0c t kc t x k x y z− − − − − =               (9) 

where the anisotropy parameters K and k in the frames S and S' are different. 
The relativity principle implies that the transformations of variables from 
{ }, , , ,X Y Z T K  to { }, , , ,x y z t k  leave the form of the equation of light 
propagation invariant so that (8) is converted into (9) under the transformations. 
The transformations form a one-parameter group 

( ) ( )
( ) ( ) ( )

, , , , ; , , , , , ; ,

, , , , ; , , , , , ; ; ;

x f X Y Z T K a y g X Y Z T K a

z h X Y Z T K a t q X Y Z T K a k p K a

= =

= = =
      (10) 

where a is the group parameter. Remark that k is a transformed variable taking 
part in the group transformations. Based on the symmetry arguments it is 
assumed that the transformations of the variables x and t do not involve the 
variables y and z and vice versa: 

( ) ( )
( ) ( ) ( )

, , ; , , , ; ,

, , ; , , , ; ; ;

x f X T K a t q X T K a

y g Y Z K a z h Y Z K a k p K a

= =

= = =
          (11) 

The correspondence principle requires that, in the limit of small velocities v c  
(small values of the group parameter 1a ), the formula for transformation of 
the coordinate x turns into that of the Galilean transformation: 

x X vT= −                          (12) 

Remark that the small v limit is not influenced by the presence of anisotropy 
of the light propagation. It is evident that there should be no traces of light 
anisotropy in that limit, the issues of the light speed and its anisotropy are alien 
to the framework of Galilean kinematics. 

The group property and the invariance of the equation of light propagation 
suggest applying the infinitesimal Lie technique (see, e.g., [26] [27]). The 
infinitesimal transformations corresponding to (11) are introduced, as follows 

( ) ( )
( ) ( ) ( )

, , , , , ,

, , , , , ,

x X X T K a t T X T K a

y Y Y Z K a z Z Y Z K a k K a K

ξ τ

η ζ χ

≈ + ≈ +

≈ + ≈ + ≈ +
       (13) 

and Equations (8) and (9) are used to derive determining equations for the 
group generators ( ), ,X T Kτ , ( ), ,X T Kξ , ( ), ,Y Z Kη , ( ), ,Y Z Kζ  and 
( )Kχ . The infinitesimal group generators can be partially specified by applying 

the correspondence principle. Equation (12) is used to calculate the group 
generator ( ),X Tξ , as follows 

( )( ) ( )
0 0

; 0
a a

X v a Tx bT b v
a a

ξ
= =

 ∂ −∂  ′= = = − =    ∂ ∂   
       (14) 

It can be set b = 1 without loss of generality since this constant can be 
eliminated by redefining the group parameter. Thus, the generator ξ  is defined 
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by 

Tξ = −                            (15) 

Then substituting the infinitesimal transformations (13), with ξ  defined by 
(15), into Equation (9) with subsequent linearizing with respect to a and using 
Equation (8) to eliminate 2dT  yields 

( )( ) ( )( )
( )( ) ( )

( ) ( )

2 2 2

2 2 2

2

1 d

1 d d d

d d d 0

X T

X T T Y

T Z Z Y

Kc K K c K cK X

c c cK K K c X T K c c Y

K c c Z c Y Z

τ τ χ

τ τ χ τ η

τ ζ η ζ

− + − + +

+ + + + − + + −

+ + − − + =

    (16) 

where subscripts denote differentiation with respect to the corresponding 
variable. In view of arbitrariness of the differentials dX, dY, dZ and, dT, the 
equality (16) can be valid only if the coefficients of all the monomials in (16) 
vanish which results in an overdetermined system of determining equations for 
the group generators. 

The generators τ , η  and ζ  found from the determining equations yielded 
by (16) are 

( )2

22

3 4

1 2 ,

,

K K c KX T c
cc

K KY Z c Z Y c
c c

χ
τ

η ω ζ ω

− −
= − − +

= − + + = − − +

             (17) 

where 2c , 3c  and 4c  are arbitrary constants. The common kinematic 
restrictions that one event is the spacetime origin of both frames and that the x 
and X axes slide along another can be imposed to make the constants 2c , 3c  
and 4c  vanishing (space and time shifts are eliminated). In addition, it is 
required that the ( ),x z  and ( ),X Z  planes coincide at all times which results 
in 0ω =  and so excludes rotations in the plane ( ),y z . 

