
Intelligent Information Management, 2018, 10, 99-107
http://www.scirp.org/journal/iim

ISSN Online: 2160-5920
ISSN Print: 2160-5912

DOI: 10.4236/iim.2018.104008 Jul. 11, 2018 99 Intelligent Information Management

An Optimization of Neural Network
Hyper-Parameter to Increase Its Performance

Yinxuan Fu

Cranbrook Kingswood Schools, Bloomfield Hills, MI, USA

Abstract
With the boost of artificial intelligence, the study of neural network intrigues
scientists. Artificial neural network, which was first designed theoretically in
1943 based on understanding of human brains, demonstrated impressing
computational and learning capabilities. In this paper, we investigated the
neural network’s learning capability by using a feed-forward neural network
to recognize human’s digit hand-writing. Controlled experiments were ex-
ecuted by changing the input values of different parameters, such as learning
rates and hidden layer units. After investigating upon the effects of each pa-
rameter on the overall learning performance of the neural network, we con-
cluded that, when an intermediate value of one given parameter was imple-
mented, the neural network achieved the highest learning efficiency, and po-
tential problems like over-fitting would be prevented.

Keywords
Learning Efficiency, Neural Network, Intermediate Values

1. Introduction

The human brain has always intrigued scientists. The brain’s function is very
powerful and efficient [1]. Scientists have devoted themselves for a long time to
the deciphering of brain’s structure and its power. In 1943, Warren McCulloch
and Walter Pitts together produced a theory on how the biological neural net-
work might work [2]. The computational structure became the basis on which
future development of artificial neural network (referred to as “neural network”
below) was built.

The basic structure of neural network consists of large number of artificial
neurons, which execute similar function as biological neurons, but in more ab-
stract forms [3]. Artificial neurons (referred to as “neurons” below) are sepa-

How to cite this paper: Fu, Y.X. (2018) An
Optimization of Neural Network Hy-
per-Parameter to Increase Its Performance.
Intelligent Information Management, 10,
99-107.
https://doi.org/10.4236/iim.2018.104008

Received: October 31, 2017
Accepted: July 8, 2018
Published: July 11, 2018

Copyright © 2018 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/iim
https://doi.org/10.4236/iim.2018.104008
http://www.scirp.org
https://doi.org/10.4236/iim.2018.104008
http://creativecommons.org/licenses/by/4.0/

Y. X. Fu

DOI: 10.4236/iim.2018.104008 100 Intelligent Information Management

rated into three or more layers: one input layer, one or multiple hidden layer(s),
and one output layer. Information and data enter from the input layer and are
transmitted to hidden layer neurons, through which data are analyzed and
transformed to the next layer via algorithms. To carry out its function, we must
first let the neural network “learn”, just as the human brain. We train the neural
network with certain information and data, and it will be able to analyze data
with similar traits. However, like the human brain, neural network will “behave”
differently if input data is different or if different network parameters are ap-
plied. Such parameters include learning rate (the rate at which a neural network
is adapting to new information and/or data), weights (the measure of influence
of one neuron to another), number of hidden layers, etc. [4].

In this paper, we are investigating the effects of these parameters on the neural
network. We are using a feed-forward neural network to recognize human’s di-
git handwriting. The dataset is the USPS collection of handwritten digits, which
contains images of digits that people wrote [5]. The input is a 16 by 16 image of
greyscale pixels, showing an image of a handwritten digit. We don’t implement
any image pre-processing since it is beyond the scope of this paper; therefore,
the input layer contains 256 neurons, one for each pixel. We use only one hidden
layer with multiple sigmoid (logistic) neurons. We use 10 soft max neurons for
the output layer, and each neuron represents one class among 0 to 9. The struc-
ture is shown in Figure 1.

2. Optimization

In this section, we applied different learning rates to the neural network, and ex-
plored their effects on training performance by comparing the loss on the train-
ing data [6]. We tried learning rates of 0.002, 0.01, 0.05, 0.2, 1.0, 5.0, and 20.0,
both with momentum (0.1, 0.5, and 0.9 respectively) and without momentum
[7]. The result is shown in Table 1 and depicted in Figure 2.

The results show that for each momentum, the training loss is the lowest at
either 0.2 or 1.0 learning rate, while the value is larger at very small or very large
learning rate. Figure 3 compares the behavior of the neural network at different

Figure 1. Class layer, hidden layer, and input.

https://doi.org/10.4236/iim.2018.104008

Y. X. Fu

DOI: 10.4236/iim.2018.104008 101 Intelligent Information Management

Table 1. Affect of momentums in learning rates and training loss.

