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1. Introduction

Many problems in celestial and quantum mechanics, nuclear, theoretical phys-
ics, astrophysics, quantum chemistry and molecular dynamics, are of great in-
terest to scientists and engineers. These problems are mathematically modelled

by using ordinary differential equation of the form:
f(x,y7y’7y"a”'5y(n))sy(a) :y07y’(a) = y17”"y(n71) (a) = yn (1)

where on the interval [a,b] has given rise to two major discrete variable me-

thods namely, one step and multistep methods commonly known as linear mul-
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ti-step methods. Many authors have worked on the direct solution of (1), among
which are Lambert [1], Fatunla [2], Sarafyan [3], Awoyemi [4] and Kayode [5].
Each of them worked on the development of several methods for solving Equa-
tion (1) directly without having to reduce to system of first order differential
equations. For instance, in Awoyemi [4], methods were developed to solve
second order initial value problems which are the mathematical formulation for
systems without dissipation. Fatunla [2] considered a step-by-step method based
on the classical Runge-Kutta method; Hairer and Wanner [6] developed Nystrom
type method for initial value problem for first order differential equations in which
the conditions for the determination of the parameters of the methods were men-
tioned. Also, Henrici [7] and Lambert [1] improved the derivation of linear mul-
ti-step methods with constant coefficients for solving first order equation with ini-
tial conditions.

In Awoyemi [8], linear multi-step methods with continuous coefficient for in-
itial value problem of the first order differential equations in the predic-
tor-corrector mode were proposed, based on collocation method with power se-
ries polynomial as basis function, and Taylor series algorithm to supply starting
values. Continuous linear multi-step method is useful in reducing the step
number of a method and still remains zero-stable; it has greater advantage in the
sense that better error estimates guaranteed easy approximation of solution to all
points of integration interval. Moreover, Awoyemi (1995) adopted the hybrid
methods and proposed a two-step hybrid multi-step method with continuous
coefficients for the solution of a first order initial value problem based on the
collocation at selected grid points, using off-grid points to improve the order of
the method implemented on the predictor-corrector mode. Other researchers
who have studied hybrid method include Adee and Onumanyi [9], and Yahaya
and Badmus [10].

Furthermore, many researchers had developed interest on improving the nu-
merical solution of initial value problems of ordinary differential equation.
Consequently, the development of a class of methods called block method is one
of the outcomes. This was proposed by Milne [11], and it was found that it ge-
nerates approximations continuously at different grid points in the interval of
integration; it is less expensive in terms of the number of function evaluations
compared to the linear multi-step methods. Chu and Hamilton [12] also pro-
posed a generalization of the linear multi-step method to a class of multi-block
methods where step values are obtained all together in a single block. Jator
(2007) and Jator et al (2005) proposed five-step and four-step self starting me-
thods which adopt continuous linear multi-step method to obtain finite differ-
ence method applied respectively as a block for the direct solution of the first
order initial value problem. Also, in Yahaya and Mohammed (2010), Chebyshev
polynomial was considered as trial function. Ajileye et al. adopted Laguerre col-
location approach for continuous hybrid block method. Other scholars that
adopted block methods include Omar and Suleiman [13] [14] [15] and Areo and
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Adeniyi [16]. Abualnaja (2015) developed a block procedure with linear mul-
ti-steps using Legendre polynomials but did not include the block schemes.
Thus, in this paper, Legendre polynomial is used as a basis function to derive
some block methods for the solution of first order ordinary differential equation,
which extends the work of Abualnaja (2005).

