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Abstract 

Prescribed burning and tree thinning are commonly used restoration practic-
es for US forests management to increase forest productivity and enhance 
plant and animal diversity. The impact of these practices in Alabama’s Bank-
head National Forest (BNF) to soil microbial components and overall forest 
soil health are unknown. We hypothesized that microbial assemblages and 
enzyme activities are continuously changing in forest ecosystems especially 
due to management selections. Therefore, the objective of this study was to 
assess changes in microbial community compositions (fungal vs bacterial 
populations) via fatty acid methyl ester (FAME) profiling and several enzyme 
activities (β-glucosaminidase, acid phosphatase, arylsulfatase, β-glucosidase, 
xylanase, laccase, and manganese peroxidase) critical to soil organic matter 
(SOM) dynamics and biogeochemical cycling. In this forest, heavily-thinned 
plots without burning or less frequent burning treatments seemed to provide 
more favorable conditions (higher pH and lower C:N ratios) for C and N mi-
neralization. This may explain a slight increase (by 12%) detected in fun-
gi:bacteria (F:B) ratio in the heavily-thinned plots relative to the control. 
Thinned (lightly and heavily) plots showed greater ligninolytic (laccase and 
MnP) activities and lower β-glucosidase and β-glucosaminidase activities 
compared to the no-thinned plots probably due to increase depositions of 
woody recalcitrant C materials. We observed significant but negative correla-

How to cite this paper: Ntoko, F. A., Gard-
ner, T. G., Senwo, Z. N., & Acosta-Martinez, 
V. (2018). Microbial Compositions and 
Enzymes of a Forest Ecosystem in Alabama: 
Initial Response to Thinning and Burning 
Management Selections. Open Journal of 
Forestry, 8, 328-343. 
https://doi.org/10.4236/ojf.2018.83021 
 
Received: April 1, 2018 
Accepted: July 15, 2018  
Published: July 18, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/

  Open Access

 

DOI: 10.4236/ojf.2018.83021  Jul. 18, 2018 328 Open Journal of Forestry 
 

http://www.scirp.org/journal/ojf
https://doi.org/10.4236/ojf.2018.83021
http://www.scirp.org
https://doi.org/10.4236/ojf.2018.83021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


F. A. Ntoko et al. 
 

tions between the ligninolytic laccase and manganese peroxidase (Lac and 
MnP) enzymes respectively, with MBC (−0.45* and −0.68** respectively) and 
MBN (−0.43* and −0.65** respectively). Prescribed burning treatment reduced 
microbial biomass C and N of the 9-yr burned plot/lightly thinned plotsprob-
ably due to depletion of labile C sources with the high temperatures, leaving 
mostly recalcitrant C sources as available soil substrates. Gram-positive bacte-
ria (i15:0, a15:0, i17:0, and a17:0), actinomycetes (10-Me17:0, 10-Me18:0), 
AMF (16:1ω5c), and saprophytic fungi (18:1ω9c), largely contributed to the 
microbial compositions. This study bridges knowledge gaps in our understand-
ing of microbial community compositions and enzyme-mediated processes in 
repeatedly burned and thinned forest ecosystems. 
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1. Introduction 

Prescribed burning and tree thinning are commonly used restoration practices 
for US forests management (Boerner et al., 2000; McRae et al., 2001; Agee & 
Skinner, 2005; Nobles et al., 2009). These practices have been implemented in 
Alabama’s Bankhead National Forest (BNF), to mitigate the negative impacts of 
pest and disease outbreaks (Nobles et al., 2009), reduce fuel loads and accumu-
lated ground flora on forest floors to promote growth of new forage and plants 
(Converse et al., 2006), increase forest productivity and enhance plant and ani-
mal diversity (Ganzlin et al., 2016). Forest productivities, plant nutrient concen-
trations, microbial richness, enzymatic metabolisms are possibly altered after fire 
events and forest thinning practices (Wic-Baena et al., 2013; Akburak & Maki-
neci, 2015). Studies have reported an increase (Bååth et al., 1995; Klopatek et al., 
1988) and/or decrease (Baar et al., 1999; Grogan et al., 2000), in short-lived bac-
teria proliferation and little or no increase in soil fungi (Jonsson et al., 1999) due 
to prescribed burning and/or tree thinning. However, a comprehensive study of 
the combination of these practices will shed more light into how these practices 
can impact the microbial component and the whole forest ecosystem health and 
functioning.  