(a)

Momentum = 0 Momentum = 0.1

Learning rates Training loss Learning rates Training loss

0.002 2.30428 0.002 2.30422

0.01 2.30212 0.01 2.30183

0.05 2.29297 0.05 2.29170

0.2 2.22897 0.2 2.21025

1.0 1.59884 1.0 1.52411

5.0 2.30132 5.0 2.30185

20.0 2.30259 20.0 2.30259

(b)

Momentum = 0.5 Momentum = 0.9

Learning rates Training loss Learning rates Training loss

0.002 2.30372 0.002 2.30014

0.01 2.29971 0.01 2.28402

0.05 2.28010 0.05 2.00861

0.2 1.99455 0.2 1.08343

1.0 1.13944 1.0 2..01872

5.0 2.30255 5.0 2.30259

20.0 2.30259 20.0 2.30259

Figure 2. Training loss and learning rates.

momentum. We can see that the training loss value is smaller with momentum,
and in our case, the value is the smallest at the biggest momentum (momentum
= 0.9). Therefore, momentum is a good way to accelerate the training process.
However, since the biggest momentum in our experiment is 0.9, we cannot

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

0 5 10 15 20 25

Tr
ai

ni
ng

 L
os

s

Learning Rates

Momentum = 0 Momentum = 0.1

Momentum = 0.5 Momentum = 0.9

https://doi.org/10.4236/iim.2018.104008

Y. X. Fu

DOI: 10.4236/iim.2018.104008 102 Intelligent Information Management

Figure 3. Behavior of the neural network at different momentum.

conclude that the behavior of the neural network with very large momentum
would be better. In practice, we expect that too large momentum will also dete-
riorate the learning performance, which is known as “overshooting”.

The neural network converges faster if the loss on the training data is smaller
at certain iterations. From the data above, we can conclude that the best learning
rate at which the neural network works falls at a specific range, in our case be-
tween 0.2 and 5.0, varying due to different momentum. With extremely small
learning rate values (i.e. very close to 0), it would take very long time to train the
neural network. On the other hand, with extremely large learning rate values, the
neural network may draw unnecessary information from the data, and thus also
decrease the efficiency of the training.

3. Generalization

In this step, we are trying to find a good generalization for the neural network by
examining the classification loss on the validation data. We first investigate early
stopping as the easiest way to improve network generalization [8]. As the num-
ber of iterations increases, the neural network may draw unnecessary informa-
tion from the data (over-fitting) and thus generate worse results [9], which make
the validation loss bigger. Early-stopping is a way to increase neural network’s
efficiency by choosing the model at the lowest validation loss, which will reduce
the chance of over fitting. We first ran the code without early stopping. Figure 2
shows the behavior of the neural network without early stopping. The validation
data loss increased after approximately 200 iterations, which is a sign of over fit-
ting. We then turned on early stopping. MATLAB shows that the validation loss
was lowest after 161 iterations, which fitted the graph. Thus, by using ear-

https://doi.org/10.4236/iim.2018.104008

Y. X. Fu

DOI: 10.4236/iim.2018.104008 103 Intelligent Information Management

ly-stopping, we reduce the number of calculations by a great extent while getting
better results: the validation loss was 0.43019 without early stopping and 0.33451
with early stopping.

We then ran the data with different weight decay (wd) coefficients [10]. The
wd coefficient is a measure of preference on how simple we want our model to
be. With larger value of coefficient, the neuron adds a bigger “weight” penalty to
the overall loss function, and thus pushes the “weights” to be relatively smaller.
The data in Table 2 and Figure 4 shows the results. Figure 5 is a zoomed-in
picture of the results where wd coefficient is in the range between 0 and 0.01.

The pattern is similar to that of learning rates. The lowest value of validation
loss occurs in a specific range, in our case between wd coefficient of 0.0001 and
0.01. As wd coefficient goes toward extreme values (either close to 0 or infinity),
the efficiency of the neural network decreases. This is reasonable. If a certain da-
ta is multiplied by too big or too small weight values, it would affect the overall
summation by a significant degree, and thus decrease the efficiency of the neural
network.