2. Derivation of the Method
In this section, we consider the approximate solution of the form
v (x) =X e (x).
Perturbing the equation above, we have
Xy (%)= (x2)+ AL (x) @

where, y,(x)=x",i=0,1,--,k and L, (x) is the Legendre polynomial of de-
gree k&, which is defined on the interval [—1,1] , and can be determined with the
aid of the recurrence formula:

2i+1
LHI( )

xL ( ) (x),i=1,2,--- (3)
So that

Ly (x) =1L (x) =x,L, (x) =

We define a shifted Legendre polynomials by introducing the change of variable

3x* -1 35x* =30x% +3
B O 1

2% = (X, +x,)

x=——->"" " k=1,234 (4)
xn+k - xn
For k=1
using Equation (4), taking L, (x) =x, and collocating at x, and x,,,, we ob-
tain
L(x,)=-LL(x,,)=1 (5)
hence,
2x —X ., —X
Ll(x,,): n n+l n :_1 (6)
xn+1 - xn
and,
22X, =X, —X
L] (x’”l) n+l no_ 1 (7)
xn+1 - xn

Deducing v, (x)=0,l//1(x)=1 from Equation (1), it follows that Equation
(2) becomes

f(x,y)ch —-AL, (x) (8)

Solving the above systems we obtain

(o fua)s = fy=Aoco =3, =5, (£, =)
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The required numerical scheme of the method will be obtained if we collocate

y(x)=c,+¢x at x=x,, andsubstitute c,,c;,A asfollows

Vot =¥, +§(fm +1,) ©)
k=2
taking L, (x)= %(3;8 ~1), and collocating at x,, x,,,and x,,
we get
L (5) =1 (5) = o () =1

From Equation (1), it can be deduced that v, (x) =0y, (x) =Ly, (x) =2x,

then Equation (2) becomes

f(x,y)=¢ +2xc, - AL, (x) (10)

Collocating Equation (10) at x,,,,i=0,1,2 and interpolate
Vi (x)zzliocil//i(x),xn <x<X,,, (11)
at x=x,, we get a system of four equations with ¢;(i=0,1,2) and parameter

A
Yn=Ctox, + Cij
fo=c+2c,x,—A

(12)

1
S =€ +20,x —A

ntl

fo=c +2c,x A

n+2

Hence, solving Equation (12), we get
1
A= g(_ﬁz + 2f;z+1 - f;1+2 )

¢ :_—1(—12hyn +88,hf,.., — 41,1, +8t,hf, =36 £, +3L. 1)
12h (13)

= (A =2 A, =30, 2 43, 1)
-1
6= E(fn ~fo2)
From y, (x)= Zfzocil//l. (x), we have
y=c,tex+ex’ (14)

Hence, the required numerical scheme is obtained by collocating Equation

(14) above at x=1x,,, and substituting c,,c,,c,,4 as follows
h
yn+1:yn+E(5fn+8fn+l_fn+2) (15)
k=3
Taking the polynomial L, = %(Sx3 - 3x) and use the Equation (4), then

collocating this at x,,x,,,,x,., and x,,,we obtain

n+l>"n

DOI: 10.4236/0alib.1104565 4 Open Access Library Journal


https://doi.org/10.4236/oalib.1104565

T. G. Okedayo et al.

Ly(x,)=-1, L3(xn+1):%, L3(xn+2):_2—171, Ly(x,.;)=1. From Equation
(1), it can be deduced that y,(x)=0,y,(x)=Ly,(x)=2xp;(x)=3x", then

Equation (2) is reduced to the form
f(xp)=c +2xc, +3c,x = AL, (x) (16)

Hence, collocating Equation (16) at x,

n+i®

i=0,1,2,3 and interpolate Equation
(11) at x=x,, we get the system of equations with Ci,(i =0,1,2,3) and para-
meter A

2
Y, =Co+OX, + X, + X,
_ 2
[ =¢+2c,x, +3cx, + A

, 11

f;H—] =q + 2czxn-ﬁ + 3C3X _71 (17)

n+l

foa =€ +20,x

11
+3e,x2, +—A
n+2 3Vn+2 27

+3cx0 - A

Soz=a+20x w3

n+3

Solving the above system of equations, we obtain

9
l:%(ﬂ1_3ﬂ+1+3ﬁ1+2_ﬁ+3)

1
Cy = —E(—Sltnhzfn+2 +27t f. h° + 5660 f, +81t b f, . +93t > f, =18t hf,,

+ 348 1., — T2 S, — 1206 hf,,., ~ 108, £, + 106k, — 106, £, )