Microbial communities are known to mediate nutrient cycling and facilitate 
nutrient distributions (Wagner & Wolf, 1998; Wander, 2004) through their en-
zymatic machinery. Enzyme metabolic reactions are key to carbon (C), nitrogen 
(N), phosphorus (P), and sulfur (S) mineralization in soils. Their decrease in 
forest treatments (post burn and/ or thin) have been associated with decreased 
microbial biomass (Pietikåinen & Fritze, 1995; Andersson et al., 2004). The de-
crease may also result from changes in substrate availability resulting from al-
tered quantity and quality of soil organic matter (Bandick & Dick, 1999; Tian et 
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al., 2010). Prescribed burning and thinning practices will change not only the 
highly efficient nutrient-conserving mechanisms that characterize a forest but 
also soil organic matter (SOM) cycling patterns and enzymatic metabolisms 
within the ecosystem (Garcia-Montiel et al., 2000). We hypothesized that micro-
bial compositions, metabolic capacities, and functions are continuously chang-
ing in forest ecosystems. Therefore, the objectives of this study were to assess 
changes in microbial community compositions and several enzyme activities 
(β-glucosaminidase, acid phosphatase, arylsulfatase, β-glucosidase, xylanase, 
laccase, and manganese peroxidase) associated with C, N, P, and S cycling in a 
forest ecosystem as affected by different combinations of prescribed burning and 
tree thinning. Trends found should be considered in future management deci-
sions to preserve biodiversity and functioning of forest ecosystems. 

2. Materials and Methods 
2.1. Study Site 

The William B. Bankhead National Forest (Figure 1) situated in the Southern 
Cumberland Plateau of the Southern Appalachian Mountains, extends through 
Lawrence, Winston, and Franklin counties (34˚30'N, 87˚30'W) in Alabama. Its 
climate is classified as humid subtropical, has an average annual temperature of 
18˚C, covers over 180,000 acres of land, with abundant swift streams, limestone 
bluffs, and waterfalls. It is also home to Alabama’s only National and Scenic Sip-
sey Fork River and several different genera of wildlife. The soils are classified as 
Typic Hapludults of the Sipsey (fine-loamy, siliceous, semi-active, thermic Typic 
Hapludults) series in the USDA soil classifications. The native vegetation con-
sists predominantly of oak and oak-pine woodlands. Predominant oak species 
include scarlet (Quercus coccineacata Michx.), black (Quercus velutina Lam.), 
and white (Quercus alba L.) oaks. In the 1960s, areas of the forest were replaced 
with faster growing loblolly pine to improve economic yields. The forest has ex-
perienced several southern pine beetle infestations in recent years, resulting in 
significant areas of standing dead trees that present hazards to the public as well 
as increased risk of wildfires (Nobles et al., 2009). 

The experimental design was a two-factor, randomized complete block design 
with nine treatments, each replicated four times, resulting in a total of 36 sample 
units in four blocks. The treatments consisted of a control (reference), three 
burning patterns (no-burn, 3- and 9-yr burn cycles), and three levels of thinning 
(no-thin; light-thin, thin to 75 ft2/acre basal area; and heavy thin, thin to 50 
ft2/acre basal area; Table 1). At the time of soil sampling, the 3-yr burn cycle had 
been carried out three times and the 9-yr burn cycle sites had been burnt once 
(6-yr since the first burn). The reference site was converted to loblolly pines in 
the 1960s but has not received any burn or thinning treatment since its conver-
sion. Thinning was implemented by removing competing loblolly pine species to 
release such native hardwood species as oak. 
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Figure 1. Map of the Bankhead national forest showing treatment sites. 
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Table 1. Soil biological, chemical and physical properties. 