Another possible solution for overfitting is to regularize the number of hidden
units [11]. Overfitting means that the neural network is drawing too much in-
formation from the data, many of which are necessary or unrelated. The training
result of such neural network would be biased. For example, given images of 100
red apples and 10 green apples, a normal neural network may conclude that ap-
ples are round with a short stem on the top, while an overfitting neural network
would see the color of red as a feature of apple and see the green apples as out-
liers. To reduce the possibility of overfitting, we reduce the number of hidden
layer units to decrease the calculation capacity of the neural network. The results
are shown in Table 3 and Figure 6.

The data and graph demonstrate similar results as above that the best genera-
lization occurs at a specific value, in this case, between hidden units 10 and 100.
It is thus reasonable to conclude that different means of regularization would all
work with the best efficiency at a certain value of that parameter.

What if we combine different ways of regularization methods? Would it gen-
erate even better results [12]? Here we combined the parameter of hidden layer
units with early stopping. We implemented 38 neurons for the hidden layer,

Table 2. Wd coefficient-validation loss.

Wd coefficient Validation loss

0 0.430185

0.0001 0.34829

0.001 0.28791

0.01 0.50976

1 2.30259

5 2.30259

https://doi.org/10.4236/iim.2018.104008

Y. X. Fu

DOI: 10.4236/iim.2018.104008 104 Intelligent Information Management

Table 3. Hidden layers units-validation loss.

Hidden Layers Units Validation Loss

10 0.42171

30 0.31708

100 0.36859

130 0.3976

200 0.430185

Figure 4. Validation loss-WD coefficient.

Figure 5. Validation loss-WD coefficient.

which achieves the best results in above experiments. Figure 7 shows a compar-
ison of data with and without early stopping. The data with early stopping exhi-
bits lower validation loss values. The absolute minimum is ever lower than that
of the data without early stopping (0.28683 compared to 0.31708).

0

0.5

1

1.5

2

2.5

3

-1 0 1 2 3 4 5 6

Va
lid

at
io

n
Lo

ss

WD Coefficient

0

0.1

0.2

0.3

0.4

0.5

0.6

-0.002 0 0.002 0.004 0.006 0.008 0.01 0.012

Va
lid

at
io

n
Lo

ss

WD Coefficient

https://doi.org/10.4236/iim.2018.104008

Y. X. Fu

DOI: 10.4236/iim.2018.104008 105 Intelligent Information Management

Figure 6. Validation loss-hidden layer units.

Figure 7. Validation loss-hidden layer units.

4. Initialization

In this section, we first implemented Restricted Boltzmann machine (RBM) to
learn the feature of USPS data in an un-supervised fashion [13]. Then, we trans-
fer the RBM weights into the weights of the input layer of our neural network as
their initialization [14]. The RBM can generate a distribution of different
weights to find the image feature better. Thus, we are using RBM’s pre-trained
results to produce best initialized weight values for the input neurons in order to
increase the training efficiency of the neural network and get even greater accu-
racy on the validation datasets. Since we used the pre-trained model and thus
did not worry about over-fitting too much in this case, we set the hidden layer
size of our neural network to be 300, and compared the loss on the validation
data with transferred initialized weights to that with randomly initialized
weights. The former value was 0.058 and the latter value was 0.094 (shown in
Table 4), which showed a significant difference. With good initial weights, we

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 50 100 150 200 250
Va

lid
at

io
n

Lo
ss

Hidden Layer Units

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250

Va
lid

at
io

n
Lo

ss

Hidden Layer Units

without early-stopping with early-stopping

https://doi.org/10.4236/iim.2018.104008

Y. X. Fu

DOI: 10.4236/iim.2018.104008 106 Intelligent Information Management

Table 4. Validation loss.

 Validation Loss

a3_rbm_w 0.056

a3 0.091

can reduce the possibility of over-fitting by a great degree. When implemented,
the code functions so that the neural network works to discover relevant infor-
mation in the distribution of the input images. It means that the neural network
will not focus only on the difference of the digit class labels, but will also analyze
other information from the input data. In comparison to early-stopping the
model in only a few iterations, this method makes the neural network work on
something else which is also valuable.

In the process above, we turned off early-stopping to investigate solely on the
effects of good weight-initialization. Now we turn on early-stopping to see if
another regularization method would affect the results. The new validation loss
with carefully weights initialization is 0.058 which is bigger than the loss without
early-stopping but not significantly. Therefore, implementing early-stop is not
necessary in our case when we have a good weight initialization.

