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Abstract 
Detection and localization of acoustic events in an environment are important 
to protect the military and civilian installations. While there are finite paths of 
wave propagation in simple or low reverberant environments, in complex en-
vironments (e.g. a complex urban environment) obstacles such as terrain or 
buildings introduce multipath propagations, reflections and diffractions 
which make source localization challenging. Therefore, numeric results of si-
mulated models (simplified and Fort Benning urban models) of 3D complex 
environments can highly help in real applications. Some of the conventional 
beamformer algorithms have been used in order to localize point sound 
source. Analyzing results shows that MRCB beamformer has better perfor-
mance than others in this issue and its accuracy superiority is more than 3 m 
in simplified urban model and 5 m in Fort Benning urban model with respect 
to the SOC. Moreover, due to possible uncertainties between the numerical 
model and the actual environment such as squall effect, temperature gradient 
etc., sensitivity of the beamformers to temperature gradient is investigated 
which shows higher robustness of SOC beamformer than the MRCB beam-
former. According to the results, due to gradient temperature uncertainty the 
accuracy degradation of the SOC is about 1m while in MRCB it alters from 0.5 
m to 20 m approximately at all SNRs. COMSOL Multiphysics has been used 
to numerically simulate the environment of wave propagation. 
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1. Introduction 

Source localization is one of the fundamental problems in sonar [1], radar [2], 
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teleconferencing [3], navigation and global positioning systems (GPS) [4], loca-
lization of earthquake and underground explosions [5], microphone arrays [6], 
robots [7], sensor networks epicenters [8], speaker tracking [9] and sound 
source tracking [10].  

Sound source localization has several methods including direction of arrival 
(DOA) [11], time delay of arrival (TDOA) [12] [13], received signal strength 
(RSS) [14] and head related transfer function based approaches (HRTF) [15] 
[16].  

In RSS method, the received energy of the signal determines the source loca-
tion while TDOA method uses the time delay of received signals by two sensors 
to estimate the source location. In TDOA, increasing the number of micro-
phones leads to more computational complexity which can be considered as 
disadvantage of this method. The other method which is based on orientation of 
the ear system is HRTF. It is used in robots which have two sensors.  

DOA method uses sensors to estimate the direction of the source. One of the 
techniques used in DOA method is beamforming [17]. Beamforming uses the 
received signals in microphone arrays to provide a versatile form of spatial fil-
tering. It enhances the signal from the desired spatial direction while reducing 
the signal from other directions. Many researches have been done for improve-
ment of beamforming sensitivity to errors and interferences. Signal-to-interference 
plus-noise ratio (SINR) term is used at the output of the beamformers to meas-
ure function of narrowband beamformers. In order to maximize the output 
SINR, the entire output power of the beamformer is minimized subject to a dis-
tortionless constraint for the main signal. The obtained result is the standard 
Capon beamformer (SCB) [18]. If the beamformer training data do not comprise 
the desired signal, the SCB is reputed to grant an outstanding performance and a 
fast convergence rate component [19]. In some application, the received signal 
comprises noise, interferences and desired signal component. Thus, small esti-
mation errors of the signal steering vector or the array covariance matrix may 
cause a strict performance deterioration of the SCB. The inaccuracies in the 
knowledge of the desired signal steering vector may be caused by multiple rea-
sons such as transmitter, transfer channel and/or receiver which are related to 
the source characteristics, propagation media and/or sensors, respectively. In 
2003 Vorbyov was considered the uncertainty set on steering vector of the de-
sired signal [20]. The magnitude of the beamformer output is coerced to be 
larger than or equal to one for any vectors which are in the supposed uncertainty 
set. This optimization problem has infinite number of restrictions for the case of 
spherical or ellipsoidal uncertainty sets and its solution can be simplified by us-
ing the worst-case principle [20]. By using this principle, the beamformer weight 
vector of the [18] is calculated by solving a second order cone programming 
(SOCP) problem [21] and for this reason, in the literature the beamformer is re-
ferred to as “SOC beamformer”. Nowadays some set-based worst-case beam-
formers have been developed which are based on an uncertainty set for the signal 
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steering vector [20] [22] [23] [24] [25] [26]. In 2013 Rubsamen, this uncertainty 
set with an objective function which maximizes the robustness of the beamfor-
mer to errors and interferences is considered [27]. This beamformer is reputed 
as maximally robust Capon beamformer (MRCB). Our goal is to localize point 
sound source using microphone array, hence several candidate beamformers are 
investigated using complex 3D models which they are simplified and Fort Ben-
ning urban models. The maximum robust capon beamformer (MRCB) is the 
beamformer that has the best performance (i.e. accurate localization capability) 
in complex environments. Another goal is to investigate the sensitivity of the 
beamformers to uncertainties caused by difference between simulated models 
and actual environments. In this research, temperature gradient uncertainty is 
investigated. So basically, a uniform temperature (zero gradients) is assumed in 
the numerical model while there is a gradient (lapse or inversion) in the real en-
vironment. Since the speed of sound is a function of temperature, the tempera-
ture gradient uncertainty implies a spatial distribution of the speed of sound 
with height. For realistic investigation, localization error of the beamformers is 
analyzed for different levels of uncorrelated noise in the environment. In the 
background, we survey the basic concepts of beamforming technique. Multiple 
conventional beamformer algorithms are introduced in Chapter 3. Finally, si-
mulation results are shown in Chapter 4 and conclusion and future works are 
delegated to last chapter.  