The finite transformations are determined by solving the Lie equations which, 
after rescaling the group parameter as â a c=  together with ˆ cχ χ=  and 
omitting hats afterwards, take the forms 

( ) ( )( ) ( )d
; 0 ,

d
k a

k a k K
a

χ= =                     (18) 

( ) ( )
( )( ) ( ) ( )( )( ) ( ) ( ) ( )2dd

, 1 2 ,
d d

ct ax a
ct a k a k a x a k a ct a

a a
χ= − = − − − −  (19) 

( ) ( ) ( ) ( ) ( ) ( )d d
, ;

d d
y a z a

k a y a k a z a
a a

= − = −              (20) 

( ) ( ) ( ) ( )0 , 0 , 0 , 0 .x X t T y Y z Z= = = =               (21) 

Because of the arbitrariness of ( )( )k aχ , the solution of the system of 
Equations (18), (19) and (20) contains an arbitrary function ( )k a . Using (18) 
to replace ( )( )k aχ  in the second equation of (19) we obtain solutions of 
Equations (19) subject to the initial conditions (21) in the form 
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( )( )cosh sinh sinh ,x R X a K a cT a= + −                 (22) 

( )( ) ( )( ) ( )( )( )( )cosh sinh 1 sinh coshct R cT a k a a X Kk a a K k a a= − − − + − (23) 

where R is defined by 

( )0 de
akR α α−∫=                           (24) 

To complete the derivation of the transformations the group parameter a is to 
be related to the velocity v using the condition 

0 forx X vT= =                        (25) 

which yields 

1 1ln ;
2 1

K va
K c

β β
β

β β
+ −

= =
− −

                    (26) 

Substituting (26) into (22) and (23) yields 

( )
( )

2 2
,

1

Rx X cT
K

β
β β

= −
− −

 

( )
( ) ( )( )( )2

2 2
1 1

1

Rct cT K k X K K k
K

β β β
β β

= − − − − + −
− −

    (27) 

where k is the value of ( )k a  calculated for a given by (26). 
Solving Equations (20) and using (26) in the result yields 

,y RY z RZ= =                        (28) 

Calculating the interval 

( )2 2 2 2 2 2 2d d 2 d d 1 d d ds c t kc t x k x y z= − − − − −            (29) 

with (27) and (28) yields 

( )2 2 2 2 2 2 2 2 2 2d d , d d 2 d d 1 d d ds R S S c T Kc T X K X Y Z= = − − − − −    (30) 

Thus, in the case when the anisotropy exists, the interval invariance is 
replaced by conformal invariance with the conformal factor dependent on the 
relative velocity of the frames and the anisotropy degree. 

Considering inverse transformations from the frame S' to S one has to take 
into account that, in the presence of the light speed anisotropy, the reciprocity 
principle is modified [3] [8]. The reasoning behind this is that all speeds are to 
be affected by the anisotropy of the light speed since the speeds are timed by 
their coincidences at master and remote clocks, and the latter are altered. 
Therefore the relative velocity v−  of S to S' is not equal to the relative velocity v 
of S' to S. The modified reciprocity relation is commonly obtained using kinematic 
arguments [28], but, in the framework of our analysis, it straightforwardly 
follows from the group property of the transformations a a− = − , where a is 
given by (26) and a−  is also defined by Equation (26) but with β  replaced by 
β−  and K replaced by k, as follows 
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11 ln ,
2 1

k va
k c

β β
β

β β
− − −

− −
− −

− +
= =

+ +
                   (31) 

Thus, the modified reciprocity relation is obtained in the form 

( )1 k K
β

β
β− = − +

                       (32) 

For deriving consequences of the transformations it is convenient to write the 
inverse transformations in terms of β  (not β− ), as follows 

( )
( )( )

1

2 2
1 ,

1

RX x K k ct
K

β β β
β β

−

= − − +
− −

 

( )
( )( )( )

1
2

2 2
1

1

RcT ct x K K k
K

β
β β

−

= + − + −
− −

         (33) 

1 1,Y R y Z R z− −= =                       (34) 

The formulas for the velocity transformation are readily obtained from (27) 
and (28), as follows 

( ) ( ) ( )2 22 21 1
, , ,Y ZX

x y z

cU K cU Kc U c
u u u

Q Q Q
β β β ββ − − − −−

= = =  

( ) ( ) ( )21 X XQ c K U K K k U cβ β β β= − + − − + −         (35) 

where ( ), ,X Y ZU U U  and ( ), ,x y zu u u  are the velocity components in the 
frames S and S' respectively. 

