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Abstract 
In this paper, block procedure for some k-step linear multi-step methods, us-
ing the Legendre polynomials as the basis functions, is proposed. Discrete 
methods were given which were used in block and implemented for solving 
the initial value problems, being continuous interpolant derived and collo-
cated at grid points. Some numerical examples of ordinary differential equa-
tions were solved using the derived methods to show their validity and the 
accuracy. The numerical results obtained show that the proposed method can 
also be efficient in solving such problems. 
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1. Introduction 

Many problems in celestial and quantum mechanics, nuclear, theoretical phys-
ics, astrophysics, quantum chemistry and molecular dynamics, are of great in-
terest to scientists and engineers. These problems are mathematically modelled 
by using ordinary differential equation of the form: 

( )( ) ( ) ( ) ( ) ( )1
0 1, , , , , , , , ,n n

nf x y y y y y a y y a y y a y−′ ′′ ′= = = 
     (1) 

where on the interval [ ],a b  has given rise to two major discrete variable me-
thods namely, one step and multistep methods commonly known as linear mul-
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ti-step methods. Many authors have worked on the direct solution of (1), among 
which are Lambert [1], Fatunla [2], Sarafyan [3], Awoyemi [4] and Kayode [5]. 
Each of them worked on the development of several methods for solving Equa-
tion (1) directly without having to reduce to system of first order differential 
equations. For instance, in Awoyemi [4], methods were developed to solve 
second order initial value problems which are the mathematical formulation for 
systems without dissipation. Fatunla [2] considered a step-by-step method based 
on the classical Runge-Kutta method; Hairer and Wanner [6] developed Nystrom 
type method for initial value problem for first order differential equations in which 
the conditions for the determination of the parameters of the methods were men-
tioned. Also, Henrici [7] and Lambert [1] improved the derivation of linear mul-
ti-step methods with constant coefficients for solving first order equation with ini-
tial conditions. 

In Awoyemi [8], linear multi-step methods with continuous coefficient for in-
itial value problem of the first order differential equations in the predic-
tor-corrector mode were proposed, based on collocation method with power se-
ries polynomial as basis function, and Taylor series algorithm to supply starting 
values. Continuous linear multi-step method is useful in reducing the step 
number of a method and still remains zero-stable; it has greater advantage in the 
sense that better error estimates guaranteed easy approximation of solution to all 
points of integration interval. Moreover, Awoyemi (1995) adopted the hybrid 
methods and proposed a two-step hybrid multi-step method with continuous 
coefficients for the solution of a first order initial value problem based on the 
collocation at selected grid points, using off-grid points to improve the order of 
the method implemented on the predictor-corrector mode. Other researchers 
who have studied hybrid method include Adee and Onumanyi [9], and Yahaya 
and Badmus [10]. 

Furthermore, many researchers had developed interest on improving the nu-
merical solution of initial value problems of ordinary differential equation. 
Consequently, the development of a class of methods called block method is one 
of the outcomes. This was proposed by Milne [11], and it was found that it ge-
nerates approximations continuously at different grid points in the interval of 
integration; it is less expensive in terms of the number of function evaluations 
compared to the linear multi-step methods. Chu and Hamilton [12] also pro-
posed a generalization of the linear multi-step method to a class of multi-block 
methods where step values are obtained all together in a single block. Jator 
(2007) and Jator et al. (2005) proposed five-step and four-step self starting me-
thods which adopt continuous linear multi-step method to obtain finite differ-
ence method applied respectively as a block for the direct solution of the first 
order initial value problem. Also, in Yahaya and Mohammed (2010), Chebyshev 
polynomial was considered as trial function. Ajileye et al. adopted Laguerre col-
location approach for continuous hybrid block method. Other scholars that 
adopted block methods include Omar and Suleiman [13] [14] [15] and Areo and 
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Adeniyi [16]. Abualnaja (2015) developed a block procedure with linear mul-
ti-steps using Legendre polynomials but did not include the block schemes. 
Thus, in this paper, Legendre polynomial is used as a basis function to derive 
some block methods for the solution of first order ordinary differential equation, 
which extends the work of Abualnaja (2005). 

2. Derivation of the Method 

In this section, we consider the approximate solution of the form 

( ) ( )0
k

k i iiy x c xψ
=

=∑ . 