 Treatment Burning pH 
C 

(%) 
N 

(%) 
S 

(%) 
C/N 
ratio 

MBC 
(mg/g 
soil) 

MBN 
(mg/g 
soil) 

Control C none 
4.51 

(0.29) 
3.11 

(0.59) 
0.13 

(0.02) 
0.02 

(0.00) 
24.42 
(1.06) 

448.05 
(56.5) 

68.03 
(9.41) 

No-Burn/ 
Light-Thin* 

NB/LT none 
4.37 

(0.12) 
3.49 

(0.80) 
0.13 

(0.02) 
0.01 

(0.00) 
26.54 
(2.98) 

464.60 
(31.3) 

66.03 
(4.61) 

No-Burn/ 
Heavy-Thin† 

NB/HT none 
4.73 

(0.05) 
2.47 

(0.26) 
0.10 

(0.01) 
0.01 

(0.00) 
16.47 
(7.88) 

471.60 
(38.5) 

68.26 
(5.28) 

3yr-Burn/ 
No-Thin 

3B/NT 3 yr 
4.39 

(0.06) 
2.37 

(0.15) 
0.10 

(0.00) 
0.01 

(0.00) 
23.48 
(0.95) 

455.94 
(22.1) 

71.84 
(2.82) 

3yr-Burn/ 
Light-Thin* 

3B/LT 3 yr 
4.68 

(0.11) 
1.90 

(0.09) 
0.09 

(0.01) 
0.01 

(0.00) 
21.35 
(0.99) 

312.76 
(8.1) 

48.94 
(1.47) 

3yr-Burn/ 
Heavy-Thin† 

3B/HT 3 yr 
4.99 

(0.07) 
1.97 

(0.14) 
0.09 

(0.00) 
0.01 

(0.00) 
23.18 
(0.45) 

334.05 
(58.8) 

56.04 
(8.91) 

9yr-Burn/ 
No-Thin 

9B/NT 9 yr 
4.36 

(0.10) 
2.99 

(0.26) 
0.12 

(0.01) 
0.01 

(0.00) 
24.72 
(1.49) 

433.46 
(35.5) 

66.66 
(6.07) 

9yr-Burn/ 
Light-Thin* 

9B/LT 9 yr 
4.75 

(0.11) 
2.38 

(0.18) 
0.11 

(0.01) 
0.02 

(0.01) 
21.37 
(1.19) 

258.01 
(43.1) 

32.63 
(9.41) 

9yr-Burn/ 
Heavy-Thin† 

9B/HT 9 yr 
4.70 

(0.09) 
1.59 

(0.31) 
0.08 

(0.01) 
0.01 

(0.00) 
19.30 
(1.15) 

299.28 
(95.1) 

43.72 
(19.73) 

†Heavily thinned sites: Thin to 50 ft2∙acre−1 basal area (50% thinning); lightly thinned sites: Thin to 75 
ft2∙acre−1 basal area (25% thinning). Standard error values are in parentheses. 

2.2. Soil Sampling and Analysis 

Soils used for this study were collected in 2009 with an auger (10 cm inner di-
ameter) from 0 to 10 cm depth in three replicates after removing surface residue. 
Half of the soil samples were air-dried, ground, and passed through a 2-mm 
sieve and stored in plastic bags, while the other half were stored at 4˚C until 
used. The air-dried samples were utilized for physicochemical properties; whe-
reas, the soils kept at 4˚C was used for microbial biomass carbon (MBC), and 
enzyme metabolic analysis. Soil pH was measured in water at a soil to solution 
ratio of 1:2 and temperature compensated at 25˚C. Total C, N, and S in the soils 
were determined by a dry combustion method using a vario Max CNS analyzer. 
The soil microbial biomass carbon (MBC) was estimated using the chloroform 
fumigation-incubation method (Franzluebbers et al., 1995). Microbial biomass 
nitrogen (MBN) was determined from 10 g of the fumigated and incubated soil 
samples, extracted with 50 mL - 0.5 mol/L K2SO4 for 1 h (1:5 Wt/V ratio). The 
obtained organic N and NH4-N was oxidized to NO3-N by persulfate (Cabrera & 
Beare, 1993) and the N concentration determined with ammonium-nitrate ana-
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lyzer (Timberline instrument, model no. TL-2800). Microbial biomass nitrogen 
(MBN) was calculated as the difference between NO3-N concentrations in the 
sample before and after fumigation incubation and divided by a factor of 0.41 
(Carter & Rennie, 1982). 