The transformations (24)-(28) contain an indefinite function ( )k a . The scale 
factor R also depends on that function. The transformations are specified in the 
next section. 

5. Specifying the Transformations 

In the derivation of the transformations in the previous section, the arguments, 
that there exists a preferred frame in which the light speed is isotropic and that 
the anisotropy of the one-way speed of light in a specific frame is due to its 
motion relative to the preferred frame, have not been used. In the framework of 
the derivation, nothing distinguishes the frame in which k = 0 from others and 
the transformations from/to that frame are members of a group of transformations 
that are equivalent to others. Thus, the theory developed above is a counterpart 
of the standard special relativity kinematics which incorporates an anisotropy of 
the light propagation, with the anisotropy parameter varying from frame to 
frame. Below the transformations between inertial frames derived in Section 2 
are specified based on that anisotropy of the one-way speed of light in an inertial 
frame is caused by its motion with respect to the preferred frame. 

First, this leads to the conclusion that the anisotropy parameter k in an 
arbitrary frame s moving with respect to the preferred frame with velocity 

v cβ =  should be given by some (universal) function of that velocity, as 
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follows 

( )k F β=                             (36) 

Indeed, Equations (18) and (26) imply that ( )( ), ,k k a K Kβ=  which being 
specified for the transformation from the preferred frame to the frame s by 
setting 0,K β β= =  yields (36). (It could be expected, in general, that a size of 
the anisotropy depends on the velocity relative to the preferred frame but, in the 
present analysis, it is not a presumption but a part of the framework.) 

Next, consider three inertial reference frames S , S and S'. As in the 
preceding analysis, the standard configuration, with the y- and z-axes of the 
three frames being parallel and the relative motion being along the common 
x-axis (and along the direction of the anisotropy vector), is assumed. The space 
and time coordinates and the anisotropy parameters in the frames S , S and S' 
are denoted respectively as { }, , , ,x y z t k , { }, , , ,X Y Z T K  and { }, , , ,x y z t k . 
The frame S' moves relative to S with velocity v and velocities of the frames S 
and S' relative to the frame S  are respectively 1v  and 2v . A relation between 

2v , v and 1v  can be obtained from the equation expressing a group property of 
the transformations, as follows 

2 1a a a= +                              (37) 

where 2a , 1a  and a are the values of the group parameter corresponding to the 
transformations from S  to S', from S  to S and from S to S' respectively. 
Those values are expressed through the velocities and the anisotropy parameter 
values by a properly specified Equation (26) which, upon substituting into 
Equation (37), yields 

2 2 1 1

2 2 1 1

1 11 1 1 1ln ln ln
2 2 2 11 1

k k K
Kk k

β β β β β β
β ββ β β β

+ − + − + −
= +

− −− − − −
       (38) 

where 

2 1
2 1, ,v v v

c c c
β β β= = =                   (39) 

Exponentiation of Equation (38) yields 

( )( )
( )( )

1 1
2 2

1

1

1 1

k K

k K k

β β β
β

β β

+ − +
=

+ − + −
               (40) 

Let us now choose the frame S  to be a preferred frame. Then, 0k =  and, 
according to (36), for the frames S and S' we have 

( ) ( )1 2,K F k Fβ β= =                   (41) 

With ( )f kβ =  being a function inverse to ( )k F β= , using in (40) the 
equalities inverse to those of (41) together with 0k =  yields 

( )
( ) ( )( )

( )( )
1

1
f K Kf K

f k
K f K
β

β
+ −

=
+ − +

               (42) 

If the function ( )f k  were known, the relation (42), that implicitly defines 
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the anisotropy parameter k in the frame S' as a function of the anisotropy 
parameter K in the frame S and the relative velocity v of the frames, would provide 
a formula for the transformation of the anisotropy parameter k. This would 
allow to specify the transformations (27) and (28) by substituting that formula 
for k into the equation of transformation for t and calculating the scale factor R 
using that formula with β  expressed as a function of a group parameter a from 
(26). 

