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Abstract 
A hierarchical scheme for clustering data is presented which applies to spaces 
with a high number of dimensions ( 3DN > ). The data set is first reduced to a 
smaller set of partitions (multi-dimensional bins). Multiple clustering tech-
niques are used, including spectral clustering; however, new techniques are 
also introduced based on the path length between partitions that are con-
nected to one another. A Line-of-Sight algorithm is also developed for clus-
tering. A test bank of 12 data sets with varying properties is used to expose the 
strengths and weaknesses of each technique. Finally, a robust clustering tech-
nique is discussed based on reaching a consensus among the multiple ap-
proaches, overcoming the weaknesses found individually. 
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1. Introduction 

Clustering is a fundamental technique and methodology in data analysis and 
machine learning. The explosion of the field of data science has, consequently, 
led to an expansion in how this notion is applied. In this respect, it would be more 
appropriate to refer to clustering as data organization, which would encompass the 
ideas of 1) data reduction, 2) data identification, 3) data clustering, and 4) data 
grouping. 

Data reduction is the process of converting raw data into a form that is more 
amenable for the application of a specific analytical and/or computational metho-
dology. Data identification is the process of analysing trends or distributions 
within the data. Data clustering is the process of associating data through prox-
imity, similarity, or dissimilarity. Data grouping refers to breaking down data 
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into groups according to a criterion that is appropriate for the specific applica-
tion under consideration. 

The literature on clustering is extensive and it is beyond the scope of this pa-
per to provide an adequate review of this topic. The following papers [1] [2] [3] 
[4] provide background on the clustering methods in this paper and the book [5] 
provides a broad overview of clustering methodologies, as well as their numeri-
cal implementation. 

There is no single algorithm that realizes all four of these aspects of data or-
ganization. The approach to this problem pursued in this paper is to develop a 
hierarchical scheme leading to a cluster analysis that encompasses the issues 
raised above and adapts to high dimensional spaces. 

The data analysis scheme presented in this paper uses a blend of traditional 
data analysis via a multivariate histogram along with standard clustering tech-
niques, such as k-means, k-medoids and spectral clustering. By binning the data 
onto a multi-dimensional grid, data is partitioned into regions on the grid which 
may be connected or separated depending on the character of the data set. Data 
reduction is realized by only retaining bins that have a population above a user 
selected threshold. The resulting multidimensional bins are referred to as parti-
tions. The passage to partitions is the data reduction step. 

Data identification is the process of assigning known data distributions (par-
ent) to an entangled set of data. Typical examples are found in the literature of 
Bayesian analysis [6] [7], however, this pursuit dates farther back to earlier at-
tempts to understand how to distinguish data from two or more distributions 
with overlapping tails. In more difficult scenarios, several distributions might 
overlap within the peak regions, changing the problem to the identification of 
subdomains of the mixed versus non-mixed distributions. 

Data clustering traditionally refers to assigning data to subsets based on the 
proximity of data to one another. The goals of the field of data clustering have 
expanded from this definition, taking on some of the other roles identified here. 
For the purposes of this study, the term clustering will refer to both the overall 
techniques applied as well as the specific property a set has when its members 
are close to one another when appropriate. In the broadest sense, a cluster is 
simply a label given to data to identify common features. 

Data grouping is the process of assigning labels to data, without regard for 
proximity or parent distributions. An example might be to segregate a class of 
thirty 2nd grade children into five subgroups before entering a museum for a tour. 
How the larger group is broken apart is unimportant, merely that the larger 
group is distributed into smaller groups. 

In this study, standard clustering techniques are applied such as k-means, 
k-medoids and spectral clustering, along with new path-based approaches. After 
data reduction, data within partitions may be connected in regions where a path 
length can be calculated along the grid of partitions between any two data. Sev-
eral new clustering algorithms have been developed using the path length. Fur-

https://doi.org/10.4236/jdaip.2018.63007


K. Mcilhany, S. Wiggins 
 

 

DOI: 10.4236/jdaip.2018.63007 95 Journal of Data Analysis and Information Processing 
 

ther, if two partitions are visible to each other by a Line-of-Sight criterion, the 
relationship between them is given additional significance. These ideas are used, 
in conjunction with standard clustering techniques, to construct 26 different 
clustering algorithms. 

This paper presents five new variations of approaches to data clustering:  
1) Data reduction is achieved by segmenting the data set into partitions.  
2) Data clustering is sought using path lengths as a distance metric.  
3) Data clustering is achieved using a Line-of-Sight criterion.  
4) Spectral clustering is sought using alternatives to the graph Laplacian and 

the eigenspace formed.  
5) Final cluster assignment is accomplished using a consensus among multiple 

clustering techniques.  
An analysis configuration is the set of choices made that determines how a 

study is performed. The three most important choices are which clustering tech-
niques out of the 26 available to use; what variables are used to describe the data, 
where each variable is a dimension in the data space; the number of bins chosen 
along each dimension. Changes to the resolution of how the data space is parti-
tioned may lead to changes in a datum’s cluster assignment. For each choice of 
clustering technique, variables used (dimensions) and resolution (binning), each 
datum is assigned to a cluster. When data consistently cluster in one arrange-
ment across multiple analysis configurations, the data is assigned robustly to its 
cluster. To determine a robust clustering assignment, a polling technique is used 
to arrive at a consensus amongst the clustering algorithms. While any one tech-
nique has faults, the consensus of techniques overcomes any one failure mode, 
giving the best all-round identification [8]. 

This paper is organized as follows: Sections 2 and 3 define the basic compo-
nent used in this study, the partition. Section 4 shows the calculations of several 
values used throughout the analysis. Section 5 discusses a Line-of-Sight criterion. 
Section 6 outlines the strategy taken for this study and it lists the comprehensive 
set of arrays calculated that are needed for the suite of algorithms. This section 
also introduces a test-bank of data sets used for clustering. Section 7 presents 
each algorithm, with details left for the appendix. Section 8 shows the results for 
each clustering algorithm, discussing the strengths and weaknesses of each ap-
proach. Section 9 introduces the approach to robust clustering, employing mul-
tiple techniques and how a consensus is reached. Section 10 concludes with sug-
gestions for extending this suite of clustering techniques. Throughout this paper, 
matrices and vectors are shown in bold face, while components are given sub-
scripts. 

2. Reduction of Data to Partitions 

In this study, data refer to collection of real values forming a vector, { }DNx= ∈x , 
residing in a data space of dimension, DN , whose elements total N. Along each 
dimension of the data space, the data is coarsely delineated into a set of bins, 
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{ },1i B ib N∈   where 1 Di N=   and ,B iN  is the number of bins per dimen-
sion. For each datum, the collection of indices form a bin address vector, 

{ }DNb= ∈b  giving the unique location of a bin within the data space. Each 
bin is given a unique index, k , serialized by the expression given below. Within 
each bin, multiple data may reside, where kw



 is the number of elements in each 
bin (population).  

( )
1

, ,0
1 0

1   1,  where 1.
DN i

i B q B
i q

k b N N
−

= =

 
= − + = 

 
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(1) 

The maximal value the single index, k , can take is the total number of possi-
ble bins in the data space, given by the product of the number of bins, 

,1
DN

B ii N
=∏ . Even though a data set may be large ( 910≈ ), the number of possible 

bins can be much larger. Consider the case with a billion data points and a data 
space of 12 dimensions, each using 10 bins (very coarse), yielding 1012 possible 
bins. Depending on how the data is distributed, most likely the data will reside 
in small groupings within the data space, leaving much of the domain sparse. 

3. Reduction of Partitions to Clusters 

The data has been reduced to a set of bins, { }2,k k w= ∈   identified by an in-
dex and a population of only those bins containing data. The number of bins 
maybe be further reduced based on the population of the bins. Low density bins 
can be excluded from further study by either setting a threshold ( popΘ ) on the 
minimal number of data per bin, or by setting a threshold ( percΘ ) based on the 
cumulative percentage of the low density bins with respect to the total population 
of all the data. The set   contains the bins of data which will be considered 

( ){ }, or ,k pop perckk w w k N = ⊂ > Θ > Θ 
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 , with ( )sortk kw w′ = 

. 

for clustering. The bin index, k , is mapped to a sequential list of indices, 
1 Pk N=  , where the total number of bins under consideration, PN , will be re-

ferred to as partitions, with the vector of populations, { }kw= ∈w , for each par-
tition addressed by k, and the partition data space given by, { }2 ,k w= ∈ . 
All calculations for this study are performed on the partition data space, P , 
which represents the integer-based grid of bin locations. The complimen-
tary data space of either empty or low population partitions is given by 

{ } o
k Pk k= ∈ ∉   . 