5. Conclusion

As we explore the effects of different parameters on the feed-forward neural
network, we discover the pattern that the best model is generated when the im-
plemented parameter falls at an intermediate value. It is surprisingly similar to
the learning pattern of human brain: learning too slow or having too few neu-
rons to process the learned information would harm the learning efficiency, but
learning too fast or thinking too much on a simple topic would also decrease the
productivity. As we dig deeper into the function of neural network, we could al-
so decipher more about the secrets of human brains.

References
[1] Thomas, M.S. and McClelland, J.L. (2008) Connectionist Models of Cognition.

Cambridge handbook of Computational Cognitive Modelling, 23-58.
https://doi.org/10.1017/CBO9780511816772.005

[2] McCulloch, W.S. and Pitts, W. (1943) A Logical Calculus of the Ideas Immanent in
Nervous Activity. The Bulletin of Mathematical Biophysics, 5, 115-133.
https://doi.org/10.1007/BF02478259

[3] Preparata, F.P. and Shamos, M.I. (1985) Computational Geometry: An Introduc-
tion. Springer, New York, 1-35. https://doi.org/10.1007/978-1-4612-1098-6

[4] Werbos, P.J. (1974) Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences. Doctoral Dissertation, Harvard University, Cambridge.

[5] Khosravi, H. and Kabir, E. (2007) Introducing a Very Large Dataset of Handwritten
Farsi Digits and a Study on Their Varieties. Pattern Recognition Letters, 28,
1133-1141. https://doi.org/10.1016/j.patrec.2006.12.022

https://doi.org/10.4236/iim.2018.104008
https://doi.org/10.1017/CBO9780511816772.005
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1016/j.patrec.2006.12.022

Y. X. Fu

DOI: 10.4236/iim.2018.104008 107 Intelligent Information Management

[6] Jin, W., Li, Z.J., Wei, L.S. and Zhen, H. (2000) The Improvements of BP Neural
Network Learning Algorithm. 2000 5th International Conference on Signal
Processing Proceedings, Beijing, 21-25 August 2000, 1647-1649.

[7] Attoh-Okine, N.O. (1999) Analysis of Learning Rate and Momentum Term in
Backpropagation Neural Network Algorithm Trained to Predict Pavement Perfor-
mance. Advances in Engineering Software, 30, 291-302.
https://doi.org/10.1016/S0965-9978(98)00071-4

[8] Caruana, R., Lawrence, S. and Giles, C.L. (2001) Overfitting in Neural Nets: Back-
propagation, Conjugate Gradient, and Early Stopping. Neural Information
Processing Systems, 402-408.

[9] Tetko, I.V., Livingstone, D.J. and Luik, A.I. (1995) Neural Network Studies. 1.
Comparison of Overfitting and Overtraining. Journal of Chemical Information and
Computer Sciences, 35, 826-833. https://doi.org/10.1021/ci00027a006

[10] Krogh, A. and Hertz, J.A. (1992) A Simple Weight Decay Can Improve Generaliza-
tion. Neural Information Processing Systems, 950-957.

[11] Baum, E.B. and Haussler, D. (1989) What Size Net Gives Valid Generalization?
Neural Information Processing Systems, 81-90.

[12] Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer, New
York.

[13] Salakhutdinov, R., Mnih, A. and Hinton, G. (2007) Restricted Boltzmann Machines
for Collaborative Filtering. Proceedings of the 24th International Conference on
Machine Learning, Corvalis, 20-24 June 2007, 791-798.
https://doi.org/10.1145/1273496.1273596

[14] Knerr, S., Personnaz, L. and Dreyfus, G. (1990) Single-Layer Learning Revisited: A
Stepwise Procedure for Building and Training a Neural Network. Neurocomputing:
Algorithms, Architectures and Applications, 68, 71.
https://doi.org/10.1007/978-3-642-76153-9_5

https://doi.org/10.4236/iim.2018.104008
https://doi.org/10.1016/S0965-9978(98)00071-4
https://doi.org/10.1021/ci00027a006
https://doi.org/10.1145/1273496.1273596
https://doi.org/10.1007/978-3-642-76153-9_5

	An Optimization of Neural Network Hyper-Parameter to Increase Its Performance
	Abstract
	Keywords
	1. Introduction
	2. Optimization
	3. Generalization
	4. Initialization
	5. Conclusion
	References

