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Abstract 
In this paper, we study the nonexistence of solutions of the following time 
fractional nonlinear Schrödinger equations with nonlinear memory  
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where 0 1α γ< < < , iα  denotes the principal value of iα , 1p > , 0T > , 

{ }\ 0λ∈ , ( ),u t x  is a complex-value function, 1
0 tI γ−  denotes left 

Riemann-Liouville fractional integrals of order 1 γ−  and 0
C

tD uα  is the 
Caputo fractional derivative of order α . We obtain that the problem admits 

no global weak solution when ( )2 1
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under different conditions for initial data. 
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1. Introduction 

This paper is concerned with the nonexistence of solutions to the Cauchy 
problem for the time fractional nonlinear Schrödinger equations with nonlinear 
memory  
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where 0 1α γ< < < , iα  denotes principal value of iα , 1p > , 0T > , 
{ }1 2 1 2\ 0 , ,iλ λ λ λ λ= + ∈ ∈  , ( ),u u t x=  is a complex-valued function, 

( ) ( ) ( )1 2g x g x g x i= + , ( )1g x  and ( )2g x  are real-valued functions. 1
0 tI γ−  

denotes left Riemann-Liouville fractional integrals of order 1 γ−  and  

( ) ( )( )1
0 0 , 0,C

t tD u I u t x u x
t

α α−∂
= −
∂

. 

For the nonlinear Schrödinger equations without gauge invariance (i.e. 
1α γ= = ),  
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Ikeda and Wakasugi [1] and Ikeda and Inui [2] [3] proved blow-up results of 
solutions for (2) under different conditions for  

21 1p
N

< < +  and 41 1p
N

< < + .  

The main tool they used is test function method. This method is based on 
rescalings of a compactly support test function to prove blow-up results which is 
first used by Mitidieri and Pohozaev [4] to show the blow-up results. 

Recently, it has been seen that fractional differential equations have better 
effects in many realistic applications than the classical ones. So, considerable 
attention has been attracted to time fractional diffusion equation which arises in 
electromagnetic, acoustic and mechanical phenomena etc. [5], and is derived 
from classical diffusion equation by replacing the first-order time derivative by a 
fractional derivative of order α  with ( ]0,1α ∈ . Fractional diffusion equation 
was explicitly applied to physics by Nigmatullin [6] to describe diffusion in 
media with fractal geometry (special types of porous media). There are many 
papers about the existence and properties of solutions for fractional differential 
equation, see for example [7] [8] [9] [10] [11] and the references therein. 

For nonlinear time fractional Schrödinger equations (i.e., (1) with 1γ = ), 
Zhang, Sun and Li [12] studied the nonexistence of this problem in ( )0

NC R  
and proved that the problem admits no global weak solution with suitable initial  

data when 21 1p
N

< < +  by using test function method, and also give some  

conditions which imply the problem has no global weak solution for every 
1p > . 

In [13], Cazenave, Dickstein and Weissler considered a class of heat equation 
with nonlinear memory. They obtained that the solution blows up in finite time 
and under suitable conditions the solution exists globally. In [14], using test 
function method, the authors considered a heat equation with nonlinear 
memory, they determined Fujita critical exponent of the problem. 

Motivated by above results, in present paper, our purpose is to study the 
nonexistence of global weak solutions of (1) with a condition related to the sign 
of initial data when  
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( )2 1
1 1p

N
α γ
α
+ −

< < +  and 11 1p γ
α
−

< < + . 

This paper is organized as follows. In Section 2, some preliminaries and the 
main results are presented. In Section 3, we give proof of the main results. 

2. Preliminaries and the Main Results 

For convenience of statement, let us present some preliminaries that will be used 
in next sections. 

If ( )1
0 0,C

tD f L Tα ∈ , [ ]( )1 0,g C T∈  and ( ) 0g T = , then we have the 
following formula of integration by parts  
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d 0 d .

T TC C
t t Tg D f t f t f D g tα α= −∫ ∫               (3) 

We need calculate Caputo fractional derivative of the following function, 
which will be used in next sections. For given 0T >  and 0n > , if we let  
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(see for example [15]). 
Now, we present the definition of weak solution of (1).  
Definition 2.1. Let ( )1 N

locg L R∈ , 0 1α γ< < <  and 0T > , we call 
( ) ( )( )0, ,p N

locu L T L R∞∈  is a weak solution of (1) if  

( ) ( ) ( )1
00 0

d d d dN N

T Tp C C
t t T t TR R

I u i g x D t x u i D t xγ α α α αλ ϕ ϕ ϕ ϕ− + = ∆ +∫ ∫ ∫ ∫  

for every [ ]( )2,1
, 0,N

x tC R Tϕ∈ ×  with N
xsupp Rϕ ⊂⊂  and ( ), 0x Tϕ = . 