Perturbing the equation above, we have 

( ) ( ) ( )0 ,k
i i ki c x f x y L xψ λ

=
= +∑                       (2) 

where, ( ) , 0,1, ,i
i x x i kψ = =   and ( )kL x  is the Legendre polynomial of de-

gree k, which is defined on the interval [ ]1,1− , and can be determined with the 
aid of the recurrence formula: 

( ) ( ) ( )1 1
2 1 , 1,2,

1 1i i i
i iL x xL x L x i

i i+ −
+

= − =
+ +

              (3) 

So that 

( ) ( ) ( ) ( ) ( )
2 3 4 2

0 1 2 3 4
3 1 5 3 35 30 31, , , ,

2 2 2
x x x x xL x L x x L x L x L x− − − +

= = = = =  

We define a shifted Legendre polynomials by introducing the change of variable 

( )2
, 1,2,3,4n k n

n k n

x x x
x k

x x
+

+

− +
= =

−
                   (4) 

For k = 1 
using Equation (4), taking ( )1L x x= , and collocating at nx  and 1nx + , we ob-
tain 

( ) ( )1 1 11, 1n nL x L x += − =                        (5) 

hence, 

( ) 1
1

1

2
1n n n

n
n n

x x xL x
x x

+

+

− −
= = −

−
                     (6) 

and, 

( ) 1 1
1 1

1

2
1n n n

n
n n

x x xL x
x x
+ +

+
+

− −
= =

−
                     (7) 

Deducing ( ) ( )0 10, 1x xψ ψ= =  from Equation (1), it follows that Equation 
(2) becomes 

( ) ( )1 1,f x y c L xλ= −                         (8) 

Solving the above systems we obtain 

( ) ( )1 1 0
1 , ,
2 n n n n n nf f c f c y x fλ λ λ+= − = − = − −  
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The required numerical scheme of the method will be obtained if we collocate 
( ) 0 1y x c c x= +  at 1nx x +=  and substitute 0 1, ,c c λ  as follows 

( )1 22n n n n
hy y f f+ += + +                      (9) 

k = 2 

taking ( ) ( )2
2

1 3 1
2

L x x= − , and collocating at nx , 1nx + , and 2nx +  

we get 

( ) ( ) ( )2 2 1 2 2
11, , 1

2n n nL x L x L x+ +
−

= = =  

From Equation (1), it can be deduced that ( ) ( ) ( )0 1 20, 1, 2x x x xψ ψ ψ= = = , 
then Equation (2) becomes 

( ) ( )1 2 2, 2f x y c xc L xλ= + −                     (10) 

Collocating Equation (10) at , 0,1, 2n ix i+ =  and interpolate 

( ) ( )0 ,k
k i i n n kiy x c x x x xψ +=

= ≤ ≤∑                (11) 

at nx x= , we get a system of four equations with ( )0,1, 2ic i =  and parameter 
λ  

2
0 1 2

1 2

1 1 2 1

1 2 2

2
12
2

2

n n n

n n

n n

n n

y c c x c x
f c c x

f c c x

f c c x

λ

λ

λ

+ +

+

= + +

= + −

= + −

= + −

                     (12) 

Hence, solving Equation (12), we get 

( )

( )
( )

( )

1 2

2 2
0 1 2 2

1 1 2 2

2 2

1 2
3

1 12 8 4 8 3 3
12
1 4 2 4 3 3

6
1

4

n n n

n n n n n n n n n n n

n n n n n n n

n n

f f f

c hy t hf t hf t hf t f t f
h

c hf hf hf t f t f
h

c f f
h

λ + +

+ + +

+ + +

+

= − + −

−
= − + − + − +

= − + − +

−
= −

 (13) 

From ( ) ( )0
k

k i iiy x c xψ
=

=∑ , we have 
2

0 1 2y c c x c x= + +                         (14) 

Hence, the required numerical scheme is obtained by collocating Equation 
(14) above at 1nx x +=  and substituting 0 1 2, , ,c c c λ  as follows 

( )1 1 25 8
12n n n n n
hy y f f f+ + += + + −                   (15) 

k = 3 

Taking the polynomial ( )3
3

1 5 3
2

L x x= −  and use the Equation (4), then 

collocating this at 1 2, ,n n nx x x+ +  and 3nx + , we obtain 
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( )3 1nL x = − , ( )3 1
11
27nL x + = , ( )3 2

11
27nL x +
−

= , ( )3 3 1nL x + = . From Equation  

(1), it can be deduced that ( ) ( ) ( ) ( ) 2
0 1 2 30, 1, 2 , 3x x x x x xψ ψ ψ ψ= = = = , then 