Clusters are subsets of data grouped based on a common feature. Cluster al-
gorithms use a criterion to delineate data, which are then gathered by some me-
chanism and then assigned to clusters. Traditional definitions rely on proximity 
of data to one another, yet clustering can also be defined as a simple grouping of 
the data, which could be based alphabetically, by income, or some property that 
is difficult to map numerically such as an objects shape. Proximity alone can fail 
to cluster data appropriately when considering data distributed along tails of 
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distributions far from a centroid, such as a horseshoe. By altering the definition 
of “proximity” to include distance measures such as path length, clustering can 
still be viewed as a local grouping. This paper explores multiple clustering algo-
rithms to later sort the clustering assignments into groupings reached by con-
sensus. 

4. Intermediary Calculations 

Several calculations are common to multiple techniques which require only the 
partition bin address vector. These low level calculations define geometrical fea-
tures of how the partitions are related to one another. Calculations between two 
partitions form matrices indexed by [ ],k  . Specific algorithms for each calcula-
tion can be found in the supplemental material online. The distances calculated 
here fall into two broad categories; path lengths, where the distance measured is 
between partitions connected to one another, and global, where a connection is 
not required. Among path lengths, two further distinctions are made; stepwise, 
where the distance is the sum of values from one partition to the next, and 
pathwise, where the distance is the sum of values added from the start of the 
path to the current partition for each step taken. The block of equations shown 
here are described in the following text.  

, ,i i k i= −


b b b∆       2
1
DN

ii== ∑R b∆ ∆   
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( )diagΤ = ⊗ −ww w w w      k= −


w w w∆  

The Euclidean distance is calculated between all partitions in  . First, the 
difference between two partitions bin address’ are calculated for each compo-
nent, ib∆ . The distance, R∆ , is then calculated from the sum over 2

ib∆ . The 
first nearest neighbor matrix, NN1 , defines the distance between any two bins 
that are in contact with one another. Two partitions are in contact with one 
another if there exists no bin address component difference greater than one in 
magnitude, leading to the interpretation that they share a common geometric 
feature; a point, line, area, etc... The matrix, NN1 , is the adjacency matrix 
weighted by Euclidean distance, R∆ . As each partition is a unit hypercube, the 
distances range from { }1 DN . 

The path length, L2 , is the distance between any two partitions taken by 
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stepping from one partition to another through NN1 steps, summing R∆  
along the path stepwise, where the initial partition is k, interim partitions, j, up 
to the final partition, ℓ. Partitions are connected when a path is found, and for 
partitions having no connecting path, the path length is set to ∞. The number of 
steps taken between any two partitions is the Path Count, CP . 

In order to find if two partitions meet a Line-of-Sight (LOS) criterion, only 
paths that fall within the convex hull formed between the two partitions are con-
sidered. For each connecting path found, six values are calculated to determine 
the LOS criteria. The true path length, TL2 , assumes a straight path exists be-
tween two partitions, giving the stepwise length formed taking the least number 
of NN1 steps with the smallest L2  values possible. The Summed L1 length, 

L1Σ , is the summation of the pathwise L1  distances taken from the initial 
partition to each subsequent partition along a path. The Minimal Summed L1 
path is the unique path with the least possible minL1Σ , while the True Summed 
L1 distance is the TL1Σ  taken along the straight path established earlier. Final-
ly, variance of the squared difference along a path, VARL1Σ , is taken between 
the Summed L1 norm to the True Summed L1 norm along each step of a path. 
From these values, the true path is found which tests the LOS criteria. 

The following calculations are performed before any paths are sought as 
they do not require knowledge of the exact path found, merely the endpoints 
which give the dimensions of the convex hull containing the two partitions 
[ ],k  ; ib∆ , NN1 , R∆ , TL2 , L1 , minL1Σ  and TL1Σ . The remaining 
three employ Dijkstra’s algorithm ([9]) and variations of it to calculate the 
shortest path lengths of: L2  (stepwise), L1Σ  (pathwise), and VARL1Σ  
(pathwise). 

Several calculations require that the partitions be weighted by the product of 
the populations of [ ],k  , leading to, Τww , the outer product formed from the 
population vector taken with itself minus the weights along the diagonal to ac-
count for the self-weighting within a single partition. Further, the difference be-
tween two partitions populations is also needed, leading to the matrix, ∆w .  

5. Line-of-Sight (LOS) Criterion 

A Line of Sight (LOS) criterion is introduced in this paper as a means to cluster 
data which gives additional significance to data while being independent of 
proximity. This approach assumes that data within a convex region of other data 
are likely to be associated together. When seeking the LOS criteria, the data 
space is divided into two broad subdomains, those partitions filled with suffi-
cient data above threshold, and those partitions containing little or no data 
(≈empty space). Within the filled regions of space, Dijkstra’s algorithm is em-
ployed to find which partitions are connected to each other via a path and to 
measure the path length. Partitions of the empty set, o , are viewed as ob-
stacles to paths within k . By analogy, the empty set serves to prevent LOS just 
as walls prevent continuity in vision. 
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The criteria used to establish a Line-of-Sight (LOS) between two partitions re-
lies on the pathwise summation of L1 distances along the path taken from [ ],k  . 
This distance has the property that when traversing a grid from [ ],k  , the dis-
tance calculated is different than when returning from [ ],k . The asymmetry of 
this measure proves useful in determining the LOS condition. Figure 1 illu-
strates how the distance is asymmetric with regard to the path taken. Three con-
ditions must be met if two partitions are LOS:  

1) A path must exist between [ ],k   that does not exit the convex hull, re-
quiring = TL2 L2 .  

2) The path found must take a direct path between [ ],k  , requiring that 
≤ TL1 L1Σ Σ .  

3) The path found must follow the direct path, requiring ( )22≤VAR CL1 PΣ .  
Dijkstra’s algorithm finds the minimal path taken between two points on a 

grid given an adjacency matrix, NN1 , giving the path length, L2 . Figure 1 il-
lustrates that multiple paths have the same value for L2 , forming a parallelo-
tope of possible paths each with the same minimal value. The true path length 
can be found simply by summing NN1  steps along the edge of the parallelo-
tope, giving TL2 . If L2  exceeds TL2 , the path found by Dijkstra has left the 
convex hull, leading to the first criteria. 

To find the pathwise L1Σ  value, the adjacency matrix is altered, taking the 
row from L1  for the kth partition and multiplying by every row of the logical 
matrix, 0>NN1 ; in this way, the adjacency matrix presented to Dijkstra’s  

 

 
Figure 1. Illustrating various paths from the kth partition (cyan) to the ℓth (orange). Panel 
(a) shows the direct (true) path and the nearest neighbor steps required to follow that 
path. Panel (b) shows that the same path length can be taken along either of the edges of a 
parallelogram, bounded by the convex hull formed by [ ],k  . The last Panel (c) shows 

how to extend the idea into higher dimensions, where the red segments take steps of 3 , 
the green steps are 2  and the blue are unit steps. The grey partitions represent; (a) the 
true path, (b) the summed L1 minimal path and (c) the summed L1 maximal path. The 
summed L1 path values increase monotonically from the minimal path to the maximal 
path, which in panel (b) is from the upper edge of the parallelogram to the lower edge, 
respectively.  
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algorithm in a second round finds the minimal pathwise value from [ ],k  . For 
an open region (no obstacles), the minimal summed L1, minL1Σ , path is along 
the edge of the parallelotope.  

Table 1 shows the calculation of L1Σ  for both the minimal value as well as 
the maximal value from [ ],k  , explaining why L1Σ  is asymmetric. The exam-
ple shown assumes that all paths between [ ],k   are possible, i.e. there are no 
obstructions. From the table, the sum of L1 steps is easier to calculate when 
viewed along each dimension. The minimal path takes the smallest size steps 
first, then increasing in size until the final partition is reached. In this manner, 
the sum of steps along each dimension is simply the summation of ( )1 1

2
n n +  

for each dimension along the convex hull. When traversing the maximal path, 
the largest steps are taken first, proceeding to the smallest steps taken last. In this 
case, a similar summation occurs, however, an additional amount for each di-
mension is added because the path starts farther away from the initial point, 
which then adds successively along the path. The L1Σ  matrix will be asymme-
tric as the minimal path from [ ],k   will not be the same from [ ], k . When 
following the minimal path according to Dijkstra from [ ], k , the path found 
follows the far opposite edge of the parallelotope, which is equivalent to the 
maximal L1Σ  from [ ],k  . The two extrema of the parallelotope between 
[ ],k   represent the farthest paths that can be taken within the convex hull while 
always moving closer to the endpoint. The average between the two values of 

minL1Σ  and maxL1Σ  is the true path TL1Σ . 
When sufficient obstacles force the paths from [ ],k   as well as [ ], k  to be  

 
Table 1. Table of steps, coordinates and the distance given by the summed L1 path, L1Σ , for the two examples in Figure 1(b), 
Figure 1(c). The top three rows represent the number of steps taken along each dimension from one partition to the next. The 
next three rows are the coordinates of the partitions along the paths taken, remembering that the path starts with the kth partition 
at the origin. The final row is the summed L1 path distance. The axes are labeled where ix  is from the longest dimension to the 
shortest of the convex hull. 