1
= E(68tnhfw3 +112¢, f.h—3612hf.., —144¢ hf,.,
+930°hf, =811 f,,, =30, £, + 306 £, + 300 f, =30, £,.. )

+811° f,

n+l

+270°f,,

1

c, = —W(—lstnfn+2 +15¢,f, —15¢, f,., —36hf, ., + 28hf, +17hf, ; —9hfn+1)
1
C3 :_W(fn _j;1+1 _/{n+2 + n+3)

From y,(x)= Zfzoc,w[ (x), we have
Y =c,tex+ex’ +ex’ (18)

Hence, the required numerical scheme is obtained by collocating Equation

(18) above at x=x,,, and substituting c,,c,,c,,c;,A4 as follows

h
yn+] :yn +E(47ﬁl +89‘f;1+1 _19ﬁ1+2 +3f;1+3) (19)
k=4
In this case, we take the polynomial L, = %(35x4 -30x” + 3) and use the

Equation (4), then collocating thisat x ,x ,x

n+22

x,, and x,,,we obtain

n2 " n+lo

L(x,)=1, L, (xnﬂ):%);, L, (xm):%, L,(x,,,)=1. From Equation (1),
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we can deduce that v, (x)=0,p;(x) =Ly, (x)=2xy,(x)=3x"p,(x)=4x",
then Equation (2) is reduced to the form

F(x,y)=c +2xc, +3¢;x° +4e,x” — AL, (x) (20)

Hence, collocating Equation (20) at x,,,,i=0,1,2,3,4 and interpolate Equa-

n+i®
tion (11) at x=x,, we get the system of equations with Cl.,(i = 0,1,2,3,4) and
parameter A
2 3 4
YV, =€ FOX, X, +CX, +C X,

- 2 3
fo=¢ +2¢,x, +3cx; +4c,x, — A

Jon =c+20x,, il

+3c,x], +de,x, + i/l
128

3 (21)
Jra =6 +20x,,, + 3c3xj+2 + 4C4xi+z _g/l

37
s =6+ 20,5, 43,3, + 4, + @l

2

p— 3 —
Jua=c +20)x s TACx, 53— A

e T305x

Solving the above system of equations with a suitable method, we obtain
16

A=
105

(_f,, + 4fn+1 - 6fn+2 + 4fn+3 - fn+4)

1
¢, =— 768x W f.., —4272x f.h* =3072x K®
0=~ ga0 OS5 s = 42725, , I

—3072x, 1 f,,, +4608x 1’ f,., +2400x, k> f,., —3330x21’ 1,
+1290x20° £, —4320x21° ., +1520x k., —1840x If,
+670x hf,,, —1010x hf, +660x hf, ., +3960x>h’ ..,

n

+5040y,1° +210x} £, —210x} ,., +105x} £, , —105x} £, )

1
o =—=
'g40n°

+920x7 £, h+T60x2hf, , +1440x h f, , —430x,h° f,,, +1110x K’ f,
+800/°x, £,

—128k°hf,,, —T68I°hf, , + S121°f,,, + 512k f,
+ 7120 f, ~140x, £, +140x, f,., = T0x, f,., +70x, , )

(-1320x,° £,,, —330x] f,,,h + 505x] f,h = 335 £, ,h

n+2 n+l n+3

1

Cc, ==
168K
+ 3RS, A1 R — 4202 f, + 4202 + 42X,

—21x) f,4 +20x, £, —BOR’ £, +144R° £, 1321, ;)

(—66x,hf,

n

., +101x, Af, —67x hf,

n

o +184x f, . —152x If,,

+1

1
G = _W(_gé"xnfnﬂ + 84xr1f;1+3 - 42xn-f;l+4 + 42xnf;z
—152hf,,, +184hf,,, — 67hf,,, +101kf, — 66kf,,, )
1
Cy = (fn - 2.f;z+l + 2fn+3 - fn+4)

TR

From y,(x)= Zfzoc,wi (x), we have
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Y =c, tex+c,x +ox +ext (22)

Hence, the required numerical scheme is obtained by collocating Equation

(22) above at x=ux,,, and substituting c¢,,c,c,,c;,¢,,4 as follows

V1 =V, + 50};0 (1847fn +4162f,,,-13081 , +382f ., —43fn+4) (23)

Formulating the Block Scheme of Cases k=2, 3 and 4
If k=2

We collocate Equation (14) at x=x

n+l?