Although the function ( )F β  is not known, a further specification can be 
made based on the argument that an expansion of the function ( )F β  in a series 
with respect to β  should not contain a quadratic term since it is expected that 
a direction of the anisotropy vector changes to the opposite if a direction of a 
motion with respect to a preferred frame is reversed: ( ) ( )F Fβ β= − − . Thus, 
with accuracy up to the third order in β , the dependence of the anisotropy 
parameter on the velocity with respect to a preferred frame can be approximated 
by 

( ) ( ),k F q f k k qβ β β= ≈ = ≈                  (43) 

Introducing the last equation of (43) into (42) yields 

( )( )
( )

2

1

q K q K
k

q K q

β

β

+ −
=

+ −
                     (44) 

which is the expression to be substituted for k into (27). To calculate the scale 
factor in (27) and (28), β  is expressed as a function of a group parameter a 
from (26), as follows 

sinh
sinh cosh

a
K a a

β =
+

                    (45) 

which, being substituted into (44), yields 

( ) ( )cosh sinh
sinh cosh

q K a q a
k a

K a q a
+

=
+

                (46) 

Then using (46) in (24), with (26) substituted for a in the result, yields  

( )( ) ( )( )
( )( )

22

2

1 1 1 1

1

q

q K K
R

q K q

β β

β

 + − − +
 =
 + − 

             (47) 

Thus, after the specification, the transformations between inertial frames 
incorporating anisotropy of light propagation are defined by Equations (27) and 
(28) with k given by (44) and the scale factor given by (47). It is readily checked 
that the specified transformations satisfy the correspondence principle. All the 
equations contain only one undefined parameter, a universal constant q. 

It should be clarified that, although the specification relies on the approximate 
relation (43), the transformations, with k and R defined by (44) and (47), are not 
approximate and they do possess the group property. The transformations (27) 
and (28) form a group, even with ( )k a  (or ( ),k K β ) undefined, provided that 
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the transformation of k obeys the group property. Since the relation (42), 
defining that transformation, is a particular case of the relation (40) obtained 
from Equation (37) expressing the group property, the transformation of k 
satisfies the group property with any form of the function ( )sF β , and, in 
particular, with that defined by (43). Nevertheless, a straightforward check can 
be made that the specified transformation (46) obeys the group properties. Using 
the notation 

( ) ( )cosh sinh
,

sinh cosh
q k a q a

a k
k a q a

κ
+

=
+

                  (48) 

and introducing, in addition to S and S', the frame 0S  with the anisotropy 
parameter 0k , one can check that 

( )( ) ( )0 0 0 0, , ,a a k a a kκ κ κ= +                    (49) 

Similarly it is readily verified that ( )( ), ,a a k kκ κ− =  and ( )0,k kκ = . 
Alternatively, one can calculate the group generator ( )kχ  as 

( ) ( ) 2

0

,

a

a k kk q
a q

κ
χ

=

∂
= = −

∂
                   (50) 

and solve the initial value problem 

( ) ( ) ( )
2d

, 0
d
k a k a

q k K
a q

= − =                   (51) 

to be assured that it, as expected, yields (46). Thus, as a matter of fact, what is 
specified using the approximate relation (43) is the form of the group generator 
( )kχ  in the group of transformations defined on the basis of the first 

principles. 
The relation (42) allows defining a form of the group generator ( )kκ  for 

arbitrary ( )F β , not restricted by the approximate relation (43). Representing 
(42) in the form 

( )( ) ( ) ( ) ( )( )
( ) ( )( )

1
;

1
f K a Kf K

f k K a
a K f K
β

β
+ −

=
+ − +

             (52) 

substituting (45) for ( )aβ  and differentiating the result with respect to a, with 
( );k K a a∂ ∂  separated, yields 

( ) ( )
( )( ) ( )( )

2

2

; 1

cosh sinh

k K a f K
a a f K a f k a

∂ −
=

∂ ′+
            (53) 

Then the relation (52), with β  substituted from (45), is used again to 
express ( )f K  through ( )f k  and a. Substituting that expression into (53) 
yields 

( ) ( )( )
( )( )

21d
d

f k ak a
a f k a

−
=

′
                    (54) 

Equation (54) is the Lie equation defining (with the initial condition ( )0k K= ) 
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the group transformation ( );k K a  which implies that the expression on the 
right-hand side is the group generator 

( ) ( )
( )

21 f k
k

f k
κ

−
=

′
                            (55) 

6. Time Dilation, Aberration Law and Doppler Effect 

Time dilation. Consider a clock C' placed at rest in S' at a point on the x-axis 
with the coordinate 1x x= . When the clock records the times 1t t=  and 2t t=  
the clock in S which the clock C' is passing by at those moments will record 
times 1T  and 2T  given by the transformations (33) where it should be 
evidently set 2 1x x= . Subtracting the two relations we obtain the time dilation 
relation 