Soil microbial community compositions were characterized using the es-
ter-linked fatty acid methyl ester (EL)-FAME analysis as described by Schutter & 
Dick (2000). Lipids extraction from 3 g of field-moist soil, employed mild alka-
line methanolysis (15 mL of 0.2 M KOH in methanol), followed by neutraliza-
tion with 3 mL of 1.0 M acetic acid. FAMEs were then partitioned into organic 
phase by adding 10 mL of hexane followed by centrifugation at 480 ×g for 10 
min at 37˚C. The hexane layer was transferred to a clean glass test tube and the 
hexane evaporated under a N2 stream. FAME was dissolved by adding 200 μL of 
1:1 methyl tert-butyl ether and hexane containing methyl nonadecanoate (19:0) 
as an internal standard (0.5 mg∙ml−1). Samples were vortexed and transferred 
into a 250-μL glass insert in a 2-mL GC vial. FAME analysis was conducted in an 
Agilent 6890 N gas chromatograph with a 25 m × 0.32 mm × 0.25 μm (5% 
phenyl)-methylpolysiloxane Agilent HP-5 fused silica capillary column (Agilent, 
Santa Clara, CA) and flame ionization detector (Hewlett Packard, Palo Alto, CA) 
with ultra-high purity hydrogen as the carrier gas. The temperature program 
ramped from 170˚C to 270˚C at 5˚C min−1 then ramped to 300˚C for 2 min 
(Acosta-Martínez et al., 2010; Gardner et al., 2011). 

Fatty acids were identified and quantified based on comparison of retention 
times and peak areas to components of MIDI standards using the TSBA6 aerobe 
program from MIDI (Microbial ID, Inc., Newark, DE). FAMEs are described by 
the number of C atoms, a colon, the number of double bonds, and the position 
of the first double bond from the methyl (ω) end of the molecule. Other nota-
tions used include methyl (Me), cis (c) and trans (t) isomers, and iso (i) and an-
teiso (a) branched FAMEs. Selected FAMEs used as microbial markers were 
Gram-positive (Gram+) bacteria (i15:0, a15:0, i17:0, a17:0), Gram-negative 
(Gram−) bacteria (cy17:0, cy19:0), and actinomycetes (10Me17:0, 10Me18:0). 
Fungal markers that included saprophytic fungi (18:1ω9c, 18:3ω6c), arbuscular 
mycorrhizal fungi (AMF) (16:1ω5c) and absolute amounts of FAMEs (nmolg−1 
soil) were calculated as described by Zelles (1999). Bacterial summation was 
calculated using the Gram+, Gram−, and actinomycetes markers; while fungal 
summation was calculated using both saprophytic and AMF fungal markers, and 
the fungal/bacteria (F:B) ratio calculated by dividing the sum of fungi by the sum 
bacteria. 

2.2.1. Enzyme Metabolic Analysis 
The activities of three hydrolases, β-glucosidase (β-Gluc), β-glucosaminidase 
(β-Glm) and arylsulfatase (Aryl) were determined in this forest soil. Briefly, 1 g 
of air-dried soil was assayed under a final concentration of 10 mM of the specific 
enzyme substrate (p-nitrophenyl-derivate), optimal pH and buffer (without 
toluene), and incubated for 1 h at 37˚C as described in Tabatabai (1994) and 
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Parham and Deng (2000). The concentration of the reaction product 
(p-nitrophenol) was determined colorimetrically at 400 nm using a spectropho-
tometer (Beckman Coulter DU640, Brea, CA). Samples were assayed in dupli-
cate and included a control for each assay, where the substrate was added after 
the reaction was stopped following incubation. The amount of p-nitrophenol re-
leased was calculated by reference to a calibration curve developed with stan-
dards containing 0, 100, 200, 300, 400, and 500 nmol of p-nitrophenol.  

Xylanase activities were determined according to the procedure described by 
Deng & Tabatabai, (1994). The protocol used involved the release of reducing 
sugars after hydrolysis of artificial substrates (xylan). In short, a gram (1 g) of 
soil was weighed and mixed with 0.2 mL toluene in a 50-mL Erlenmeyer flask. 
The flask was placed under a fume hood for 15 min after which 20 mL of the re-
spective substrate solution was added. A rubber stopper was used to cap the 
flask, and the solution mixed thoroughly before incubating for 24 h at 30˚C. Af-
ter incubation, it was transferred into a centrifuge tube and centrifuged at 17,000 
rpm for 10 min at 4˚C. The supernatant was filtered through a Whatman paper 
No. 42 and reducing sugars quantified using the Somogyi-Nelson colorimetric 
method (Deng & Tabatabai, 1994). Acid phosphatase activities were assayed ac-
cording to Tabatabai (1994) and described in Bottomley et al. (1994). Briefly, 
one gram of soil, substrate (1 mL, 50 mmol/L p-nitrophenyl phosphate), and to-
luene (0.2 mL) were incubated in 4 mL of MUB (pH 6.5) at 37˚C for 1 h. At the 
end of incubation, the activity was stopped by adding 1 mL of 0.5 mol/L CaCl2 
and 4 mL of 0.5 mol/L NaOH, shaken, filtered and the absorbance read at 420 
nm using a UV/Vis spectrophotometer. 