Equation (2) is reduced to the form 

( ) ( )2
1 2 3 3, 2 3f x y c xc c x L xλ= + + −               (16) 

Hence, collocating Equation (16) at , 0,1, 2,3n ix i+ =  and interpolate Equation 
(11) at nx x= , we get the system of equations with ( ), 0,1, 2,3ic i =  and para-
meter λ  

2 3
0 1 2 3

2
1 2 3

2
1 1 2 2 3 1

2
2 1 2 2 3 2

2
3 1 2 3 3 3

2 3
112 3
27
112 3
27

2 3

n n n n

n n n

n n n

n n n

n n n

y c c x c x c x

f c c x c x

f c c x c x

f c c x c x

f c c x c x

λ

λ

λ

λ

+ + +

+ + +

+ + +

= + + +

= + + +

= + + −

= + + +

= + + −

                (17) 

Solving the above system of equations, we obtain 

( )1 2 3
9 3 3
40 n n n nf f f fλ + + += − + −  

(
)

2 2 2 2 2 2 2
0 2 3 1 1

2 2 2 3 3 3
3 2 2 2 3 1

1 81 27 56 81 93 18
120
34 72 120 10 10 10

n n n n n n n n n n n n

n n n n n n n n n n n n

c t h f t f h t h f t h f t h f t hf

t hf t hf t hf t f t hf t f

+ + + +

+ + + + + +

= − − + + + + −

+ − − − + −
 

(
)

2 2 2
1 3 1 2 1 3

2 2 2 2 2 2
2 2 3 1

1 68 112 36 144 81 27
120

93 81 30 30 30 30

n n n n n n n n n n

n n n n n n n n n n

c t hf t f h t hf t hf h f h f

h hf h f t f t f t f t f

+ + + + +

+ + + +

= + − − + +

+ − − + + −
 

( )2 2 1 2 3 12

1 15 15 15 36 28 17 9
60 n n n n n n n n n nc t f t f t f hf hf hf hf

h + + + + += − − + − − + + −  

( )3 1 2 32

1
12 n n n nc f f f f

h + + += − − − +  

From ( ) ( )0
k

k i iiy x c xψ
=

=∑ , we have 
2 3

0 1 2 3y c c x c x c x= + + +                       (18) 

Hence, the required numerical scheme is obtained by collocating Equation 
(18) above at 1nx x +=  and substituting 0 1 2 3, , , ,c c c c λ  as follows 

( )1 1 2 347 89 19 3
120n n n n n n

hy y f f f f+ + + += + + − +          (19) 

k = 4 

In this case, we take the polynomial ( )4 2
4

1 35 30 3
8

L x x= − +  and use the  

Equation (4), then collocating this at 1 2 3, , ,n n n nx x x x+ + +  and 4nx + , we obtain 

( )4 1nL x = , ( )4 1
37

128nL x +
−

= , ( )4 3
3
8nL x + = , ( )4 4 1nL x + = . From Equation (1),  
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we can deduce that ( ) ( ) ( ) ( ) ( )2 3
0 1 2 3 40, 1, 2 , 3 , 4x x x x x x x xψ ψ ψ ψ ψ= = = = = , 

then Equation (2) is reduced to the form 

( ) ( )2 3
1 2 3 4 4, 2 3 4f x y c xc c x c x L xλ= + + + −             (20) 

Hence, collocating Equation (20) at , 0,1, 2,3, 4n ix i+ =  and interpolate Equa-
tion (11) at nx x= , we get the system of equations with ( ), 0,1, 2,3, 4ic i =  and 
parameter λ  

2 3 4
0 1 2 3 4

2 3
1 2 3 4

2 3
1 1 2 1 3 1 4 1

2 3
2 1 2 2 3 2 4 2

2 3
3 1 2 3 3 3 4 3

2
4 1 2 4 3 4 4

2 3 4
372 3 4

128
32 3 4
8
372 3 4

128
2 3 4

n n n n n

n n n n

n n n n

n n n n

n n n n

n n n

y c c x c x c x c x

f c c x c x c x

f c c x c x c x

f c c x c x c x

f c c x c x c x

f c c x c x c

λ

λ

λ

λ

+ + + +

+ + + +

+ + + +

+ + +

= + + + +

= + + + −

= + + + +

= + + + −

= + + + +

= + + + 3
3nx λ+ −

              (21) 