( )

1

2 21

RT t
Kβ β

−

∆ = ∆
− −

                    (56) 

If clock were at rest in the frame S the time dilation relation would be 

( )
( ) ( )2 22 2

1

1 1

R K k Rt T T
K k

β β

β β β β− −

− −
∆ = ∆ = ∆

− − − −
            (57) 

with β−  defined by (32). 
Aberration law. The light aberration law can be derived using the formulas (35) 

for the velocity transformation. The relation between directions of a light ray in 
the two inertial frames S and S' is obtained by setting ( )cos 1 cosXU c K= Θ + Θ  
and ( )cos 1 cosxu c kθ θ= +  in the first equation of (35). Then solving for 
cosθ  yields 

( )
( )

cos 1 cos
cos

1 cos
K

K
β

θ
β

Θ − + Θ
=

− Θ+
                 (58) 

where θ  and Θ  are the angles between the direction of motion and that of 
the light propagation in the frames of a moving observer and of an immovable 
source respectively. (Equation (58) could be obtained in several other ways, for 
example, straight from the transformations (27) and (28) by rewriting them in 
spherical coordinates and then specifying to radial light rays.) Introducing 
θ θ π= −  and πΘ = Θ−  as the angles between the direction of motion and 
the line of sight one gets the aberration law 

( )
( )

cos 1 cos
cos

1 cos

K

K

β
θ

β

Θ + − Θ
=

+ Θ−

 





                 (59) 

Doppler effect. Consider a source of electromagnetic radiation (light) in a 
reference frame S very far from the observer in the frame S' moving with velocity 
v with respect to S along the X-axis with Θ  being the angle between the 
direction of the observer motion and that of the light propagation as measured 
in a frame of the source. Let two pulses of the radiation are emitted from the 
source with the time interval ( )eTδ  (period). Then the interval ( )rTδ  
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between the times of arrival of the two pulses to the observer, as measured by a 
clock in the frame of the source S, is 

( ) ( )r e

LT T
V
δ

δ δ= +                     (60) 

where Lδ  is a difference of the distances traveled by the two pulses, measured 
in the frame of the source S, and V is the speed of light in the frame S given by 

( ) cos ,
1 cosr

cL v T V
K

δ δ= Θ =
+ Θ

             (61) 

Substituting (61) into (60) yields 

( ) ( ) ( )( )1 cos 1 cose rT T Kδ δ β= − Θ + Θ            (62) 

The interval ( )rtδ  between the moments of receiving the two pulses by the 
observer in the frame S', as measured by a clock at rest in S', is related to ( )rTδ  
by the time dilation relation (56), as follows 

( )
( )

( )
1

2 21
r r

RT t
K

δ δ
β β

−

=
− −

               (63) 

Thus, the periods of the electromagnetic wave measured in the frames of the 
source and the receiver are related by 

( )
( )( )

( )
( )

1

2 2

1 cos 1 cos

1
e r

R K
T t

K

β
δ δ

β β

− − Θ + Θ
=

− −
          (64) 

so that the relation for the frequencies is 

( )( )
( )

1

2 2

1 cos 1 cos

1
r e

R K

K

β
ν ν

β β

− − Θ + Θ
=

− −
            (65) 

where eν  is the emitted wave frequency and rν  is the wave frequency 
measured by the observer moving with respect to the source. (This formula 
could be derived in several other ways, for example, using the condition of 
invariance of the wave phase.) 

To complete the derivation of the formula for the Doppler shift, the relation 
(65) is to be transformed such that the angle θ  between the wave vector and 
the direction of motion measured in the frame of the observer S' figured instead 
of Θ  which is the corresponding angle measured in the frame of the source. 
Using the aberration formula (58), solved for cosΘ , as follows 

( )
( )

cos 1 cos
cos

1 cos
K

K
θ β θ
β θ
+ −

Θ =
+ −

                (66) 

in the relation (65) yields 

( )( ) ( )
( )

21 2

2

1 cos 1 cos 1

1 cos
r e

R K K

K

β θ θ β β
ν ν

β β θ

− + − − −
=

− +
        (67) 

Finally, introducing the angle θ θ π= −  between the line of sight and the 
direction of the observer motion one obtains the relation for a shift of 
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frequencies due to the Doppler effect in the form 

( )( ) ( )

( )