Laccase and manganese-dependent peroxidase activities were measured as 
described by De Souza-Cruz et al. (2004). Laccase was assayed using ABTS (2, 
2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid). Reactions was carried out in 
3 mL curvets containing 0.6 mL of 200 mM sodium phosphate/100 mM citric 
acid buffer at pH 5.0, 0.2 mL of water, 1.0 mL of soil homogenate and 0.2 mL of 
1.0 mM substrate and absorbance measured at 420 nm. For manganese perox-
idase assay, the reaction mixtures contained 1.0 mL sodium succinate buffer (50 
mM, pH 4.5), 1.0 mL sodium lactate (50 mM, pH 5.0), 0.4 mL manganese sulfate 
(0.1 mM), 0.7 mL phenol red (0.1 mM), 0.4 mL H2O2 (50 μM), gelatin (1 mg 
mL−1), and soil homogenate (0.5 mL). One mL of the reaction mixture was 
added to 40 μL of 5 N NaOH solution and absorbance measured at 610 nm. 

2.2.2. Statistical Analysis 
Analysis of variance (ANOVA) followed by a Turkey test was performed using 
SAS statistical package software version 9.3 (SAS Institute, Cary, North Carolina, 
USA). Analysis was performed to detect differences in various enzyme activities. 
Results were considered significant at P < 0.05. A correlation analysis (Pearson) 
was also performed using SPSS software to determine whether there was signifi-
cant correlation between enzyme activities, soil properties, and microbial indic-
es. Data was log transformed if not normally distributed before analysis. 
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3. Results 
3.1. Soil Organic Matter Dynamics and Microbial Biomass Carbon  

and Nitrogen 

Like most forest soils, the pH values are low, ranged from 4.36 ± 0.10 to 4.99 ± 
0.07, while C:N ranged from 16.47 ± 7.88 to 26.54 ± 2.98, suggesting possible 
high mineralization rates in the soils (Table 1). Total C, N, and S contents were 
as high as 3.49% ± 0.80%, 0.13% ± 0.02%, 0.02% ± 0.00%, respectively. The 
NB/LT (no-burn, lightly-thinned) plots had the highest total C, and N, as well as 
C/N ratio. In the heavily-thinned and frequently burned (3-yr burn) plots there 
was a decrease in total C and N contents; however, there was no significant dif-
ference in the C:N ratios and total S. Microbial biomass C ranged from 258.01 ± 
43.10 to 471.60 ± 38.50 while MBN ranged from 32.63 ± 9.41 to 71.84 ± 2.82. 
The high standard deviations indicate a high level of variability in the soils. Both 
the 9-yr burned plot and the lightly-thinned plots showed a decrease in MBN, 
while the 9-yr burned plot resulted in an additional decrease in MBC (Table 1). 

3.2. Enzyme Metabolisms and Microbial Community  
Compositions 

Among the enzymes evaluated, only β-glucosidase and arylsulfatase showed in-
teractions within thinned and burned plots. The ligninolytic enzymes (laccase 
and MnP) responded differently in the burned and thinned plots compared to 
the hydrolytic (β-glucosidase, β-glucosaminidase, and acid phosphatase) en-
zymes. There was increased MnP activity in thinned plots of the burned cycle 
(Figure 2). In contrast, β-glucosidase activity was significantly higher in the 
control than in most plots. β-glucosaminidase activity varied significantly in 
burned plots, but in general, it showed similar trends for β-glucosidase activity. 
Arylsulfatase activity was significantly higher in the 9-yr-burned/heavily-thinned 
plots than in most plots. 