dims Steps Taken Along Each Dimension—kth partition is the origin 

 2D Case (min path) 2D Case (max path) 3D Case (min path) 3D Case (max path) 

x1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

x2
 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 

x3
               0 0 0 0 0 1 1 1 1 0 0 0 0 0 

 Coordinates Of Path Along Each Dimension—kth partition is the origin 

 2D Case (min path) 2D Case (max path) 3D Case (min path) 3D Case (max path) 

x1
 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

x2
 0 0 0 1 2 3 4 1 2 3 4 4 4 4 0 0 0 1 2 3 4 1 2 3 4 4 4 4 

x3
          ⇑ x2 holds at 4 0 0 0 0 0 1 2 1 2 2 2 2 2 2 

                       ⇑ x3 holds at 2   

                         ⇑ x2 holds at 4 

ΣL1 1 3 6 11 18 27 38 2 6 12 20 29 39 50 1 3 6 11 18 28 41 3 9 17 27 38 50 63 
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along the same side of the parallelotope with respect to the true path, the path 
found “turns a corner” in order to reach the final partition. In this case, one of 
the two values, ,k L1Σ  or ,kL1Σ  will exceed the true path summed L1, TL1Σ , 
leading to the second criteria. The last criteria uses the results from the second 
application of Dijkstra, now, attempting to find a path that minimizes the va-
riance of L1Σ  with respect to TL1Σ . Calculating the value ( )2− TL1 L1Σ Σ  
then copying the kth row of this matrix and multiplying it by every row of the 
logical matrix, 0>NN1 , a new adjacency matrix is formed and applied using 
Dijkstra’s algorithm for the third time. At each step, the minimal summed path 
variance gives the most direct path from [ ],k  , finally giving the path that is 
LOS between the two partitions, illustrated in Figure 2. The smallest error that 
can exist is when a path is found that is one step off of the true path near the  

middle of the path. In this case, the error is the difference between ( )1 1
2

n n +  

and ( )( )1 1
2

n n− , where 2n = CP , leading to the third criteria for LOS.  

6. Strategy 

This study employs 26 different clustering techniques to a bank of 12 representa-
tive test cases. The data sets forming the test bank were comprised of various 
shapes, both connected and disconnected as well as point clouds in both 2D and 
3D. In each of the point clouds, four gaussian distributions were placed near one 
another, with three densely populated regions and a fourth low density gaussian 
which spans the domain. The point clouds were further varied by creating one 
case in 2D and 3D where the dense gaussians are clearly separated, and another 
two cases in 2D and 3D where the three gaussians overlap. Figure 3 illustrates  

 

 
Figure 2. Figure illustrates the two paths of minL1Σ  and maxL1Σ , which in 2D lie within 
a plane. The average between them gives the straight line “true” value, TL1Σ . When all 

paths within the L2  convex hull are available, Dijkstra’s algorithm will seek the minL1Σ  

path when going from [ ],k   and will seek the maxL1Σ  path going from [ ], k . This 

asymmetric behavior is exploited in order to find the straight line path by applying 
Dijkstra on a third pass, where the pathwise value applied is the squared difference be-
tween the L1Σ  and TL1Σ , as is shown above the plane as a parabolic bowl. 
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Figure 3. Test bank of 12 shapes: L (a), Plus-1 (b), Plus-2 (c), Concentric-1 (d), Concentric-2 (e), Flame-1 (f), Flame-2 (g), 
Flame-3 (h), Data2D-1 (i), Data2D-2 (j), Data3D-1 (k) and Data3D-2 (l).  
 

the test banks used, in this order: L, Plus1, Plus2, Concentric1, Concentric2, 
Flame1, Flame2, Flame3, Data2D-1, Data2D-2, Data3D-1, Data3D-2. Table 2 lists 
the test bank set as well as the features sought to examine in each case. The first 
test is the simple L as discussed in section 1. The Plus1 and Plus2 cases are ex-
tensions to the L case where symmetry is employed, testing how algorithms re-
spond to symmetry as well as an open region (Plus2). Concentric1 and Concen-
tric2 test how the routines respond to curved domains with symmetry and 
whether the domain is connected or not. Flame1, Flame2 and Flame3 test how 
asymmetry is dealt with as well as connected versus disconnected regions. 
Flame3 also tests how well “tendrils” or filamentary data is handled. As a test of 
a 2D point cloud, Data2D-1 and Data2D-2 test how well four gaussian point 
clouds can be clustered for the case of three separated clusters, Data2D-1, and 
three close-by clusters, Data2D-2, where the fourth gaussian is evenly distributed 
across the domain simulating noise present in the data. Data3D-1 and Data3D-2 
show the point cloud in 3D of four gaussian distributions similar in definition to 
the 2D cases, where in the first case are three disconnected ellipsoidal distribu-
tions with a fourth acting as noise, while in the second case shows the same three 
ellipsoidal distributions moved closer to one another such that two of the tails  
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Table 2. Test bank data sets listing sizes and features relevant to clustering types.  

Labels ID 
Test Bank Data Sets 

Dim Size (pixels/pts) Connected Symmetry Plateau Filamentary Overlap Noise 

L (a) 2D 1200 × 1200 √ X √ X X X 

Plus1 (b) 2D 1200 × 1200 √ √ √ X X X 

Plus2 (c) 2D 1200 × 1200 √ √ √ X X X 

Concentric1 (d) 2D 1200 × 1200 √ √ √ X X X 

Concentric2 (e) 2D 1200 × 1200 X √ √ X X X 

Flame1 (f) 2D 1200 × 1200 √ X √ √ X X 

Flame2 (g) 2D 1200 × 1200 X X √ X X X 

Flame3 (h) 2D 1200 × 1200 √ X √ √ X X 

Data2D-1 (pt. cloud) (i) 2D 200,000 X X X √ X √ 

Data2D-2 (pt. cloud) (j) 2D 200,000 √ X X √ √ √ 

Data3D-1 (pt. cloud) (k) 3D 200,000 X X X √ X √ 

Data3D-2 (pt. cloud) (l) 3D 200,000 √ X X √ √ √ 

 
overlap. For all cases other than the point clouds, the data is derived from an 
image, where a binary set of points is established for all 8-bit grey-scale values 
above 100 (1) or below (0). The image sizes when possible are 1200 × 1200, un-
less the aspect ratio prevented that exact size. The point clouds are based on four 
distributions with a summed value of 200,000 points. 

Along with the 26 clustering algorithms applied, four additional cluster as-
signments are derived from consensus among the 26, leading to 30 differing 
cluster assignments per test case for a total of 360 figures showing the clustering 
results. These results are supplied as supplemental figures and can be found on 
the website. A sampling of these results is shown in Section 8.  

7. Clustering Algorithms 

This section discusses the clustering algorithms used in this paper. Some tech-
niques are standard approaches, but several are variations on existing techniques 
with new methods. The new approaches involve treating the data in terms of 
partitions with populations of data serving as weights to the partitions. Also new, 
the distance metric used is changed from a traditional L2-norm to a path length 
along a grid of partitions. Along with investigating path length based clustering, 
a Line-of-Sight criteria is also developed. An alternative approach of spectral 
clustering is also used, utilizing a different set of eigenvectors to establish clus-
ters, and alternatives to the traditional Laplacian operator are used as well. Once 
all twenty-six clustering techniques are used to assign a cluster identity, an over-
all cluster identity is given to each data based on the consensus of the set of 
techniques, with four algorithms employed differing in degrees of consensus 
reached. 
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Table 3 lists the twenty-six techniques used. Each technique attempts to cluster 
data according to features present in the data. The table lists those features which  

 
Table 3. Clustering techniques for 26 algorithms highlighting requirements, pros and cons in each case. Some algorithms required 
partitions to be connected in order to search for clustering within the connected region. Clusters can be feature driven or can even 
the distribution of cluster assignments (balanced, group). LOS is a criterion for some clustering, which in turn can help identify 
data distributions. Finally, some algorithms treat isolated partitions on equal footing with larger connected subsets, making the 
clustering sensitive to these smaller subsets, interpreted as noise. Checks indicate a feature is used, “X” indicates the feature is not 
required whereas a “-” indicates the parameter is not applicable to the technique, finally “*” indicates that population weighting 
could be applied to the technique or not—for the results shown in this study, weights were applied to spectral algorithms making 
the Laplacian sensitive to the populations of the partitions. 