21 2

2

1 cos 1 cos 1

1 cos
r e

R K K

K

β θ θ β β
ν ν

β β θ

− − + − −
=

− −

 



      (68) 

7. The CMB Effective Temperature 

Let us apply the equations of the anisotropic special relativity developed above to 
describe effects caused by an observer motion (our galaxy’s peculiar motion) 
with respect to the CMB frame. It is more consistent than using equations of the 
standard special relativity in that context—the standard relativity framework is 
in contradiction with existence of a preferred frame while the anisotropic special 
relativity naturally combines a preferred frame concept with the special relativity 
principles. Let choose the frame S to be a preferred frame and the frame S' to be 
a frame of an observer moving with respect to the preferred frame. Then the 
coordinate transformations from the preferred frame S to the frame S' of the 
moving observer are obtained by setting K = 0 in equations (27), (28), (47) and 
(44) which yields 

( )( ) ( ) ( )( )( )
1 1

2 2 22 21 , 1 1 1
q q

x X cT ct cT q X qβ β β β β
− −

= − − = − − − −  

( ) ( )2 22 21 , 1
q q

y Y z Zβ β= − = −                 (69) 

where q is a universal constant. Equation of aberration of light (59) with K = 0 
converts into the common aberration law of the standard theory 

coscos
1 cos

β
θ

β
Θ +

=
+ Θ







                     (70) 

while Equation (65), describing the Doppler frequency shift for the light emitted 
at the last scattering surface (LSS) and received by a moving observer, differs 
from its counterpart of the standard relativity by the factor 1R− , as follows 

( )1

2

1 cos

1
r e

R β
ν ν

β

− − Θ
=

−
                    (71) 

The inverse 1R−  of (47) for K = 0 takes the form 

( )1 2 21
q

R β
−− = −                        (72) 

Substituting (72) into (71) yields 

( ) ( )
1

2 2 21 1 cos
q

r eν ν β β
− −

= − − Θ                  (73) 

Thus, in terms of the angle Θ  between the direction of the observer motion 
and that of the light propagation as measured in a frame of the source, the 
Doppler frequency shift is a pure dipole pattern as it is in the standard relativity. 
However, the amplitude of the shift includes an additional factor which depends 
on the value of the universal constant q. 
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Equation (68) incorporating the effect of light aberration and thus relating the 
frequency eν  of the light emitted at the LSS to the frequency rν  measured by 
a moving observer, with the use of (72) becomes 

( )
1

2 2 21

1 cos

q

r e

β
ν ν

β θ

−
−

=
− 

                      (74) 

where θ  is the angle between the line of sight and the direction of the observer 
motion as measured in the frame of the observer. In the context of the CMB 
anisotropy, one should switch from the frequencies to effective thermodynamic 
temperatures of the CMB blackbody radiation using the relation [29] 

( ) 0

r e

T Tθ

ν ν
=



                          (75) 

where 0T  is the effective temperature measured by the observer which sees 
strictly isotropic blackbody radiation, and ( )T θ  is the effective temperature of 
the blackbody radiation for the moving observer looking in the fixed direction 
θ . Substituting (74) into (75) yields 

( ) ( )
1

2 2 2
0; 1

1 cos

qMT M Tθ β
β θ

−
= = −

−




              (76) 

Thus, the angular distribution of the CMB effective temperature seen by an 
observer moving with respect to the CMB frame is not altered by the light speed 
anisotropy. However, the anisotropy influences the mean temperature which 
differs from the value yielded by applying the standard relativity by the factor 

( )2 21
q

β
−

−  (it may be also considered as a correction to the temperature 0T ). 
Dependence of the amplitude factor M (normalized by 0T ) on β  for different 
values of the parameter q is shown in Figure 1. It is seen that, for negative values 
of q, the amplitude factor decreases with β , like as it does in the standard SR (q 
= 0), but the dependence becomes steeper. For positive values of q, the factor M 
may both decrease and increase with β  and it does not depend on β  for a 
specific value q = 1. Note, however, that q is expected to be negative both from 
intuitive considerations and on the basis of some arguments considering of 
which is beyond the scope of the current study. 

Developing Equation (76) up to the second order in β  yields 

( )
2 2

0 1 cos cos 2
2 2

T T q β β
θ β θ θ

 
= + + + 

 
               (77) 

which implies that, up to the order 2β , the amplitudes of the dipole and 
quadrupole patterns remain the same, only the constant term is modified. 