We observed significant but negative correlations between the ligninolytic 
laccase and manganese peroxidase (Lac and MnP) enzymes respectively, with 
MBC (−0.45* and −0.68** respectively) and MBN (−0.43* and −0.65** respec-
tively). Total C, N, and S showed significant and positive correlations with 
β-glucosidase (0.66**, 0.68**, 0.51* respectively) and acid phosphatase (0.64**, 
0.64**, 0.60** respectively) activities. Total C and N had significant but negative 
correlations with manganese peroxidase (−0.50*, −0.43* respectively). Soil pH 
was significantly and positively correlated with laccase (0.46*) and manganese 
peroxidase (0.52*) activities but negatively correlated with β-glucosidase 
(−0.46*) activity (Table 2). 

Microbial community size, determined based on a total of 12 FAMEs, was 
greater in the lightly-thinned plots regardless of the burned cycle (no-burned, 
3-yr-burned and 9-yr-burned) and in 3-yr-burned/heavily-thinned plots com-
pared to the control (Table 3). Like total FAMEs, the sum of fungal FAMEs 
showed significant differences with the lightly-thinned plots at all burned levels,  
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Table 2. Correlation analysis between enzyme activities and soil properties. 

 pH C N S MBC MBN 

Laccase 0.46* -0.33 -0.13 0.07 −0.45* −0.43* 

Manganese peroxidase 0.52* −0.50* −0.43* −0.09 −0.68** −0.65** 

Xylase −0.33 0.24 0.22 0.18 0.07 0.05 

β-Glucosidase −0.46* 0.66** 0.68** 0.51* 0.20 0.15 

β-Glucosamidase −0.32 0.22 0.32 0.21 0.26 0.14 

Acid phosphatase −0.33 0.64** 0.64** 0.60** −0.11 −0.19 

Arylsulfatase 0.18 0.02 0.22 0.30 −0.34 −0.35 

The R-values for Pearson’s correlation coefficients, significant at P < 0.05 designated by one asterisk (*) and 
significant at P < 0.01 designated by two asterisks (**); microbial biomass carbon (MBC); microbial biomass 
nitrogen (MBN). 

 
Table 3. Percent change in FAME indicators for different microbial groups relative to the 
control site. 