2. Background 

Assume an array of M sensors. Beamformer output at the kth time instant is 

( )Hb w x k=                             (1) 

where ( ) 1Mx k C ×∈  and 1Mw C ×∈ are the array snapshot and beamformer 
weight vectors, respectively, M is the number of sensors, C denotes the set of 
complex number and ( ). H  represents the Hermition transpose. The snapshot 
vectors are as follows: 

( ) ( ) ( ) ( )
1

N

l l
l

x k a k s k n k
=

= +∑                     (2) 

where N is the number of sources, 1M
la C ×∈  is the steering vector of the lth 

source, ( )ls k  is the baseband waveform of the lth source at the kth time in-
stant, ( ) 1Mn k C ×∈  is the noise vector and ( ). T  represents the transpose. As-
suming a main source and the other sources as interferers, the steering vector of 
the main source is sa  and hence, the received snapshot vector can be formu-
lated as 

( ) ( ) ( ) ( )s ix k x k x k n k= + +                     (3) 

where ( )sx k  is the desired signal and ( )ix k  is the interferers. 
Let R denote the theoretical covariance matrix of the array output vector. 

Then the array covariance matrix can be expressed as 
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( ) ( )H H
S S S i nR E x k x k P a a R + = = +                  (4) 

where sP  is the power of the main signal, [ ].E  denotes the statistical expecta-
tion and i nR +  is the interference-plus-noise covariance matrix. The beamfor-
mer performance is commonly measured in terms of the output SINR, defined 
as [28] 

2H
S S

H
i n

P w a
SINR

w R w+

=                          (5) 

We can maximize the performance of the beamformer by minimizing the de-
nominator of the equation subject to a distortionless constraint for the main 
signal. This can be formulated as 

min . . 1H H
i n sw

w R w s t w a+ =                  (6) 

The weight which is obtained from (6) is 
1

1
i S

H
s i n S

R a
w

a R a

−

−
+

=                            (7) 

Because of (4) and the distortionless constraint in (6), replacing i nR +  by R in 
the objective function of (6) yields an extra term of constant value. Thus, the 
weight vector of (6) does not get altered if i nR +  is replaced by R. The array co-
variance matrix can be estimated as [19] 

( ) ( )
1

1ˆ
K

H

k
R x k x k

K =

= ∑                         (8) 

where K is the number of vectors in training snapshot. Replacing i nR +  and sa  
in (7) by R̂  and the estimated signal steering vector sa , respectively, leads to 
the SCB [18]. The common formulation of the beamforming weight vector of 
the SCB is as follows: 

1

1

ˆ ˆ
ˆˆ ˆ

s
J
s s

R a
w

a R a

−

−
=                             (9) 

It is reputed that estimation errors in R̂  and sa  gives severe performance 
degradation of the SCB.  

3. Conventional Beamformer 
3.1. Delay and Sum Beamformer 

This type of beamforming is based on sum of the weighted microphone array 
signal, and hence, it is often referred to as a “delay-and-sum (DS) beamformer”. 
The weight vector of this beamformer is equivalent to the presumed signal 
steering vector [17] means ˆsw a= .  

3.2. Set Based Worst Case (SOC) Beamformer 

Modeling of the actual desired signal steering vector is used to design the SOC 
beamformer. It is modeled as a sum of the estimated steering vector and a de-
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terministic norm bounded mismatch vector δ : 

ˆ ,S Sa a δ δ ε= + ≤                         (10) 

where ε  is a priori known bound and .  represents the norm. Thus the 
SOC beamformer of [20] minimizes the beamforming power subject to the con-
straint that the beamformer output is larger than or equal to one for any steering 
vectors of 

saG . According to (10) we have 
1

,
ˆmin

. . 1
s

s

H

w a

H
s s a

w R w

s t w a a G

−

≥ ∀ ∈


 

                   (11) 

The worst-case steering vector, which minimizes the objective function of 
(11), satisfies the constraints. It is assumed that ˆsa ε>  [20] then,  

2
ˆH H

s sw a w a wε= −                       (12) 

Thus (11) can be written as  
1

,

2

ˆmin

ˆ. . 1
s

s

H

w a

H
s s a

w R w

s t w a w a Gε

−

− ≥ ∀ ∈





                (13) 

(13) is a semi-infinite nonconvex quadratic program. It is reputed that the 
general nonconvex quadratically constrained quadratic programming (QCQP) 
problem is intractable. However, in [20], the problem (13) is reformulated as a 
convex second order cone (SOC) program and is solved optimally via the inte-
rior point method. 