Moreover, if 0T >  can be arbitrarily chosen, then we call u is a global weak 
solution for of (1).  

Denote  

( ) ( ) ( )1 1 2
π πcos sin
2 2

G x g x g xα α
= − , ( ) ( ) ( )2 2 1

π πcos sin
2 2

G x g x g xα α
= +   

and 1β γ= − . 

The following theorems show main result of this paper.  

Theorem 2.2. Let ( )2
1 1p

N
α β
α
+

< < + . If ( )1 Ng L∈   and satisfies  

( ) ( )1 1 2 2d 0, or d 0,N NG x x G x xλ λ> >∫ ∫
 

 

then problem (1) admits no global weak solution.  

Theorem 2.3. If 1 1p β
α

< < + , let ( )
2 22 2

1

e d eN
N x N xx xχ

−
− + − + =  

 ∫


. If 
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( )
1

Ng L∈


 and satisfies  

( ) ( ) ( ) ( )1 1 2 2d 0, or d 0,N NG x x x G x x xλ χ λ χ> >∫ ∫ 
 

then problem (1) admits no global weak solution.  

3. Proofs of Main Result 

In this section, we prove blow-up results and global existence of mild solutions 
of (1). 

Proof of Theorem 2.2. If  

( )2
1 1p

N
α β
α
+

< < + ,  

for the case ( )1 1 d 0NG x xλ >∫ , we may as well suppose that 1 0λ >  and 
( )1 d 0NG x x >∫ . Let ( )0

NC∞Φ∈   such that ( ) 1sΦ =  for 1s ≤ , ( ) 0sΦ =  
for 2s >  and ( )0 1s≤ Φ ≤ . For 0T > , we define  
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p
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Let ( ) ( ) ( )1 2, C
t Tx t D x tβϕ ϕ ϕ= . Assuming that u is a weak solution of (1), and 

since 1α β+ < , we have  
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that is  
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Note that  
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for some positive constant C independent of T. Then, by (4), (5) and Hölder 
inequality, we have  
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Hence  
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Since 
( )2

1p
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< + , we have 
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2 1
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−

. Therefore, if 

the solution of (1) exists globally, then taking T →∞ , we obtain  

( )1 d 0,NG x x ≤∫  

which contradicts with the assumption. 
For case ( )2 2 d 0NG x xλ >∫ , we have  
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Then by a similar proof as above, we can also obtain a contradiction. 
Proof of Theorem 2.3. We only consider the case 1 0λ >  and 

( ) ( )1 d 0NG x x xχ >∫ , since other cases can be proved by a similar method. Take 

( )0
NCψ ∞∈   such that  
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1, 1,
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x
x

x
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and ( )0 1xψ≤ ≤ , Nx∈ . Let ( ) , 1, 2,n
xx n
n

ψ ψ  = = 
 

 . Suppose that u is a 
bounded weak solution of (1), taking  
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and define ( ) ( ) ( )1 2, C
t Tx t D x tβϕ ϕ ϕ= , then using the definition of weak solution 

of (1) and since 1α β+ < , we derive that  
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by (6) and dominated convergence theorem, let n →∞ , we have  

( ) ( )1 2 1 2 20
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2 20
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2 2N
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    (7) 
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Hence, by Jensen’s inequality and (7), we have  

( ) ( ) ( )1 2 1 2 20 0

2 20

π πd cos sin d d
2 2

3 d d .

N N

N

pT T C
t T

T C C
t T t T

u tdx g x g x D t x

u D u D x t

α β

β α β

α α
λ χ ϕ χ ϕ

χ ϕ χ ϕ

+

+

 + − 
 

≤ +

∫ ∫ ∫ ∫

∫ ∫

 



 

Denoting ( ) dNf t u xχ= ∫ , and ( ) ( )1 2
π πcos sin d
2 2NA g x g x xα α
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then we have  
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Thus,  
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So,  
( )

1 1
p
p pA C T T

α ββα β
− +

+ −
− −
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,  

since 1p β
α

< + , we get 0A ≤  by taking T →∞ , which contradicts with the  

assumption. Therefore, if [ )( )0, ;Nu C T R∈ ×  is a solution of (1), then 
T < +∞ . 
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