Parameter 

Control No burn 3yr burn 9yr burn 

No burn 
or thin 

light 
thin 

heavy 
thin 

No 
thin 

light 
thin 

heavy 
thin 

No thin 
light 
thin 

heavy 
thin 

nmols∙g−1 % difference 

Bacteria (B) 195.1 25.1 −60.5 −30.2 34.6 12.2 −65.0 37.3 −10.7 

Gram+ 68.44 37.7 −55.2 −100 66.5 22.7 −85.6 24.7 −15.1 

i15:0 34.6 44.7 −58.2 −100 49.5 5.3 −100 14.5 −22.4 

a15:0 14.0 32.3 −44.1 −100 70.3 57.9 −100 48.2 −12.2 

i17:0 10.2 38.8 −55.0 −100 120.9 39.3 −47.2 37.6 15.8 

a17:0 9.8 19.5 −60.3 −100 64.2 16.6 −53.8 13.8 −25.6 

Gram- 106.8 16.0 −64.9 27.4 12.2 0.6 −45.4 46.1 −4.2 

cy17:0 14.6 −20.5 −73.0 17.7 2.3 −16.7 −61.3 25.1 −25.2 

cy19:0 92.2 21.8 −63.6 28.9 13.8 3.4 −42.9 49.5 −0.9 

Actinomycetes 19.8 31.3 −55.8 −100 44.9 38.3 −100 32.9 −30.6 

10-Me 17:0 6.4 17.8 −63.9 −100 31.4 −5.6 −100 9.2 −40.2 

10-Me 18:0 13.4 37.6 −51.9 −100 51.3 59.1 −100 44.1 −26.1 

Fungi (F) 182.5 18.8 −55.2 −100 27.6 27.1 −100 −11.3 −42.7 

16:1 ω5c 20.0 19.0 −54.3 −100 74.2 30.4 −100 36.9 −17.5 

18:3 ω6c 30.0 −64.1 −43.0 −100 −100 14.8 −100 −100 −100 

18:1 ω9c 132.6 37.5 −58.0 −100 49.5 29.4 −100 1.5 −33.5 

Protozoa          

20:4 ω6c 6.2 3.4 −72.1 −14.5 2.7 −17.9 −35.9 33.1 −13.4 

F/B ratio 0.9 −5.3 12.8 −100 −5.3 12.8 −100 −36.2 −36.2 

Total FAME 383.8 21.8 −58.2 −63.2 30.8 18.8 −81.2 14.1 −26.0 

Values in bold represent percent increase, while the negative values represent percent decrease in abun-
dance relative to the reference site. 
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Figure 2. Enzymatic activities involved in lignin degradation ((a) and (b)), C and N cycl-
ing ((c) and (d)), S and P cycling ((e) and (f)). Same letters imply means are not signifi-
cantly different at P < 0.05, while different lettered bars are significantly different at P < 
0.05. 
 
and at the 3-yr-burned and heavily-thinned plots. Total bacterial FAMEs showed 
similar patterns as the fungal indicators, except that the fungal FAMEs decreased 
in the 9-B/LT plots. Although not significantly different, the multivariate analy-
sis also revealed an increase in bacterial FAMEs and a decrease in fungal FAMEs, 
with increasing burning frequency. Although a similar pattern was noted for 
protozoa, the percentage (2.7% - 3.4%) difference in the lightly-thinned plots 
with respect to the control was lower than the other microbial groups in the 
no-burned and 3-yr-burned plots. The fungi: bacteria (F: B) ratio was generally 
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higher for heavily-thinned plots than the lightly-thinned plots. Gram-positive 
bacteria (i15:0, a15:0, i17:0, and a17:0), actinomycetes (10-Me17:0, 10-Me18:0), 
AMF (16:1ω5c), and saprophytic fungi (18:1ω9c), largely contributed to the mi-
crobial compositions. 

4. Discussion 
Impact of Prescribed Burning and Tree Thinning Management  
Selections 

Our study demonstrated that the C: N ratios and total C seemed not to be af-
fected by thinning practices. In fact, heavily-thinned plots without burning or 
less frequent burning (NB/HT and 9-B/HT) treatments seemed to provide more 
favorable conditions (higher pH and lower C:N ratios) for C and N mineraliza-
tion. High temperatures generated during fire treatments will change the chem-
ical structures of substrates and SOM, likely to impact post-fire soil pH, mois-
ture, and nutrient contents. Although the soil pH did not vary significantly be-
tween the nine plots, the burned plots treatments seemed to have slightly higher 
soil pH with increased burning frequency. Certini (2005) indicated significant 
increases in pH at high temperatures (>450˚C - 500˚C), especially with the com-
plete combustion of fuel and the consequent release of cation bases. Cations may 
remain onsite after burning in the form of ash or uncombusted hydrocarbons. 
However, if the ash formed is subsequently leached into the soil, they exchange 
with H+ ions, which increase the pH.  

Evaluation of all the plots using FAME profiling, as another indicator of mi-
crobial community size, revealed an increase in total FAMEs in the 
lightly-thinned plots and a decrease in the heavily-thinned plots (except in the 
3-yr burned/heavily-thinned plots) compared to the control. The decrease in the 
microbial populations (total FAME) in the heavy thinned-only plots (as with 
NB/HT) and heavy thinned plots with less frequent burning (9-B/HT), may in 
part be due to a reduction in fine root biomass in the heavily thinned plots, likely 
to reduce C availability for microbial growth. Although microbial growth and 
activities are usually limited by C availability, Kelliher et al. (2004) showed mi-
crobial activities in soils to be significantly limited by low moisture contents 
than due to C or N in the ponderosa pine forest in Oregon (Grayston & Ren-
nenberg, 2006).  