3.3. Maximally Robust Capon Beamformer 

The beamformer output power comprises noise, interferences and desired signal 
component. Minimizing output power of the beamformer in (11) diminishes the 
presence of the desired signal component and therefore it may lead to suppres-
sion of the desired signal component. Rubsamen proposes the Capon beamfor-
mer with minimizing the beamformer sensitivity [28] [29] [30] to model errors 
considering the uncertainty set for the signal steering vector [27]. The beam-
forming problem is formulated as: 

2,

1

1

min
ˆ

ˆ
. . ˆ

s

s

H

w a H
S

S
S aH

s s

w w

w a

R a
s t w a G

a R a

−

−
= ∀ ∈







 

                  (14) 

By using the same uncertainty set, the robustness of the MRCB beamformer is 
larger than or equal to that of the SOC beamformer against model errors [27]. 
Substituting the equality constraint of (14) in the objective function yields: 

2

21

ˆ
min

ˆ

. .

s

s

H
s s

a H
s s

S a

a R a

a R a

s t a G

−

−

∈



 

 



                         (15) 
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The constraint of (15) is replaced by [27]: 

2
ˆs sa aβ ε− ≤                           (16) 

2

2
ˆH

s s sa a aβ =    minimizes (16). The constraint and the objective function in 
the optimization problem are invariant with respect to the scaling of sa . Then 

1ˆ ˆH
s Sa R a−
  is scaled to one. The optimization problem of (15) leads to [27]: 1R̂−  

2

1

2

ˆmin

ˆ. . 1
s

H
s sa

H
s s

H
S s S

a R a

s t a R a

a a aα

−

− =

≤



 

 

  

                       (17) 

where 
2 2
2

ˆSaα ε= −                          (18) 

and the optimization problem of (17) can be solved using Lagrange duality [27].  

4. Implementation and Results 

In order to analyze localization error, the simulated models are considered as 
point grid which are spaced one meter from neighboring points and beamfor-
mers output are attained for these points. The beamformer output cut-off thre-
shold cut-offb  is used to determine the source location. cut-offb  for the grid points 
with a beamforming output lower than the cut-off threshold are ignored. The 
source coordinate is estimated as  

1

1

L

j j
j

j L

j
j

b l
l

b

=

=

=
∑

∑
                          (19) 

where L is the number of grid points and { }, ,j j j jl x y z=  is the coordinate 
vector for the thj  grid point, and jb  is the corresponding beamforming out-
put and cut-offjb b> . In the real scenario, it is barely possible that a grid point 
would be placed exactly in which the supposed source is situated. Because the 
simulations are restricted to the case where the source is placed on a grid point, 
selecting a weighted average of the coordinates of the grid points rather than 
pinpointing the single location with the largest beamforming output is reasona-
ble. The source localization error can then be computed as the Euclidean dis-
tance between the true and the estimated source location. These simulations 
have been carried out in the frequency domain. The used noise is the uncorre-
lated noise with the same variances. For getting closer to the realistic conditions, 
two interferers are applied in 1 45iθ =  and 2 45iθ =  and also array includes 
six microphones which form diamond shape. 

At the first case of theoretical investigation, we study the localization error of 
the beamformers versus the input SNR (averaged over the sensors) at two mod-
els of the city. It has been studied for the simplified urban model to test the per-
formance of the beamformers in the complex environment. Then Fort Benning 
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urban model is evaluated as a more complex environment. Figure 1 and Figure 2 
show these urban models and location of the source and the array. Simplified 
and Fort Benning urban models have dimensions of 150 85 10m× ×  and 
140 80 10 m× × , respectively. The center of the coordinate systems is (0, 0, 1) m, 
and the locations of the source and the array in Figure 1 is (35, 43.5, 4) and (110, 
12, 4). The locations of the source and the array in Figure 2 is (4, 70, 4) m and 
(60, 60, 4) m. 

Figure 3 and Figure 4 show the accuracy of the beamformers in different 
SNRs at simplified and Fort Benning urban models, in order. They show that the 
MRCB bemformer has better performance than the other beamformers and its 
superior in accuracy is more than 3 m in simplified urban model and 5 m in Fort 
Benning urban model with respect to the SOC and also the worst performance of 
the DS. Due to more complexity of the Fort Benning urban model, the degrada-
tion in accuracy of the beamformers can be seen. 
 