X

n+2°

x,,; togiveus

n+3

h
Y1 =V +E(5fn +8fn+1 _f;1+2)
h
yn+2 = yn +§(f;1 +4f;1+l +fn+2) (24)

h
Yz =Wy +Z(8fn+l _fn +fn+2)

If k=3

We collocate Equation (18) at x=x,,x,.,,X

n+32

x,,, togiveus

n+l>n+2o n+4

h
Vo1 =V +ﬁ(47fn +89f;1+1 _19fn+2 +3fn+3)

h
Vo2 = Vn +%(21j;1 + 77 f1 + 231,12 _fn+3)

A (25)
Yz =V +§(3f;1 + 9fn+1 + 9fn+2 + 3fn+3)
h
Ynia =V +£(29fn - 7f;1+1 + 47fn+2 + 51];14-3)
Ifk=4
We collocate Equation (22) at x=Xx,,,,X,,5,X,,3,X,,4,X,,5s t0 give us
Vo =Va ¥ 50h40 (1847, +4162,,,—1308,,, +382f,., —43f,.,)
h
Y2 =Wy +%(29ﬁ1 + 124f;1+1 + 24f;1+2 + 4fn+3 _f‘n+4 )
Vo =V +%(179fn +377f,,, +444f, , +334f, ., =31f..,) (26)

Yard =V +%(14fn F641,1+24f, 5 T64f, 5 +141,.,)

Viss = Vn +ﬁ(—253fn +3322f,.,—1308f,,, +1222f, . + 2057fn+4)

3. Basic Properties of the Method

3.1. Order, Error Constant and Consistency of the Methods

The schemes developed belong to the class of Linear Multi-step Method (LMM)

of the form

3 () y (%) =h 3B (¥) £ (x,.,) 27)

Equation (27) is a method associated with a linear difference operator
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L[y(x);h]:zl;zo(ajy(x+jh):h,Bjy’(x+jh)) (28)

where y(x) is continuously differentiable on the interval [a,b] , and the Tay-

lor series expansion about the point xis expressed as
L [y(x) ; h] =coy(x)+ehy' (x)+c,h’y" (x)+---+¢,h"y" (x) (29)

In line with [12], schemes (15, 19, 23) are said to be of order P if
C,=C =C,=--=C,=0 and the error constantis C,,, # 0. Hence, we estab-
lish that (15),(19), and (23) is of the following orders respectively
when k=2, P=3 and C,, =0.041667
when k=3, P=3 and C,,=0.016
when k=4, P=2 and C,, =0.041667

3.2. Stability Analysis

The scheme can be expressed as:

8 1
10 Of v 0 0 1)y, 142 :2 St
0 1 0)lye|=|0 0 Ly k= = 0l /s,
0 O 1 yn+3 0 0 1 yn 5 f;1+3
2 = 0
L 4
00 %
e
+/0 0 g f;:—l
s
00 —
where,
_i B O_
100 00 1 1212
A%=0 1 0[,4"=|0 0 1,8 = ; % 0
0 01 0 01 5
2 = 0
L 4
and
00 2
12
1 1
V=0 0 =
3
00 1
L 4]
The first characteristics polynomial of the scheme is
p(A)=det[ 14’ - A']
DOI: 10.4236/0alib.1104565 8 Open Access Library Journal
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p(A)=de

det

t{
A
0
0

A
0
0

A 0 0
0 4 0
0 0 2

0 -1
A -1
0 A1-1

0 0
-10 0
0 0

=0

A (A-1)=0
A= or J;=1

3.3. Zero-Stability for k=3

1
1
1

A block method is said to be stable as # — 0 if the roots of the first characteris-

tics polynomial defined by

satisfies |rs | =1

ph=det| 14"~ 4']