The slight increase (by 12%) in fungi:bacteria (F:B) ratio in heavily-thinned 
plots relative to the control could be attributed to the relatively high deposition 
of recalcitrant plant materials in the heavily-thinned plots. The surface addition 
of woody residues in conifer forests has been shown to increase F:B ratios (Brant 
et al., 2006; Busse et al., 2009). Studies of other forest ecosystems have shown 
that F:B ratios varied in response to forest fertility, and the relative abundance of 
bacteria increasing in response to increased fertility (Boyle et al., 2008). Howev-
er, response of F:B ratios was not detected for the heavily thinned plots with 
9-yr-burning, which may be due to a relatively high FAME (i17:0), indicative of 
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Gram-positive bacteria and reduction in fungi FAME (18:3 ω6c) indicator, not 
detected in this plot. The protozoa (20:4 ω6c) was higher in the lightly-thinned 
plots at all burned cycles and was significantly and positively correlated with the 
bacterial groups. Protozoa abundance can change microbial compositions within 
ecosystems because they feed selectively on different bacteria species (Bonkowski 
et al., 2000; Batten et al., 2006). This can lead to shifts in bacterial communities 
favoring those with a higher percentage of plant growth-promoting rhizobacte-
ria (Batten et al., 2006). 

Our study showed a decrease in microbial biomass C and N in the 9-yr 
burned plot/lightly thinned plot, reflecting significant modifications in SOM 
chemistry due to the depletion of labile C sources with the high temperatures 
leaving only recalcitrant C sources as available C substrates to soil microbial 
communities. The changes observed in a forest ecosystem with burning resemble 
the impacts of adding biochar to soils and the changes in SOM dynamics that it 
causes. Similar to this study, Kelly et al. (2015) reported that additions of 
switchgrass biochar at different levels to two different soils caused an increase in 
soil pH, decreased N mineralization and changed microbial community compo-
sitions towards a decrease in fungal populations.  Increase in bacterial FAMEs 
and decrease in fungal FAMEs may be attributed to higher soil pH associated 
with frequent burning, and increase adaptations with pyromorphic compounds 
(e.g., fire-induced charcoal). Pietikåinen & Fritze (1995) reported that burning 
favors bacterial populations over fungal populations especially in coniferous 
forest ecosystems. In this forest, the shift towards bacterial populations was 
more influenced by an increase in actinomycetes (10Me18:0) than towards other 
bacterial groups, which are generally involved in decomposition of recalcitrant 
substrates.  

Forest thinning reportedly impacts litter accumulation, soil organic matter, 
nutrient compositions and microbial substrate utilization (Cookson et al., 2008), 
which could indicate that several enzyme activities can be affected by this prac-
tice. Thinning has also been found to specifically increase laccase activity (Giai & 
Boerner, 2007) as we found in this forest ecosystem. Thinned (lightly and heavi-
ly) plots showed greater ligninolytic (laccase and MnP) activities compared to 
the no-thinned plots. These enzymes could be used to indicate the significant 
abundance and roles of basidiomycetes fungi in this forest as they are known 
producers of MnP (Hofrichter, 2002; Valášková et al., 2007; Šnajdr et al., 2008). 
Lucas et al. (2007), in a study on soil microbial communities and extracellular 
enzyme activities in a New Jersey Pinelands, found changes to the soil microbial 
community compositions that did not indicate any effect on extracellular en-
zyme metabolic activities. Laccase and manganese peroxidase are involved in the 
degradation of lignin and other recalcitrant compounds, and their increase is 
consistent with the rise in low SOM content, attributable to large amounts of 
woody debris deposited during thinning. Burning increased the rapid decompo-
sition and utilization of the relatively poor organic material because of direct 
combustion of the more labile organic matter fractions. 
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The hydrolases were more affected by thinning practices, for example, the sig-
nificantly lower β-glucosidase activities in the heavily-thinned plots can be 
linked to an increase in the deposition of woody materials with restricted access 
to cellulose, while the substantially lower enzyme metabolic activities in the 
3-yr-burned cycle plots is likely due to the shorter recovery time for the micro-
bes after prescribed burning. β-glucosaminidase activity followed a similar trend 
as β-glucosidase; however, there was no significant differences due to thinning. 
Acid phosphatase and arylsulfatase (important for P and S cycling respectively) 
showed lower activities with heavily-thinned plots compared to the control. The 
difference is possibly due to the lower plant available P and S in these plots, 
while laccase and MnP metabolic activities are associated with heavy thinning. 

5. Conclusion 

Continuous research on forest ecosystems is needed to bridge gaps in our un-
derstanding of microbial compositions and metabolic catalytic processes; given 
their significance in forest health and quality. Successful forest restoration and 
regeneration are significantly associated with the efficacy of microbes involved 
in C, N, S, and P cycling. Changes in the microbial community compositions 
and metabolisms should be considered in forest management practices. 
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