Labels # 

Clustering Algorithms 

Connected 
required 

Proximity Weights 
Sensitive 
to Noise 

Balanced 
LOS 

criteria 
Gathering 

method 
Laplacian 

type 
Eigen- 
vectors 

Fixed k 
guess 

KMEANS 1 X R∆  Τww  X X X weighted - - √ 

KMEDOIDS 2 X R∆  Τww  X X X weighted - - √ 

MAXGLOB 3 X R∆  w∆  X X X slopes - - - 

MAXPATHL 4 √ L2  w∆  X X X slopes - - - 

CONN 5 √ X X X X X - - - - 

LOS-MAXVIS 6 √ ,L2 L1Σ  * X X √ max vis. - - - 

LOS-MUTUAL 7 √ ,L2 L1Σ  * X X √ mutual vis. - - - 

SPECTRAL01 8 √ X * √ X X 2D histo NN1 1, 2 - 

SPECTRAL02 9 √ X * √ X X kmeans NN1 1, 2 √ 

SPECTRAL03 10 √ X * √ X X kmedoids NN1 1, 2 √ 

SPECTRAL04 11 √ X * √ √ X 2D histo NN1 2, 3 - 

SPECTRAL05 12 √ X * √ √ X kmeans NN1 2, 3 √ 

SPECTRAL06 13 √ X * √ √ X kmedoids NN1 2, 3 √ 

SPECTRAL07 14 √ X * √ X √ 2D histo LOS 1, 2 - 

SPECTRAL08 15 √ X * √ X √ kmeans LOS 1, 2 √ 

SPECTRAL09 16 √ X * √ X √ kmedoids LOS 1, 2 √ 

SPECTRAL10 17 √ X * √ √ √ 2D histo LOS 2, 3 - 

SPECTRAL11 18 √ X * √ √ √ kmeans LOS 2, 3 √ 

SPECTRAL12 19 √ X * √ √ √ kmedoids LOS 2, 3 √ 

SPECTRAL13 20 X R∆  * X X X 2D histo RAD 1, 2 - 

SPECTRAL14 21 X R∆  * X X X kmeans RAD 1, 2 √ 

SPECTRAL15 22 X R∆  * X X X kmedoids RAD 1, 2 √ 

SPECTRAL16 23 X R∆  * X √ X 2D histo RAD 2, 3 - 

SPECTRAL17 24 X R∆  * X √ X kmeans RAD 2, 3 √ 

SPECTRAL18 25 X R∆  * X √ X kmedoids RAD 2, 3 √ 

LMH-POS 26 X X X X X X - - - - 
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best suit each technique. As the chief data reduction scheme here is to partition 
the data into multi-dimensional bins, the clustering is performed over the 
weighted partitions on a grid. Features indicated in the table are; require parti-
tions to be Connected in order to cluster, Proximity uses distance as a criteria, 
Weights indicates populations affect the result, Sensitivity to Noise indicates 
some methods fail to find structure within larger connected subsets in the 
presence of noisy data, Balanced indicates methods which evenly divide parti-
tions into clusters, LOS criteria is required for some, Gathering indicates the 
method used to gather partitions for clustering, Laplacian indicates which type 
of Laplacian is used for spectral algorithms, Eigenvectors indicate which mod-
es are used in gathering, and Fixed k requires an initial guess as to the number 
of clusters. 

7.1. K-Means and K-Medoids Clustering—KMEANS, KMEDOIDS 

K-means is a well established clustering technique [10] [11], seeking from a data 
set, the lowest possible distance from individual data to a set of possible mean 
positions of the data, indicative of clusters. Over several passes, the cluster defini-
tions are altered to minimize the distance from each datum to clusters found. An 
initial guess of the number of clusters to seek is required. K-means has been dis-
cussed thoroughly in the community for its strengths and weaknesses [1]. 
K-medoids has been proposed to overcome many of the shortcomings of 
k-means and is similarly well-established in the community [5]. In both cases, an 
initial guess (k) as to the number of clusters sought is required which can be 
problematic when the actual number of clusters does not match the guessed val-
ue. Further, both techniques perform at ( )DN , which for large datasets are 
costly. Progress in improvements to speed have been made to both techniques 
[12] [13], yet remain costly in high dimensions for large data sets. By shifting 
the analysis from individual datum to partitions with weights, the k-means and 
k-medoids algorithms are adjusted to accommodate the weighted bins. All 
calculations for distance between two partitions are multiplied by the weight of 
each partition, Τww , and any centroid calculation is treated as a weighted 
value. 

7.2. Maxima Clustering—Global and Path Length 

In this study, data has been reduced to a set of partitions with a population as-
signed for each. The two schemes, MAXGLOB and MAXPATHL, assign data to 
clusters based on how close a partition is to a significant nearby maxima among 
the partitions. Treating the weights of the partitions as the height of a mul-
ti-dimensional map, the significance of a nearby maxima is determined by cal-
culating the slopes between any two partitions, where the slope is the ratio of the 
weight difference, w∆ , to the distance between any two partitions. In the global 
case, the distance used is the Euclidean distance, R∆ , and for the path length 
case, the distance used is the path length, L2. MAXGLOB seeks to assign clusters 
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between partitions that are not required to be connected, while MAXPATHL 
requires a connection. Initially, local maxima among the partitions are found 
which are then categorized into three types: lone peaks, ridges and plateaus. 
Once the maxima are classified, a peak and all of the partitions associated with it 
are then assigned a cluster identification number, where the slopes and distances 
from partition to peak are contributing factors in determining which peaks asso-
ciate with partitions. Definitions of local maxima, peaks and slopes as well as 
details of the algorithms for these two techniques are included in the supple-
mental material online. 

7.3. Clustering via Connection—CONN 

In cases where local clusters of partitions are sparsely found within the data 
space, a simple clustering algorithm is to determine which partitions are con-
nected to one another using first nearest neighbor steps, NN1. Section 4 dis-
cusses path lengths calculated from one partition to another where those with a 
finite value are connected. A logical value is set between any two connected par-
titions creating the matrix CONN. A unique cluster ID is assigned for each 
connected set of partitions. 

7.4. Clustering by Line-of-Sight—LOS 

Clustering by Line-of-Sight is motivated by the idea that two data within a con-
vex region of a subset of the data have a higher chance of being correlated than 
data outside that convex region. Considering a set of data comprised of various 
types of distributions, it is possible for overlapping regions to form, where the 
tail of one distribution mingles with the tail of another. In the worst case scena-
rio, peaks of two differing distributions may overlap. Further, distributions may 
also form along curved paths, where the peak may be far from the tails. Cluster-
ing via CONN will associate all data in these distributions, however, checking 
whether two data lie within a convex hull more closely associates those data with 
one another. The Line-of-Sight criterion from Section 5 determines which parti-
tions are convex to one another. As examples, Figures 3(i)-3(l) illustrate several 
distributions which have both convex regions as well as overlapping tails of dis-
tributions. In this discussion, the term visibility refers to the number of parti-
tions that are LOS to a specific partition. A detailed discussion of the algorithms 
used to form clusters based on the LOS criteria is provided by the supplemental 
material online. 

The LOS matrix is formed where each row represents a partition and each 
column represents all other partitions where a logical value indicates whether 
the two are LOS, making the LOS matrix symmetric. Squaring the LOS matrix, 
LOS2, gives a matrix whose values along each row tally the number of partitions 
which are mutually LOS to one another. For the L example given next, in the 
first row, the last three partitions are not LOS to the first, yet they share three 
partitions that are LOS in common. In order to eliminate the entries in LOS2 
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that are not present in the LOS matrix, a Hadamard product is taken between 
LOS and LOS2 yielding a third matrix, LLL. To form clusters from the informa-
tion in LLL, a gathering process finds partitions that meet one of two cluster cri-
teria; maximal visibility finds those partitions that share a high value of visibility 
and are connected to one another, and greatest mutual visibility finds the largest 
sets of partitions with a common value, regardless of how high in value is their 
visibility. 

7.5. Simple Example: L 

A simple example serves to demonstrate how these matrices interact with one 
another. Consider a small distribution of partitions forming a 6 × 4 grid connected 
to each other in an “L” configuration as shown in Figure 4. The serialization of 
partitions is given by the same expression as the data, Equation (1), which in the 
case of the inverted L gives the partitions along the bottom row 1 4k =  , then 
along the vertical side 5 9k =  . In this case, there are only nine partitions con-
nected to each other, requiring a 9 × 9 matrix to represent the information. As 
each partition is connected to all of the other partitions, the CONN matrix is full, 
with values of one. The NN1 matrix reflects which partitions share a common 
geometrical feature. The LOS, LOS2 and LLL matrices show which partitions are 
visible to each other. Note that partition five is visible to partition one, meaning  

 

 
Figure 4. Simple example to illustrate the ideas behind LOS clustering. This “L” shaped domain has nine populated bins. Starting 
from the bottom left to right then and moving upwards, the bins are numbered initially by rasterizing the domain, then contract-
ing the bin indices to simply number from #1 ... 9. Beginning with bin #1, the line-of-sight bins are indicated by the starred () 
bins, noting that bin #5 is considered LOS although a line connecting bin centers is not possible. This “corridor” condition means 
that for a long hallway, all partitions facing inward are also LOS. Matrices calculated for the simple example, the NN1 (upper left) 
LOS (upper right), LOS2 (lower left), ≡

2LOS LOS LLL  (lower right). 
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that partitions can see the edges of one another. From the matrices shown, parti-
tions (3, 4, 5) form a cluster with the maximal visibility, followed by partitions (6, 7, 8, 
9) then (1, 2) (LOS-MAXVIS). Partitions (3, 4, 5, 6, 7, 8, 9) form a cluster with the 
highest mutual visibility followed by (1, 2) with the lowest (LOS-MUTUAL).  