The scheme can be expressed as

1 00 0ly,] [0 00 1]y
010 0fy.| |00 0 1|y,
001 0|ly..| |0001]|y,
000 If|y.| 000 1]y,
89 19 1 i
- = — 0 - -
120 120 40 00 0 47
124 4 2 1 120
90 15 45 90 || Suu 7 || fuss
000 —
77 23 -1 Soia 20 || fu2
+h| — = — 0 +
60 60 60 s 1o 00 2| /m
2 2 g 0 Sosa 8 A
8 8 8 29
BT U U AR
L 30 30 10 i
where,
8 19 1
120 120
1 0 0 O 0 0 01 77 23 -1
— = — 0
A<o>=0 1 00 A@):O 0 01 O _| 60 60 60
001 0f 00 0 1[ 9 9 3 0
00 01 0 0 01 8 8 8
A TR VA
L 30 30 10 |
and
DOI: 10.4236/0alib.1104565 9 Open Access Library Journal
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0

47 ]
120

29
30

The first characteristics polynomial of the scheme is

p(A)=det| 14’ - 4']

p(A)=det

S O O
S O O

S O O

N——
|
S O o O

N O O O

S O O
S O O

A (A-1
A=4=4=0 or 4, =1

3.4. Zero-Stability for k= 4

S O O O
S O o O

(= - =]
|
—_

A—
)=

1

0

—_ =

=det

A0 O -1
04 0 -1
00 4-1 O

00 0 A-1

A block method is said to be stable as # — 0 if the roots of the first characteris-

tics polynomial defined by

satisfies |’}| =1

pA=det| 14"~ 4']

The scheme can be expressed as

1 000 0}y, 00 0 0 1|y,
01 0 0 0|y, 00 0 0 1|y,
001 0 O0}|y,]/=|0 000 1|y,
00 01 O0fy,a 000 0 1|y,
0 0 0 0 1| Yus 00 0 0 1| »y,
(56150 a 84084 56042 3 14009 0_
144 144 144 144
24 4 2 Y olrf.
90 15 45 90 f
754 444 334 31 "
L I Ll 12
560 560 560 560 f
64 8 64 14 n+4
yr 5 P 2 Yl /fs
45 9 45 45
3322 _1308 1222 2057 0
L 1008 1008 1008 1008 J
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00 0 0 13955
144
0000 % fra ]
179 ||
+0 0 0 0 — || fis
560
14 o
00 0 O —
45 L]
00 00O _23
L 1008 |
where,
(1 0 0 0 0] [0 0 0 0 1]
01 000 0 0001
A%=10 0 1 0 0[,4%=[0 0 0 0 1},
00010 0 00 011
[0 0 0 0 I} 00 0 01
56150 84084 56042 14009 ]
144 144 144 144
2y 4 2 1
90 15 45 90
g _| 4 444 334 31
560 560 560 560
64 b o4 14y
45 9 45 45
3322 1308 1222 2057 0
L 1008 1008 1008 1008 |
and
000 0 _13955
144
00 0 O Q
90
B=[o 0 0 0 2
560
0 00O 14
45
0 00O _ 253
L 1008 |
The first characteristics polynomial of the scheme is
p(A)=det[ 24"~ 4']
A 0 0 0 0 0 0 1 A0 0 -1
04 00 0 0 01 04 0 -1
p(/l)=det - = det
0 0 4 0 0 0 01 0 0 A-1 0
0 0 0 4 0 0 01 00 0 A-1

DOI: 10.4236/0alib.1104565

11

Open Access Library Journal


https://doi.org/10.4236/oalib.1104565

T. G. Okedayo et al.

A0 0 0 -l
0400 -1
0020 -1[=0
000 2 -1
000 0 2-1
A4 (A-1)=0

A=4=4=2,=0 or A =1

4. Numerical Experiments

In order to confirm the accuracy and efficiency of the scheme, we consider the

following initial value problems: Tables 1-4.