 
Figure 1. 3D view of the simplified urban model with location of the source and the ar-
ray. 
 

 
Figure 2. 3D view of the Fort Benning urban model with location of the source and the 
array. 
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Figure 3. Point source localization error of the beamformers versus the input SNR at the 
simplified urban model with presence of interferences in 1 45iθ =  and 2 45iθ = − .  

 

 
Figure 4. Point source localization error of the beamformers versus the input SNR at the 
Fort Benning urban model with presence of interferences in 1 45iθ =  and 2 45iθ = − .  

 
In previous simulations, complete knowledge of the acoustic environment was 

assumed to attain the steering vector of the beamformers. It means that the loca-
lization performance of the beamforming methods is depended on the prior in-
formation of the environment to compute the steering vectors. However, there 
are always some uncertainties between the simulated model and the actual envi-
ronment which causes error in localization of the source. In the second case, we 
study the beamformer performance in the presence of gradient temperature un-
certainty in the simplified urban model. According to the experiments on the 
lowest 100 m of the atmosphere, the air can be separated into two parts: the part 
over the ground which the temperature gradient rate is log-linear and the second 
part which has a constant temperature gradient with height [31]. The minimum 
of the first layer height is at least 4 m in winter and 30 to 40 m in summer and 
the second part is a few hundred meters in height. The temperature profile uses 
the following equation: 

2
2 1

1

ln
zT T
z

α
 

= +  
 

                       (20) 
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where 1T  and 2T  are the absolute temperature in Kelvin at two different 
height 1z  and 2z  respectively and α  is the profile constant. Figure 5 shows 
the profile of the temperature versus the height. Here, 10˚C to 30˚C are chosen 
as a minimum and maximum temperature in the profile as shown in Figure 5 
and the corresponding profile constant α  is 8.69. To evaluate the performance 
degradation due to uncertainty, the simplified urban model without any uncer-
tainty is considered as the baseline and used to compute steering vectors. Errors 
due to uncertainties such as temperature gradient or were then introduced as a 
modification of the baseline model.   

To be consistent with the previous results, the array and source are located at 
the same positions. The baseline case without any uncertainty (i.e. 40˚C uniform 
temperature) is also presented in Figure 6 for comparison purpose. Figure 6 
shows that the SOC beamformer has better performance than the MRCB in 
presence of the temperature gradient in environment. In 15dBSNR =  we have 
a phenomenon that causes saltation of accuracy in MRCB beamformer. This 
phenomenon is unknown for us and would be the target of future works. In other 
 

 
Figure 5. Temperature profiles for the temperature gradient from 30˚C to 10˚C. 
 

 
Figure 6. Localization error versus SNR for simplified urban model without temperature 
gradient uncertainty and with 30˚C to 10˚C gradient temperature. 
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SNRs, the degradation in accuracy due to uncertainty is between 0.5 m to 4 m. 
Additional error of the SOC beamformer is about 1 m in all SNRs because of the 
temperature gradient uncertainty. Table 1 shows accurate results of this experi-
ment indicating numerically the differences between the localization error of 
these beamformers with and without temperature gradient uncertainty.  

5. Conclusions 

In this literature, we see that the MRCB beamformer has better accuracy in 
complex environments than SOC and DS in two simulated models. Due to more 
complexity of the Fort Benning urban model, the degradation in accuracy of the 
beamformers can also be seen even with closer distance (about 25 m) between 
array and source in it than in the simplified urban model. Therefore, complexity 
of the models plays an important role in localization error of the beamformers. 
 
Table 1. Localization error of the SOC and MRCB beamformers with and without tem-
perature gradient uncertainty in simplified urban model. 

Beamformer SNR Error (m) 

SOC 
(Without gradient temperature  

uncertainty) 

−5 8.22 

0 7.74 

5 7.4 

10 7.27 

15 7.22 

20 7.22 

SOC 
(With gradient temperature uncertainty) 

−5 8.68 

0 8.56 

5 8.32 

10 8.25 

15 8.23 

20 8.26 

MRCB 
(Without gradient temperature  

uncertainty) 

−5 6.53 

0 6.13 

5 5.97 

10 5.72 

15 5.44 

20 5 

MRCB 
(With gradient temperature uncertainty) 

−5 7.9 

0 8.56 

5 6.92 

10 6.235 

15 25.72 

20 8.8 
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Secondly, the SOC and MRCB beamformers were tested with uncertainty of 
gradient temperature which is caused because of the difference between the nu-
merical models and actual environments. The results show that temperature 
gradient uncertainty exerts more influence on MRCB than SOC. In future 
works, it is important to study the robustness of the beamformers to errors in 
the simulated models due to difference between actual environments and the 
models and also it is necessary to evaluate the topology effects of the source and 
array(s) on beamformers localization error in complex environments. 
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