7.5.1. LOS Clustering with Maximal Visibility—LOS-MAXVIS 
The LOS matrix contains for each row the logical status of which partitions are 
LOS to the current partition. Further, the LLL matrix shows the number of mu-
tually visible partitions within LOS of the current. From the LLL matrix, two 
values can be used to determine clustering using LOS. The highest value in the 
LLL matrix indicates which partitions are within LOS of the most other parti-
tions. These highest valued LLL partitions have the maximal visibility, 
LOS-MAXVIS, of the set of partitions that are LOS. An example would be any 
partition that is located at an intersection of several distributions of partitions. 
Consider the test cases: L and Plus1, where the corner of the L and the center of 
the Plus1 will have maximal visibility. The clusters formed in this manner find 
intersections and corners of data distributions preferentially, leading to data 
identification of the entangled portions of data sets arising from multiple distri-
butions present. 

Clustering by LOS-MAXVIS is achieved by forming a histogram from the vi-
sibility values of LLL, shown in Figure 5 for the Data3D2 test case. The horizon-
al axis indicates the visibility while the vertical axis is the number of partitions 
sharing a common visibility value. Starting from the maximal value of the visi-
bility, a cluster is formed by taking all partitions sharing the maximum or nearby, 
defined by including all bins in the histogram starting from the leftmost until a 
minimum in the bins is reached. In the case of the simple L, the most visible par-
titions are the corner partitions with values LLL = 9. Of the set of partitions 
found, a cluster is assigned to the largest connected group of partitions. As each 
cluster is identified, the partitions are excluded from further searches by remov-
ing the rows and columns from LLL of the cluster found then recalculating the 
histogram. Further clusters are then identified by taking partitions associated 
with the next highest visibility bin in the histogram, beginning where the last set 
left off, and including all partitions with successively lower visibilities until the 
next minimum in the bins is reached. This process continues until the set of par-
titions is fully associated with clusters.  

7.5.2. LOS Clustering with Mutual Visibility—LOS-MUTUAL 
The LLL matrix can alternatively be used to cluster partitions with the highest 
mutual visibility (LOS-MUTUAL) by selecting clusters with the most common 
shared LLL value instead of the maximal value. In this manner, clusters are 
formed around partitions that can mutually see each other the most. From the 
same LLL histogram, starting from the bin with the most frequent visibility, a 
cluster is formed by seeking the minima on both sides of the peak in the histo-
gram nearest the most populated bin. Once the lower and upper bins are  
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Figure 5. Histogram of LLL values, the visibility from a partition to all others for the Data 3D-2 case. Along the horizontal axis are 
visibility values and along the vertical axis is the frequency of partitions for a given visibility. For the Data 3D-2 case, the highest 
visibility is ≈4100 between partitions, where LOS-MAXVIS begins searching at the highest visibility bin and ends at the first mi-
nima found in the histogram, for a cluster with visibility from ≈ 3300 - 4100. A LOS-MUTUAL search seeks a cluster with the 
greatest mutual visibility by beginning the search at the tallest peak around ≈2200 whose set size is ≈150 partitions. The cluster is 
formed between the two minima found on each side of the tallest peak. In both cases, the starting point for the cluster search de-
fines which other partitions are near to the goal, either maximal visibility or greatest mutual visibility. The clusters are formed by 
grouping LOS partitions around the feature sought in the histogram, where peaks are separated by the basins. 
 

found, all partitions which have any visibility values in LLL within this range are 
clustered together. Identifies partitions are removed from further searches and 
the process is repeated until all partitions are identified. LOS-MUTUAL cluster-
ing finds the largest set of partitions that are LOS to each other first, then 
searches for the next largest set of partitions that do not include the first set and 
so on. In the case of the simple L, the highest mutually visible partitions are the 
partitions forming the long arm of the L, with values LLL = 7. For the Data3D2 
case, all partitions with a visibility between 1700 up to 3000 are included in the 
first cluster found. As before, once a cluster is found, the partitions are removed 
from further searches. Clusters formed in this manner find full data distributions 
first, associating tails over mixed regions with the largest distributions first, giv-
ing an alternative to the data identification offered by LOS-MAXVIS.  

7.6. Spectral Clustering 

Spectral clustering [14] [15] represents data as a graph, where data become ver-
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tices and relationships between data points are represented by edges and weights 
in the graph. The eigenmodes of the graph are sought solving Helmholtz equa-
tion from a Laplacian chosen based on the edge weights. This analysis uses the 
NN1 matrix, the LOS matrix as well as a radial basis function to form the graphs. 
The Laplacian operator is a matrix formed by setting the degree of the vertex 
along the diagonal with off diagonal elements set to a negative weight factor. The 
off diagonal components are formed from either the summation of all nearest 
neighbors (NN1), the sum of all LOS partitions (LOS) or a radial factor related 
to the distance squared to all other partitions (RAD). RAD is chosen as a gaus-
sian with a large sigma equal to the maximal distance of R∆ . Clustering with 
NN1 seeks clusters as partitions connected to one another, using LOS seeks 
similar clustering for partitions connected through visibility, while RAD seeks 
clusters of partitions over a region, regardless of connection. In all cases, the 
analysis that follows is similar. The eigenvectors are calculated for the Lapla-
cian, where the lowest two eigenvectors are typically used to define a new data 
space using each eigenvector as a basis. The partitions are then mapped to the 
eigenspace and clusters within the space are sought using novel 2D clustering 
techniques, either KMEANS, KMEDOIDS or a simple 2D histogram over the 
domain. 

This analysis employs all three clustering techniques in the eigenspace as 
well as explores using two differing sets of eigenvectors, the lowest pair (1, 2) 
as well as the next lowest pair (2, 3) as a base. Spectral clustering finds clusters 
of partitions which are connected subdomains; however, when only a single 
connected domain is found (clean case), the eigenvectors reveal a modal 
structure within the connected domain. When showing the modal structure 
for the first case using eigenvectors (1, 2), the first eigenmode accentuates a 
single large feature within the eigenspace, where the second eigenvector seg-
ments the space into a small number of symmetric regions. When using the 
next lowest pair of eigenvectors (2, 3), surpassing the lowest eigenmode, the 
modal structure segregates the partitions differently, clustering the partitions 
into evenly distributed groups of data. Once the eigenspace has been populated 
with the partitions, k-means, k-medoids as well as traditional 2D histograms 
can be used to collect the partitions and assign them to cluster IDs. K-means 
and k-medoids have been discussed earlier in Sec. 1 as to their strengths and 
weaknesses. As an alternative approach to finding the clusters within the ei-
genspace, simply histogram the 2D eigenspace and assign to each non-zero bin 
a different cluster ID (2DHIST). This approach has the advantage of simplicity 
and finds exactly the number of clusters that fill bins within the eigenspace, 
not requiring an initial guess as the number of possible clusters, as in the case 
of k-means or k-medoids, however a maximum possible count of clusters is set 
by the number of bins of the 2D histogram, typically set at ( ) ( )2 2k k+ × +  
so that the k-means and k-medoid searches are comparable to the size of the 
clusters sought. 
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7.7. Clustering by Coarse Position (LMH-POS) 

The most obvious form of clustering is to associate a partition solely by its posi-
tion (LMH-POS) using a coarse binning within the partition space. By setting 
the number of bins along each dimension to three, the bins are interpreted as 
being Low, Medium or High for the values represented along each axis. In this 
case, the sequential partition bin index, k, becomes the cluster ID, with the 
maximum number of possible clusters at 3 DN , for the three bins along each 
axis. 

This approach is a coarse designation for clustering as it employs no compli-
cated algorithms, and data with similar values are associated irrespective of all 
other factors. This approach suffers from many problems in that data in one bin 
will not be clustered with data from a neighboring bin no matter how close in 
proximity the two are to one another. Clusters from LMH-POS characterize data 
in the crudest sense with no refinement for the shape of a distribution or even 
the relative sizes of the distribution. One advantage to this approach is that it 
is easy to understand, even while spanning multiple dimensions, making it an 
easy entry point for a discussion of the data. When handling large data sets, 
this approach allows for a quick look at where the data reside within the larger 
space. 