Solving the above system of equations with a suitable method, we obtain 

( )1 2 3 4
16 4 6 4
105 n n n n nf f f f fλ + + + += − + − + −  

( 3 3 3
0 4 33

3 3 2 2 2 2
1 2 1

2 2 2 2 3 3
4 3 1 3

3 3 3 2 2
4 2

1 768 4272 3072
5040
3072 4608 2400 3330

1290 4320 1520 1840

670 1010 660 3960

n n n n n n

n n n n n n n n

n n n n n n n n

n n n n n n n n

c x h f x f h x h f
h
x h f x h f x h f x h f

x h f x h f x hf x hf

x hf x hf x hf x h f

+ +

+ + +

+ + + +

+ + +

= − − −

− + + −

+ − + −

+ − + +

)
2

3 4 4 4 4
1 3 45040 210 210 105 105n n n n n n n n ny h x f x f x f x f+ + ++ + − + −

 

( 2 2 2 2
1 2 2 43

2 2 2 2 2
3 1 3 4

2 3 3 3 3
1 4 2 1 3

3 3 3
1 3

1 1320 330 505 335
840

920 760 1440 430 1110

800 128 768 512 512

712 140 140

n n n n n n n n

n n n n n n n n n n

n n n n n n

n n n n n

c x h f x f h x f h x f h
h

x f h x hf x h f x h f x h f

h x f h hf h hf h f h f

h f x f x f

+ + +

+ + + +

+ + + + +

+ +

= − − + −

+ + + − +

+ − − + +

+ − + )3 3
470 70n n n nx f x f+− +

 

(

)

2 2 4 3 13

2 2 2 2 2
4 1 1 3

2 2 2 2 2
4 1 3 3

1 66 101 67 184 152
168
43 111 42 42 42

21 21 80 144 132

n n n n n n n n n n

n n n n n n n n

n n n n n n n

c x hf x hf x hf x hf x hf
h

h f f h x f x f x f

x f x f h f h f h f

+ + + +

+ + + +

+ + + +

= − − + − + −

+ + − + +

− + − + −

 

(

)
3 1 3 43

1 3 4 2

1 84 84 42 42
504
152 184 67 101 66

n n n n n n n n

n n n n n

c x f x f x f x f
h
hf hf hf hf hf

+ + +

+ + + +

= − − + − +

− + − + −
 

( )4 1 3 43

1 2 2
48 n n n nc f f f f

h + + += − − + −  

From ( ) ( )0
k

k i iiy x c xψ
=

=∑ , we have 
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2 3 4
0 1 2 3 4y c c x c x c x c x= + + + +                  (22) 

Hence, the required numerical scheme is obtained by collocating Equation 
(22) above at 1nx x +=  and substituting 0 1 2 3 4, , , , ,c c c c c λ  as follows 

( )1 1 2 3 41847 4162 1308 382 43
5040n n n n n n n

hy y f f f f f+ + + + += + + − + −     (23) 

Formulating the Block Scheme of Cases k = 2, 3 and 4 
If k = 2 
We collocate Equation (14) at 1 2 3, ,n n nx x x x+ + +=  to give us 

( )

( )

( )

1 1 2

2 1 2

3 1 2

5 8
12

4
3

8
4

n n n n n

n n n n n

n n n n n

hy y f f f

hy y f f f

hy y f f f

+ + +

+ + +

+ + +

= + + −

= + + +

= + − +

                   (24) 

If k = 3 
We collocate Equation (18) at 1 2 3 4, , ,n n n nx x x x x+ + + +=  to give us 

( )

( )

( )

( )

1 1 2 3

2 1 2 3

3 1 2 3

4 1 2 3

47 89 19 3
120

21 77 23
60

3 9 9 3
8

29 7 47 51
30

n n n n n n

n n n n n n

n n n n n n

n n n n n n

hy y f f f f

hy y f f f f

hy y f f f f

hy y f f f f

+ + + +

+ + + +

+ + + +

+ + + +

= + + − +

= + + + −

= + + + +

= + − + +

            (25) 

If k = 4 
We collocate Equation (22) at 1 2 3 4 5, , , ,n n n n nx x x x x x+ + + + +=  to give us 

( )

( )

( )

( )

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

5

1847 4162 1308 382 43
5040

29 124 24 4
90

179 377 444 334 31
560

14 64 24 64 14
45

25
1008

n n n n n n n

n n n n n n n

n n n n n n n

n n n n n n n

n n

hy y f f f f f

hy y f f f f f

hy y f f f f f

hy y f f f f f

hy y

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+

= + + − + −

= + + + + −

= + + + + −

= + + + + +

= + −( )1 2 3 43 3322 1308 1222 2057n n n n nf f f f f+ + + ++ − + +

 (26) 