It is worth reminding that, even though the specified law (43) is linear in β , 
it does include the second order term which is identically zero. Thus, describing 
the anisotropy effects, which are of the order of 2β , by Equations (76) and (77) 
is legitimate. 
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Figure 1. Dependence of the amplitude factor M (normalized by T0) 
on the observer velocity β for different values of the parameter q. 

8. Discussion 

Analysis of the present paper, incorporating the existence of a preferred frame of 
reference into the special relativity framework, does not abolish the basic 
principles of special relativity but simply uses the freedom in applying those 
principles. A degree of anisotropy of the one-way velocity, which is commonly 
considered as irreducibly conventional, acquires meaning of a characteristic of 
the really existing anisotropy caused by motion of an inertial frame relative to 
the preferred frame. In that context, the fact, that there exists the inescapable 
entanglement between remote clock synchronization and one-way speed of 
light (if the synchronization is made using light signals), does not imply 
conventionality of the one-way velocity but means that, in the synchronization 
procedure, the one-way speed determined by the size of the anisotropy is used. 
The analysis yields equations differing from those of the standard relativity. The 
deviations depend on the value of an universal constant q where q = 0 
corresponds to the standard relativity theory with the isotropic one-way speed of 
light in all the frames. The measurable effects following from the theory equations 
can be used to provide estimates for q and validate the theory. 

Applying the theory to the problem of calculating the CMB temperature 
distribution is conceptually attractive since it removes the inconsistency of the 
usual approach when formulas of the standard special relativity, in which a 
preferred frame is not allowed, are applied to define effects caused by motion 
with respect to the preferred frame. It is worthwhile to note that even though it 
were found that the constant q is very small, which would mean that applying 
the present theory yields results practically identical to those of the standard 
relativity, this would not reduce the importance of the present framework which 
reconciles the principles of special relativity with the existence of the privileged 
CMB frame. As a matter of fact, it would justify the application of the standard 
relativity in that situation. 

It is worthwhile, at the end of the discussion, to return to the much debated 
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issues of conventionality of simultaneity and relativity of simultaneity in special 
relativity and discuss the approach and results of the present paper in the light of 
the debates. First of all, an important difference between motivations (and, 
correspondingly, conceptual frameworks) of the analyses devoted to those issues 
and the approach of the present study should be clarified and emphasized again. 

The concept of anisotropy of light propagation is always discussed in the 
literature in relation with the concept of remote clock synchronization. 
Considering different synchronization procedures, as the rule, is aimed at 
obtaining the transformations possessing some specific properties. For example, 
in the work by Tangherlini [30], a special method of synchronizing two clocks in 
an inertial frame is proposed in order to achieve a universal synchronization, 
such that spatially separated clocks remain synchronous between themselves 
thus establishing the common time of the moving system. In [30], it is achieved 
by using clocks synchronized with absolute signals, that is, signals travelling with 
infinite or arbitrarily large velocity. Using these signals, one arrives at the view of 
an absolute rest frame (or ether frame), in which the velocity of light is the same 
in all directions, but for observers in motion relative to this frame velocity of 
light is not the same in all directions. Another method of synchronization of 
spatially separated clocks, which leads to the same transformations that 
Tangherlini obtained in [30], is the so-called “external synchronization” (see, 
e.g., [2] [31] [32]). The external synchronization is based on the assumption that 
there is a preferred (“rest”) inertial frame in which the one-way speed of light in 
vacuum is c in all directions. The clocks from the rest system, S, are 
synchronized using Einsteins procedure with light signals. Then, in any moving 
inertial frame S', the common time can be established using these already 
synchronized clocks of the rest inertial frame. It can be done simply by adjusting 
clocks of moving inertial frame to zero during those moments of time when they 
meet in space a clock at rest that shows zero as well. Applying any of two 
synchronization methods described above, together with the postulate of 
constancy of the two-way speed of light, yields the transformations 

( )
2

1, ; ,
1

t vx x vt t
c

γ γ β
γ β

′ ′= − = = =
−

            (78) 

where ( ),x t  and ( ),x t′ ′  are space and time coordinates of a certain event in 
the rest frame S and in a moving frame S' respectively and v is a velocity of the 
frame S' relative to S. Thus, using the synchronization method, that is different 
from synchronization by light signals, yields the transformations (78) which 
exhibit absolute simultaneity. They also exhibit non-invariant one-way speed of 
light so that, in that approach, the anisotropy of the velocity of light in a moving 
inertial frame is a feature that emerges due to synchronization procedure 
designed to keep simultaneity unchanged between all inertial frames of 
reference. 