8. Results 

This section shows a sampling of results from the application of 26 techniques to 
12 test cases. The strengths and weaknesses of these techniques are exposed 
leading to the conclusion that a consensus approach is reasonable. Ideally, all 
clustering techniques plus the four robust consensus results of each test case 
would be presented, leading to 360 figures, but due to space limitations, the full 
set of clustering results are provided in the supplemental material. Throughout 
this section, the term “noise” refers to data sets where a significant number of 
isolated small subsets of partitions, including singletons, are present, while the 
term “clean” refers to data sets without these smaller subsets. Among the sup-
plemental material, for each data set, a high data threshold, 2%percΘ = , and a 
low threshold, 0%percΘ = , are applied showing how clustering is achieved in a 
clean versus noisy environment respectively. Data clustering is also shown at two 
different bin resolutions to illustrate how too fine of a resolution may not 
achieve good clustering. Finally, the figures are grouped into fullpage compari-
sons for a single test case with all 30 techniques shown as well as single page 
comparison for each technique across all test cases, leading to 2880 figures over 
168 pages. 

8.1. Discussion of Techniques 

Of the sampled results provided, the first figure in each case shown is for 
k-medoids clustering using (k = 16) unless otherwise stated in order to give a 
comparison between established clustering and other approaches. The remain-
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ing figures are chosen to demonstrate a particular trait of a clustering technique. 
Figure 12 shows all of the techniques applied to the Data2d2 test case. When 
appropriate, a circle is shown within a cluster to indicate the medoid of the clus-
ter. 

K-means and k-medoids results are well understood for both their strengths 
and weaknesses. MAXGLOB and MAXPATHL tend to mirror results from k-means 
and k-medoids with the exception that MAXPATHL is restricted to clustering 
within a connected set, making it seek clusters following a distributions’ shapes 
rather than just using proximity between data. The CONN technique clusters 
data within a connected set regardless of other criteria. LOS-MAXVIS and 
LOS-MUTUAL cluster according to data within convex hulls, seeking similar vi-
sibility features as part of the gathering criteria to form clusters. Spectral tech-
niques form clusters within the eigenspace formed from two eigenvectors. The 
adjacency matrix used to form the Laplacian determines the nature of the 
neighbors used, traditionally a first nearest neighbor, however, this study em-
ploys both the LOS criteria to define “neighbors” as well as a radial basis. Fur-
ther, the choice of eigenvectors used to form the eigenspace determines whether 
a prominent feature is clustered about (using the 1st and 2nd eigenvectors), or a 
more evenly distributed clustering is achieved using the 2nd and 3rd eigenvec-
tors. Due to the number of variations in spectral clustering, the techniques are 
identified by an index given in Table 3, while in the text, a shorthand will be 
used: ([1] [2], NN1, 2DHIST) to represent the use of the 1st and 2nd eigenvec-
tors, utilizing a Laplacian based on an adjacency matrix derived from the first 
nearest neighbor matrix NN1 and gathering the partitions into clusters within 
the eigenspace using a 2D histogram (6 × 6) bins. Other variations in the nota-
tion are: [2] [3] for eigenvectors, LOS or RAD for the adjacency matrix, and 
“kmeans” or “kmedoids” to be used in the gathering of partitions within the ei-
genspace. Finally, the LMH-POS technique clusters using a course resolution 
(Low-Medium-High valued) for the binning choice, simply separating the do-
main into three bins per dimension to get a quick look at how the data is distri-
buted. 

Figures 6-8 show the clustering results for the data sets derived from images, 
where one datum exists for each pixel turned on. After binning, these test cases 
generally have flat distributions, so the clustering results reflect geometrical fea-
tures, useful for showing data grouping. Figures 9-12 show the clustering results 
for simulated data sets for ellipsoidal distributions, where the data is unevenly 
distributed, some with overlapping tails, helpful in illustrating data identifica-
tion. 

8.2. Concentric1 

Figure 6 shows clustering for the Concentric1 case, where a high degree of 
symmetry is present as well as a large obstruction in the middle of the data. The 
data is evenly distributed across the domain, so the clustering techniques fall in-
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to two groups, those that adhere to the symmetry of the domain and those that 
break the symmetry. K-medoids (6a) shows the attempt of creating 16 clusters 
that almost respect the symmetry of the data set. LOS-MAXVIS (6b) finds clus-
ters based on highest visibility first, where it assigns clusters to a set of three 
subsets first, then proceeds to find further clusters within the remaining set of 
data, creating an odd symmetry around the ring. LOS-MUTUAL (6c) finds clus-
ters based on the largest set of partitions with visibility values in common, lead-
ing to one large cluster formed, then the next largest, and so on until all data are 
clustered, making this a “greedy” algorithm, taking the largest pieces first. 
SPECTRAL01 (6d) finds clusters ([1] [2], NN1, 2DHIST), which finds a single 
large subset of the data first based on modes, then proceeds to cluster to smaller 
subsets. This approach has the effect of creating clusters that “stripe” the domain 
starting from the large feature to the smaller features. SPECTRAL06 (6e) clusters 
([2] [3], NN1, kmedoids) balance the assignment of clusters to data, creating 
more evenly spaced clusters. SPECTRAL07 (6f) clusters ([1] [2], LOS, 2DHIST) 
have the effect of finding large features based on visibility first, then smaller visi-
bility clusters next. SPECTRAL12 (6g) clusters ([2] [3], LOS, kmedoids) at-
tempts to balance the LOS assignments. SPECTRAL15 (6h) finds clusters ([1] [2], 
RAD, kmedoids) Laplacian based on a gaussian to assign clusters, leading to a 
set of clusters formed around a central location—in this case, the center of the 
ring. 

8.3. L and Plus1 

Figure 7 shows clustering for the L and Plus1 cases, where the L case is an ex-
tension of the discussion given in the simple L example (Section 7.5) and the 
Plus1 case can be viewed as either an “intersection” or as a tiling of the L case, 
where a four-fold symmetry exists. K-medoids are shown first in both cases (7a, 
7e) showing typical clustering based on proximity. For L, LOS-MUTUAL (7b) 
shows the greedy nature of the LOS mutual technique, grabbing all of the parti-
tions along the long axis as the first cluster, then the remaining short axis parti-
tions that are left behind are clusters. The partitions in the intersection are not 
separately identified or shared in the clustering. SPECTRAL01 (7c) clusters ([1] 
[2], NN1, 2DHIST) by striping the “L” with the two largest features at the ends 
of the L. SPECTRAL07 (7d) finds clusters ([1] [2], LOS, 2DHIST) where the 
corner has the highest visibility such that the clusters group according to visibil-
ity—as was shown numerically in the simple L example. For the Plus1 case, 
SPECTRAL01 (7f) finds a curved arrangement in the clusters ([1] [2], NN1, 
2DHIST), yet still finding two large subsets first, followed by smaller featured 
subsets last. SPECTRAL04 (7g) shows the clusters ([2] [3], NN1, 2DHIST) with 
similar curved features, where the overlap of the curved sub-domains break the 
data into symmetric clusters. SPECTRAL12 (7h) shows clusters ([2] [3], LOS, 
kmedoids) which extend by symmetry those found in “L” set, where the large 
central diamond is the extension of the corner triangle from Figure 7(d). 
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Figure 6. Test bank case for Concentric1 showing the following techniques: (a) KMEDOIDS (k = 16); (b) LOS-MAXVIS; (c) 
LOS-MUTUAL; (d) SPECTRAL01; (e) SPECTRAL06; (f) SPECTRAL07; (g) SPECTRAL12; (h) SPECTRAL15. 
 

 

Figure 7. Test bank case for L showing the following techniques: (a) KMEDOIDS (k = 16); (b) LOS-MUTUAL; (c) SPECTRAL01; 
(d) SPECTRAL07. Test bank case for Plus1 showing the following techniques: (e) KMEDOIDS (k = 16); (f) SPECTRAL01; (g) 
SPECTRAL04; (h) SPECTRAL12. 
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8.4. Flame1 and Flame3 

Figure 8 shows clustering for the Flame1 and Flame3 cases, where symmetry is 
not present yet filamentary features are present with both close and larger gaps 
as well. K-medoids are shown first in both cases (8a, 8e) showing typical clus-
tering based on proximity, worth noting is that when gaps become close, 
k-medoids will create a single cluster on both sides of the gap due to proximity. 
For Flame1, LOS-MUTUAL (8b) finds clusters in subsets grouped by visibility, 
finding the most in common first. The large group of small clusters can be as-
signed to nearby larger clusters, however, this study did not focus on this level of 
refinement, mainly the viability of the algorithm to seek clusters. SPECTRAL12 
(8c) clusters ([2] [3], LOS, kmedoids) using visibility as well finding similar 
groups with small deviations. SPECTRAL15 (8d) clusters ([1] [2], NN1, kmedo-
ids) using a radial basis clustering around a central location in the middle of the 
flame. For Flame3, LOS-MAXVIS (8f) finds clusters according to maximal visi-
bility first exposing long clusters within the filamentary portions of the flame. 
SPECTRAL06 (8g) clusters ([1] [2], NN1, kmedoids) larger features first irres-
pective of gaps in the data, striping to smaller to features. 