3. Basic Properties of the Method 
3.1. Order, Error Constant and Consistency of the Methods 

The schemes developed belong to the class of Linear Multi-step Method (LMM) 
of the form 

( ) ( ) ( ) ( )0 0
k k

j n j j n jj jx y x h x f xα β+ += =
=∑ ∑                (27) 

Equation (27) is a method associated with a linear difference operator 
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( ) ( ) ( )( )0; k
j jjL y x h y x jh h y x jhα β

=
′= + = +   ∑          (28) 

where ( )y x  is continuously differentiable on the interval [ ],a b , and the Tay-
lor series expansion about the point x is expressed as 

( ) ( ) ( ) ( ) ( )2
0 1 2; q q

qL y x h c y x c hy x c h y x c h y x′ ′′= + + + +        (29) 

In line with [12], schemes (15, 19, 23) are said to be of order P if 

0 1 2 0pC C C C= = = = =  and the error constant is 1 0pC + ≠ . Hence, we estab-
lish that (15),(19), and (23) is of the following orders respectively 
when 2k = , 3P =  and 1 0.041667pC + =  
when 3k = , 3P =  and 1 0.016pC + =  
when 4k = , 2P =  and 1 0.041667pC + =  

3.2. Stability Analysis 

The scheme can be expressed as: 

1 2 1

2 1 2

3 3

2

1

8 1 0
12 121 0 0 0 0 1
4 10 1 0 0 0 1 0
3 3

0 0 1 0 0 1 52 0
4

50 0
12
10 0
3
10 0
4

n n n

n n n

n n n

n

n

n

y y f
y y h f
y y f

f
f
f

+ − +

+ − +

+ +

−

−

 − 
          
          = +          
                  

 
  

 
 

  
  +   
    

 −
  

 

where, 

( ) ( ) ( )0 1 0

8 1 0
12 121 0 0 0 0 1
4 10 1 0 , 0 0 1 , 0
3 3

0 0 1 0 0 1 52 0
4

A A B

 − 
     
     = = =     
        

 
  

 

and 

( )1

50 0
12
10 0
3
10 0
4

B

 
 
 
 =  
 
 −
  

 

The first characteristics polynomial of the scheme is 

( ) 0 1det A Aρ λ λ = −   

 

DOI: 10.4236/oalib.1104565 8 Open Access Library Journal 
 

https://doi.org/10.4236/oalib.1104565


T. G. Okedayo et al. 
 

( )
0 0 0 0 1

0 0 0 0 1
0 0 0 0 1

0 1
0 1
0 0 1

det

det

λ
ρ λ λ

λ

λ
λ

λ

    
    = −    
        

− 
 = − 
 − 

 

0 1
0 1 0
0 0 1

λ
λ

λ

−
− =
−

 

( )2 1 0λ λ − =  

1 2λ λ=  or 3 1λ =  

3.3. Zero-Stability for k = 3 

A block method is said to be stable as 0h →  if the roots of the first characteris-
tics polynomial defined by 

0 1det A Aρλ λ = −   

satisfies 1sr =  
The scheme can be expressed as 

1 3

2 2

3 1

4

1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1

89 19 1 0
120 120 40
124 4 2 1
90 15 45 90
77 23 1 0
60 60 60
9 9 3 0
8 8 8
7 47 17 0
30 30 10

n n

n n

n n

n n

y y
y y
y y
y y

h

+ −

+ −

+ −

+

      
      

=      
      
            

 − 
 
 −
 
 −+  
 
 
 

−
 

1 3

2 2

3 1

4

470 0 0
120

70 0 0
20
30 0 0
8
290 0 0
30

n n

n n

n n

n n

f f
f f
f f
f f

+ −

+ −

+ −

+

 
 
         +               
 

   

 

where, 

( ) ( ) ( )0 1 0

89 19 1 0
120 120 40

1 0 0 0 0 0 0 1 77 23 1 00 1 0 0 0 0 0 1 60 60 60, ,
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The first characteristics polynomial of the scheme is 
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3.4. Zero-Stability for k = 4 

A block method is said to be stable as 0h →  if the roots of the first characteris-
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4. Numerical Experiments 

In order to confirm the accuracy and efficiency of the scheme, we consider the 
following initial value problems: Tables 1-4. 
 