The principal difference of the present analysis from those in the literature on 
the synchronization problem is that, in the present analysis, the one-way speed 
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of light in an inertial frame is a primary issue and its anisotropy is governed 
entirely by a physical lawc (36) (or its approximate version (43)). If a preferred 
frame is identified then the law (36) defines unequivocally the anisotropy size. 
Note that there is no ambiguity in determining the velocity β  since it is 
measured in a preferred frame where the one-way speed of light is c in all 
directions. At the same time, the relativity principle is not violated since 
transformations of the parameter of anisotropy k from one inertial frame to 
another possess a group property and, in this respect, transformations from/to 
the preferred frame with k = 0 are not distinguished from other members of the 
group of transformations. Specifying the function ( )F β  (or the inverse 
function ( )f k ) is equivalent to specifying the group generator for the variable 
k according to (55). In such a framework, synchronization is a concomitant issue 
if the remote clocks are set using light signals. In particular, since the 
transformations (27) are derived based on invariance of the equation of 
anisotropic light propagation, they correspond to the synchronization procedure 
using light signals with the one-way velocities defined by the relation (6) but, 
provided that the velocity of the frame relative to the preferred frame β  is 
known, in the relation (6), k is a definite value determined by the law (36). That 
value cannot be altered by changing the synchronization method. 

The same is valid if another method of synchronization, as, for example, the 
above discussed “external synchronization”, is used. Changing the synchronization 
method results in a change of the form of transformations for the time and 
space variables which is equivalent to a change of coordinates. The Lorentz 
transformations 

( ) 2,L L
vxx x vt t t
c

γ γ  ′ ′= − = − 
 

                (79) 

can be obtained from the Tangherlini transformations (78) by the change of 
coordinates [32] 

2L
vxt t
c
′

′ ′= −                        (80) 

where t′  and x′  are defined by (78). Substituting (78) in (80), one gets the 
Lorentz transformations. The same can be done for the transformations (27) 
obtained in the present paper. In the case of the transformations from a 
preferred frame with the anisotropy parameter K = 0 to an arbitrary frame with 
the anisotropy parameter k, the transformations (27) take the form 

( ) ( ) ( )( )
2

1, 1 ,
1

x R X cT ct R cT k X kγ β γ β β γ
β

= − = − − − =
−

   (81) 

where R is the scale factor defined by (24) (for the sake of clearness, we do not 
use the law (43) in these calculations). The transformations that exhibit absolute 
simultaneity, a counterpart of the Tangherlini transformations, are 

( ) ( ) ( ),T T cTx R X cT ct Rγ β
γ

= − =                  (82) 
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and the change of variables converting (82) into (81) is 
( ) ( ) ( )T Tct ct k xβ= − −                       (83) 

It is readily verified that substituting (82) in (83) yields (81). Thus, any event 
that can be described by the transformations (81) can be described as well by the 
transformations with absolute simultaneity (82). Descriptions using clocks set as 
in (81) and clocks set as in (82) are equivalent in a sense that they are describing 
one and the same reality, which is independent of the coordinates chosen. 

It is also worth remarking that alterations, as compared with the standard 
relativity, in the formulas describing physical effects caused by motion with 
respect to a preferred frame depend only on the scale factor R as, for example, a 
correction to the distribution (76) of the CMB effective temperature seen by an 
observer moving with respect to the CMB frame. In (76), R is given by the 
expression 

( )2 21
q

R β= −                        (84) 

defining R as a function of the velocity of a moving frame measured in a 
preferred frame. The expression (84) has been obtained from (47) evaluated for 
K = 0 and so it corresponds to the approximate law (43) but it is possible to 
represent R defined by the general expression (24) as a function of β  for 
arbitrary ( )F β . It is evident that the form ( )R β  of the scale factor does not 
depend on the synchronization (or on the space-time coordinates) chosen. 

To conclude the discussion, the present analysis, which combines the basic 
principles of special relativity with the existence of a preferred frame, stands 
apart from the ample literature devoted to the conventionality of simultaneity, 
relativity of simultaneity and synchronization issues. In the present analysis, 
anisotropy of the one way speed of light in an inertial frame is governed by a 
physical law which is not influenced by changing the synchronization 
procedure. Synchronization emerges as a complementary issue needed for 
defining transformations of the space-time coordinates but physical effects are 
not changed by the way the clocks have been set. 
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