8.5. Data2D-1 

Figure 9 shows clustering for the Data2D-1 case, where little symmetry is 
present in a noisy environment at a high bin resolution where no distributions 
overlap. K-medoids with k = 6 (9a) illustrates how data near the tail of an elon-
gated ellipsoid can be associated with a different ellipsoidal distribution if the 
center of the second distribution is closer to the datum than the center of the 
distribution to which it belongs. The red and black square highlight this situa-
tion. MAXGLOB (9b) clusters similar to k-medoids without the problem dis-
cussed, it does not require a connected set to form clusters and is sensitive to 
weighted partitions. MAXPATHL (9c) is also sensitive to weighted partitions but 
further requires a connection between data to form a cluster, but also is sensitive 
to how far within the connected set a datum is to the closest maximal density of 
data. LOS-MAXVIS (9d) find clusters based on visibility which also requires 
connectivity within the partitions in order to cluster, leading to many “island” 
clusters. SPECTRAL01 (9e) clusters ([1] [2], NN1, 2DHIST) form around the 
three ellipsoids, however, it also combines all of the smaller subsets into a cluster 
with one the larger subsets, resulting from using 2DHISTO as a gathering me-
chanism in the eigenspace, where the location of the large ellipsoid is too close 
the locations of the smaller subsets to distinguish them from one another. 
SPECTRAL02 (9f) clusters ([1] [2], NN1, kmeans) shows similar clustering, 
where the k-means algorithm identified all of the connected smaller subsets first, 
leaving the three large ellipsoids to be given a single cluster ID. This failure is in-
herent to the spectral techniques in the presence of noise, where the high multip-
licity of the lowest eigenvalue can lead to clustering that is hard to interpret. A re-
medy would be to order the eigenvectors with common eigenvalues by the  
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Figure 8. Test bank case for Flame1 showing the following techniques: (a) KMEDOIDS (k = 16); (b) LOS-MUTUAL; (c) 
SPECTRAL12; (d) SPECTRAL15. Test bank case for Flame3 showing the following techniques: (e) KMEDOIDS (k = 16); (f) 
LOS-MAXVIS; (g) SPECTRAL06. 
 

 

Figure 9. Test bank case for Data2D1 in a noisy environment, 0%percΘ = , using a high number of bins showing the following 

techniques: (a) KMEDOIDS (k = 6); (b) MAXGLOB; (c) MAXPATHL; (d) LOS-MAXVIS; (e) SPECTRAL01; (f) SPECTRAL02; (g) 
SPECTRAL07; (h) SPECTRAL15. 
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number of non-zero elements, favoring the larger clusters first. SPECTRAL07 
(9g) clusters ([1] [2], LOS, 2DHIST) identifies the three large ellipsoids more 
consistently than SPECTRAL02, among the large set of singleton partitions. 
SPECTRAL15 (9h) clustering ([1] [2], RAD, kmedoids) is less sensitive to sin-
gleton and small subsets as the adjacency matrix correlates partitions from dis-
connected regions, such the clusters formed are showing the modal structure 
rather than the connected structure. 

8.6. Data3D-1 

Figure 10 shows clustering for the Data3D-1 case, where little symmetry is 
present in a clean environment at a high bin resolution where no distributions 
overlap. K-medoids (10a) shows 16 clusters found in three main ellipsoids, with 
k-means (10b) giving similar yet different results. CONN (10c) clusters parti-
tions connected to one another, which in a clean environment finds three ellip-
soidal distributions, however, some partitions may have been “cutoff” from the 
main ellipsoids due to the higher data threshold placed, leading to singleton 
clusters. MAXPATHL (10d) shows similar results to CONN, however, additional 
clusters are found due to local maxima in the weighted partitions, leading to 
smaller clusters near the edge of the subsets along with the three main ellipsoids. 
LOS-MAXVIS (10e) clusters by maximal visibility first, finding variation within 
the three main ellipsoids based on visibility. SPECTRAL01 (10f) ([1] [2], NN1, 
2DHIST) again finds difficulty finding the three ellipsoids in the presence of noise, 
whereas SPECTRAL07 (10g) ([1] [2], LOS, 2DHIST) under the same conditions 
finds the three clusters. ROBUST2 (10h) clusters according to a consensus of 50% 
of the algorithms in agreement of cluster IDs. 

8.7. Data3D-2 

Figure 11 shows clustering for the Data3D-2 case, where little symmetry is 
present in a clean environment at a high bin resolution where two distributions 
overlap. K-medoids (11a) shows 16 clusters found in three main ellipsoids, with 
k-means (11b) giving similar yet different results. CONN (11c) clusters partitions 
connected to one another, which in a clean environment finds three ellipsoidal 
distributions, however, some partitions may have been “cutoff” from the main 
ellipsoids due to the higher data threshold placed, leading to singleton clusters. 
MAXPATHL (11d) shows similar results to CONN, however, additional clusters 
are found due to local maxima in the weighted partitions, leading to one cluster 
which follows the contour of the merged ellipsoids. LOS-MAXVIS (11e) clusters 
by maximal visibility first, finding the intersection as a cluster first followed by 
clusters based on lesser visibility. SPECTRAL01 (11f) ([1] [2], NN1, 2DHIST) 
finds difficulty again for the case of three ellipsoids in the presence of noise 
while SPECTRAL07 (11g) ([1] [2], LOS, 2DHIST) under the same conditions 
only finds the two clusters among the three distributions. ROBUST2 (11h) clus-
tering again performs well over the shortcomings of the individual techniques by 
using a consensus of 50% of the algorithms in agreement of cluster IDs. 
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Figure 10. Test bank case for Data3D1 in a low noise environment, 2%percΘ = , showing the following techniques: (a) 

KMEDOIDS (k = 16); (b) KMEANS (k = 16); (c) CONN; (d) MAXPATHL; (e) LOS-MAXVIS; (f) SPECTRAL01; (g) SPECTRAL07; 
(h) ROBUST2. 
 

 

Figure 11. Test bank case for Data3d2 for a low noise environment, 2%percΘ = , showing the following techniques: (a) KMEDOIDS 

(k = 16); (b) KMEANS (k = 16); (c) CONN; (d) MAXPATHL; (e) LOS-MAXVIS; (f) SPECTRAL01; (g) SPECTRAL07; (h) 
ROBUST2. 
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8.8. Data2D-2 

Figure 12 shows clustering for the Data2D-2 case, where little symmetry is 
present in a noisy environment at a high bin resolution where three distributions 
overlap. All 26 techniques are on display allowing for a cross-comparison along 
with the four robust algorithms in the last row (slightly larger). Of the 26 algo-
rithms, 14 have been discussed in the previous test cases. Among the spectral 
techniques in a noisy environment, SPECTRAL01-SPECRTAL12, when the 
number of clusters sought is less than the high multiplicity of the lowest eigen-
value, without additionally specifying the order of the eigenvectors, the possibil-
ity exists that some larger subsets of the data will not be clustered as expected, 
leading to smaller subsets assigned to clusters otherwise seen as noise (single-
tons). The radial basis spectral techniques do not suffer from this confusion as 
they do not require a connection between the partitions in order to form clusters, 
allowing the approach to be sensitive to the larger structure within the domain, 
creating clusters around centroids within the data. 

9. Robust Clustering over Multiple Algorithms 

In this paper, multiple clustering algorithms have been presented and applied to 
several test cases. Each technique has strengths as well as weaknesses which have 
been exposed through the cases presented. When using multiple techniques, the 
possibility exists to leverage the information gathered from all techniques to ar-
rive at a final cluster designation, based on the level of agreement or disagree-
ment found between the algorithms [8]. This approach is comparable to ensem-
ble modeling used in various fields [16] [17]. This section proposes four possible 
robust ways to gather the cluster information and assign new cluster IDs. 