Table 1. Results and errors of problem 1 for K = 3. 

N x YC YEX |YEX − YC| 

0 0.000000 1.000000 1.000000 0.000000 

1 0.100000 0.904874 0.904837 3.7 × 10−5 

2 0.200000 0.818800 0.818730 7.0 × 10−5 

3 0.300000 0.740889 0.740818 7.1 × 10−5 

4 0.400000 0.670418 0.670320 9.8 × 10−5 

5 0.500000 0.606653 0.606531 1.22 × 10−4 

6 0.600000 0.548956 0.548811 1.45 × 10−4 

7 0.700000 0.496749 0.496585 1.64 × 10−4 

8 0.800000 0.449511 0.449328 1.83 × 10−4 

9 0.900000 0.406768 0.406569 1.99 × 10−4 

10 1.000000 0.368093 0.367879 2.14 × 10−4 

 

Table 2. Results and errors of problem 1 for K = 4. 

N x YC YEX |YEX − YC| 

0 0.000000 1.000000 1.000000 0.000000 

1 0.100000 0.905695 0.904837 8.58 × 10−4 

2 0.200000 0.820365 0.818730 1.635 × 10−3 

3 0.300000 0.743155 0.740818 2.337 × 10−3 

4 0.400000 0.673292 0.670320 2.972 × 10−3 

5 0.500000 0.610078 0.606531 3.547 × 10−3 

6 0.600000 0.552879 0.548811 4.068 × 10−3 

7 0.700000 0.501124 0.496585 4.539 × 10−3 

8 0.800000 0.463649 0.449328 1.4321 × 10−2 

9 0.900000 0.429739 0.406569 2.3170 × 10−2 

10 1.000000 0.399057 0.367879 3.1178 × 10−2 
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Table 3. Results and errors of problem 2 for K = 3. 

N x YC YEX |YEX − YC| 

0 0.000000 0.000000 0.000000 0.000000 

1 0.100000 0.004993 0.004988 5.0 × 10−6 

2 0.200000 0.019806 0.019801 5.0 × 10−6 

3 0.300000 0.044003 0.044003 0.00000 

4 0.400000 0.076890 0.076884 6.0 × 10−6 

5 0.500000 0.117509 0.117503 6.0 × 10−6 

6 0.600000 0.164732 0.164729 3.0 × 10−6 

7 0.700000 0.217303 0.217295 8.0 × 10−6 

8 0.800000 0.273858 0.273851 7.0 × 10−6 

9 0.900000 0.333026 0.333023 3.0 × 10−6 

10 1.000000 0.393477 0.393469 8.0 × 10−6 

 
Table 4. Results and errors of problem 2 for K = 4. 

N x YC YEX |YEX − YC| 

0 0.000000 0.000000 0.000000 0.000000 

1 0.100000 0.004434 0.004988 5.5 × 10−4 

2 0.200000 0.019809 0.019801 8.0 × 10−6 

3 0.300000 0.044009 0.044003 6.0 × 10−6 

4 0.400000 0.076891 0.076884 7.0 × 10−6 

5 0.500000 0.129887 0.117503 1.2 × 10−2 

6 0.600000 0.168705 0.164729 3.9 × 10−3 

7 0.700000 0.216646 0.217295 6.5 × 10−4 

8 0.800000 0.272938 0.273851 9.1 × 10−4 

9 0.900000 0.344677 0.333023 1.1 × 10−2 

10 1.000000 0.395906 0.393469 2.4 × 10−3 

 
Problem 1: 

( ) ( ), 0.1, 0 1y y x h y′ = − = =                    (30) 

Exact solution: ( ) e xy x −=  (see K.M. Abualnaja, 2015). 
YC: approximate solution 
YEX: exact solution 
Problem 2: 

( ) ( ) ( )1 , 0.1, 0 0y x x y h y′ = − − = =              (31) 

Exact solution: ( )
2

21 e
x

y x
−

= −  (see K.M. Abualnaja, 2015). 
YC: approximate solution 
YEX: exact solution 
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5. Conclusion 

In this research work, a class of implicit block collocation methods for the direct 
solution of initial value problems of general first order ordinary differential equ-
ations was developed using Legendre collocation approach. The collocation 
technique yielded a consistent and zero stable implicit block multi-step method 
with continuous coefficients. The method is implemented without the need for 
the development of correctors. 
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