Table 1. Results and errors of problem 1 for K= 3.

N x YC YEX [YEX - YC|
0 0.000000 1.000000 1.000000 0.000000

1 0.100000 0.904874 0.904837 3.7x10°
2 0.200000 0.818800 0.818730 7.0 x 107
3 0.300000 0.740889 0.740818 7.1%x10°°
4 0.400000 0.670418 0.670320 9.8%10°°
5 0.500000 0.606653 0.606531 1.22x 107
6 0.600000 0.548956 0.548811 1.45 x 107
7 0.700000 0.496749 0.496585 1.64 x 107
8 0.800000 0.449511 0.449328 1.83 x 107
9 0.900000 0.406768 0.406569 1.99 x 107
10 1.000000 0.368093 0.367879 2.14x 107

Table 2. Results and errors of problem 1 for K= 4.

N x YC YEX [YEX - YC|
0 0.000000 1.000000 1.000000 0.000000

1 0.100000 0.905695 0.904837 8.58 x 10~
2 0.200000 0.820365 0.818730 1.635 x 107
3 0.300000 0.743155 0.740818 2.337 x 107
4 0.400000 0.673292 0.670320 2,972 x 107
5 0.500000 0.610078 0.606531 3.547 x 1073
6 0.600000 0.552879 0.548811 4.068 x 107
7 0.700000 0.501124 0.496585 4.539 x 107
8 0.800000 0.463649 0.449328 1.4321 x 1072
9 0.900000 0.429739 0.406569 2.3170 x 107
10 1.000000 0.399057 0.367879 3.1178 x 1072
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Table 3. Results and errors of problem 2 for K= 3.

N x YC YEX [YEX - YC|
0 0.000000 0.000000 0.000000 0.000000
1 0.100000 0.004993 0.004988 5.0 x107°
2 0.200000 0.019806 0.019801 5.0 x 107
3 0.300000 0.044003 0.044003 0.00000
4 0.400000 0.076890 0.076884 6.0 x 107
5 0.500000 0.117509 0.117503 6.0 x 107°
6 0.600000 0.164732 0.164729 3.0x10°°
7 0.700000 0.217303 0.217295 8.0 x107°
8 0.800000 0.273858 0.273851 7.0 X 107
9 0.900000 0.333026 0.333023 3.0x 107
10 1.000000 0.393477 0.393469 8.0 x 107
Table 4. Results and errors of problem 2 for K= 4.

N x YC YEX [YEX - YC|
0 0.000000 0.000000 0.000000 0.000000
1 0.100000 0.004434 0.004988 5.5% 107
2 0.200000 0.019809 0.019801 8.0 x107°
3 0.300000 0.044009 0.044003 6.0 x 107°
4 0.400000 0.076891 0.076884 7.0 x 107°
5 0.500000 0.129887 0.117503 1.2x 1072
6 0.600000 0.168705 0.164729 3.9%x107°
7 0.700000 0.216646 0.217295 6.5x 107
8 0.800000 0.272938 0.273851 9.1x 10
9 0.900000 0.344677 0.333023 1.1x 1072
10 1.000000 0.395906 0.393469 2.4x107

Problem 1:

V' ==y(x),h=0.1,y(0)=1 (30)

Exact solution: y(x) =e¢ " (see K.M. Abualnaja, 2015).

YC: approximate solution

YEX: exact solution

Problem 2:

y'(x)zz—x(l—y),h=0.1,y(0)=0 (31)

Exact solution: y(x) =l-e 2 (see KM. Abualnaja, 2015).

YC: approximate solution

YEX: exact solution
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5. Conclusion

In this research work, a class of implicit block collocation methods for the direct

solution of initial value problems of general first order ordinary differential equ-

ations was developed using Legendre collocation approach. The collocation

technique yielded a consistent and zero stable implicit block multi-step method

with continuous coefficients. The method is implemented without the need for

the development of correctors.
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