In each approach taken, the cluster information for the partitions is 
represented by a matrix of cluster IDs, where each row represents results from a 
single cluster algorithm and each column is a partition. The values along each 
row are the cluster IDs assigned to each partition, forming the matrix, 

{ }C P×∈CLUS  where C = 26 and P is the number of partitions. In order to 
find agreement or disagreement between cluster IDs across many techniques, the 
rows are sorted so that the cluster IDs are sorted in ascending order along the 
first column. For any repeated values in the first column, the next column is 
then sorted in a similar fashion, continuing to sort further columns until all re-
peated values are addressed. Table 4 illustrates this process for a sample of 40 
partitions using six cluster algorithms. The top matrix is the initial partition 
cluster ID matrix unsorted. The second matrix is the sorted cluster ID matrix 
described above. Finally, the third matrix from the top shows the differences in 
cluster IDs along each row, where a one represents a change in cluster designa-
tion for that rows’ technique. The process of assigning cluster IDs to partitions 
begins with the lowest numbered cluster IDs over all algorithms, and proceeds in 
increasing cluster ID order. In the table shown, this is equivalent to  
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Figure 12. Clustering techniques applied to the Data2D2 set in a noisy environment, 0%percΘ = , at a high number of bins. Clus-

tering techniques are shown in the following order (from left-right, top-bottom): KMEDOIDS (a1), KMEANS (a2), MAXGLOB (a3), 
MAXPATHL (a4), CONN (a5), LOS-MAXVIS (b1), LOS-MUTUAL (b2), SPECTRAL01-18 (b3-e5), LMH-POS (f1). On the last row, 
robust clustering results are shown slightly larger, from left to right, ROBUST1 (f2), fractured, ROBUST2 (f3), majority, ROBUST3 
(f4), all changed and ROBUST4 (f5) no overlap. 
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Table 4. A sample set of partitions that have had six differing cluster algorithms applied. In each case, the cluster algorithm identi-
fied up to nine different clusters. The set contains 40 partitions. The top table represents the data initially unsorted. Each row is a 
different cluster algorithm and each column is a partition where a cluster ID has been assigned. The second table has sorted each 
row while maintaining the assignments to each partition. The third table from the top shows the differences in cluster ID assign-
ments from one column to the next. The fourth table is the final cluster assignment given to the partitions when any one change 
occurs (a disagreement) between the cluster algorithms. The fifth table requires a 50% majority of the cluster algorithms to change 
(cumulatively) before a new cluster assignment is designated. The sixth table only changes the cluster assignment once all cluster 
algorithms cumulatively have changed. Finally, the last table requires that all algorithms change assignments simultaneously be-
fore a new cluster ID is designated (the clusters are disjoint—with no overlap).  

 40 Partition Cluster IDs 

Alg1
 5 7 2 4 7 1 2 4 1 1 2 3 8 6 4 1 5 5 4 1 1 4 8 8 9 6 9 4 1 2 4 4 4 1 7 4 3 3 4 

Alg2
 7 7 3 7 7 1 3 7 3 1 3 4 7 7 6 1 7 7 5 1 2 5 7 7 7 7 7 5 1 3 6 7 6 1 7 7 5 3 5 

Alg3
 6 6 2 6 7 1 3 6 2 1 3 3 8 6 5 1 6 6 5 1 1 5 8 8 8 6 8 5 1 2 5 6 6 1 6 6 3 3 5 

Alg4
 4 5 2 4 6 1 2 4 2 1 2 2 6 4 4 1 4 4 2 1 2 3 6 6 6 5 6 2 1 2 3 4 4 1 5 4 2 2 2 

Alg5
 5 6 1 4 6 1 1 5 1 1 1 2 6 6 4 1 6 5 3 1 1 4 6 6 6 6 6 4 1 1 4 4 4 1 6 4 2 1 4 

Alg6
 6 8 1 5 8 1 2 5 1 1 3 4 8 7 4 1 7 5 4 1 1 4 9 9 9 7 9 4 1 1 4 5 5 1 7 5 4 3 4 

 40 Partition Cluster IDs—Resorted by Partitions in Ascending ID Order 

Alg5
 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 4 4 4 4 4 4 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 

Alg6
 1 1 1 1 1 1 1 1 1 1 2 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 7 7 7 7 8 8 8 9 9 9 

Alg1
 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 6 6 7 7 7 8 8 8 9 

Alg3
 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 8 8 8 8 

Alg4
 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 6 6 6 6 6 

Alg2
 1 1 1 1 1 1 2 3 3 3 3 3 3 4 5 5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

 40 Partition Cluster Difference Flags (Logical) for Sorted IDs 

Alg5
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 

Alg6
 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 

Alg1
 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 

Alg3
 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

Alg4
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 

Alg2
 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 40 Partition Cluster Fractured IDs 

Rob1
 1 1 1 1 1 1 2 3 4 4 5 6 7 8 9 10 11 12 12 13 14 15 16 17 17 17 18 19 20 21 22 23 24 25 26 27 28 28 29 

 40 Partition Cluster Majority Changed IDs 

Rob2
 1 1 1 1 1 1 1 2 2 2 3 3 3 4 4 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 9 9 9 10 10 11 11 11 11 

 40 Partition Cluster All Changed IDs 

Rob3
 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 

 40 Partition Cluster No Overlap IDs 

Rob4
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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following the partitions from left to right across the page. 
As examples of robust clustering, the last four figures from Figure 12 as well 

as Table 4 are provided to illustrate the process. These figures show the results 
from a consensus using all clustering techniques excluding the LMH-POS algo-
rithm for the Data2D2 test case with no minimal population set for the parti-
tions. The LMH-POS technique was excluded as its partition definitions do not 
align with the remaining 25 algorithms. In cases where multiple techniques are 
compared using differing partition sizes, the robust technique is then applied per 
datum, using the same procedures, however, the sorting is performed over all 
data instead of partitions. The last four figures from Figure 12 show the follow-
ing consensus techniques, from left to right, the Fractured, Majority Changed 
(75%), All Changed (100%) and No Overlap cases. 

The Fractured robust designation results by assigning each partition a new 
cluster ID starting from one and increasing the cluster ID each time any tech-
nique changes its ID, which results in the largest set of clusters found. This 
approach is the most sensitive to changes in the cluster designations. The Ma-
jority Changed robust technique assigns a new cluster ID each time the accu-
mulated number of algorithm cluster ID changes reaches a majority of the to-
tal number of algorithms. For each clustering technique, when a change occurs, 
any further changes from that technique are not registered until a majority is 
reached, at which point the accumulated sum of changes is reset to zero. This 
results in a medium sized set of clusters found, where a significant number of 
algorithms found a change, however, not all algorithms are required to note 
the change in ID. In the figure, a 75% majority was required, where ideally, the 
best majority threshold would create the largest number of clusters with the 
highest average membership. The All Changed robust case is equivalent to the 
Majority Changed case with a 100% majority threshold. This results in a 
small-medium sized set of clusters found, where every algorithm found a 
change, however, the changes may not have been at the same partition number, 
merely, that the total set of changes across all algorithms eventually required a 
change of ID. The No Overlap robust case assigns a new cluster ID whenever 
the total number of algorithms changes designation simultaneously, resulting 
in the smallest sized set of clusters found, where every algorithm must find a 
change for all partitions in a subset. Ideally, this would happen for each dis-
connected group of partitions, however, several techniques are “global” in 
scope and do not require a connection to exist to form clusters, leading to a 
single large cluster. 

Several of the clustering techniques used in this study require either a guess or 
fore-knowledge of the number of clusters sought, such as KMEANS and 
KMEDOIDS. Robust clustering can provide a reasonable guess for the k-value, 
by first attaining consensus over all techniques that do not use a k-value, which 
are: MAXGLOB, MAXPATHL, CONN, LOS-MAXVIS, LOS-MUTUAL. Using 
the Majority Changed technique with a suitable choice in consensus threshold, 
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the number of clusters found can be used as a k-value, which allows a reasonable 
guess to re-run the analysis utilizing the full complement of techniques. 

10. Conclusions 

A study using 26 clustering techniques has been performed over 12 test cases to 
illustrate both the strengths and weaknesses of clustering algorithms. A robust 
form of clustering is achieved through consensus over all techniques, helping 
reduce clustering problems by finding consistent clustering definitions across 
many approaches. The approach taken by this study utilizes six main ideas to 
produce a robust clustering analysis:  
• Reduce a large data set by binning the space, where the filled bins are the 

multi-dimensional partitions of the data set, each with a unique serial index, 
k.  

• Algorithms use the path length between any connected partitions as well as 
traditional distance metrics (L1, L2, etc.).  

• A Line-of-Sight (LOS) algorithm is developed to enhance the probability that 
two data are associated with one another. LOS also provides a new “super” 
neighborhood definition to be used in graph-based techniques. Data identi-
fication is addressed in two differing ways by LOS.  

• Spectral clustering using the [2] [3] eigenvectors addresses data grouping 
better than other methods.  

• Employ multiple clustering techniques to the set of partitions based on first 
nearest neighbors, distance weighted factors and geometrical properties of 
the set.  

• Using a consensus overcomes any one techniques’ failure mode in favor of 
the strengths of multiple techniques.  

• Establish a final cluster ID based on all the consensus of techniques em-
ployed.  

This study shows that high dimensional, big-data analysis can be reduced to a 
smaller set of partitions where multiple clustering techniques can be used to sort 
the data into clusters. While the techniques presented are all computationally 

( )2
PN , by reducing the data set to partitions, these routines are reasonable to 

perform. The introduction of the LOS criteria created new avenues for cluster 
seeking. The combination of multiple clustering techniques, various distance 
metrics and traditional data reduction leads to a robust set of clusters found, 
which worked well in addressing issues of data identification, clustering as well 
as grouping. 
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Supplemental Material 

Supplemental material for this study can be found at a GitHub site dedicated to 
this subject titled: “Data Clustering Using Path Lengths” [18]. Additional mate-
rials include source code, further documentation on techniques as well as a col-
lection of figures covering all test-cases in figures similar in format to Figure 12.  
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