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Abstract 
Starting from Wigner’s definition of the function named now after him we 
systematically develop different representation of this quasiprobability with 
emphasis on symmetric representations concerning the canonical variables 
( ),q p  of phase space and using the known relation to the parity operator. 
One of the representations is by means of the Laguerre 2D polynomials which 
is particularly effective in quantum optics. For the coherent states we show 
that their Fourier transforms are again coherent states. We calculate the 
Wigner quasiprobability to the eigenstates of a particle in a square well with 
infinitely high impenetrable walls which is not smooth in the spatial coordi-
nate and vanishes outside the wall boundaries. It is not well suited for the cal-
culation of expectation values. A great place takes on the calculation of the 
Wigner quasiprobability for coherent phase states in quantum optics which is 
essentially new. We show that an unorthodox entire function plays there a 
role in most formulae which makes all calculations difficult. The Wigner 
quasiprobability for coherent phase states is calculated and graphically 
represented but due to the involved unorthodox function it may be consi-
dered only as illustration and is not suited for the calculation of expectation 
values. By another approach via the number representation of the states and 
using the recently developed summation formula by means of Generalized 
Eulerian numbers it becomes possible to calculate in approximations with 
good convergence the basic expectation values, in particular, the basic uncer-
tainties which are additionally represented in graphics. Both considered ex-
amples, the square well and the coherent phase states, belong to systems with 

( )1,1SU  symmetry with the same index 1
2

k =  of unitary irreducible repre-

sentations. 
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1. Introduction 

Most representations of probability theory begin with the discussion of some 
examples where probabilities play a main role and introduce then axiomatically 
the probability as a positively semi-definite and “normalized” function over a set 
of events. The main purpose of this function is to allow us to calculate mean 
values and their variances or more generally expectation values for arbitrary 
functions over the set of events when the initial conditions or the prehistory of 
the events are not fully under control of the experimenter or observer. The re-
sults of such calculations are then true in the mean for great ensembles of “equal” 
events and of their dynamics which are made under the same uncontrolled or 
uncontrollable initial conditions. In Hamilton dynamics of a system of one de-
gree of freedom a trajectory is fully determined by a pair ( ),q p  of canonical 
coordinate and momentum in two-dimensional phase space as initial condition 
and the probability function is given by a positive semi-definite function 
( ),F q p  (called distribution or partition function) and from the dynamics of 

single trajectories, in principle, can be determined by the time evolution of the 
function ( ),F q p  (the lately discovered cases of possible chaotic dynamics de-
stroy this assumption in some way). After foundation of probability theory in 
17-th century mainly by Blaise Pascal and great contributions by Jakob B. 
1654-1705 and Daniel (I.) Bernoulli 1700-1782 and by Huygens in 17-th century 
and by Laplace and Bayes in 18-th century a culminating point was reached by 
the axiomatic foundation which in the now finally accepted form was given in 
1933 by Kolmogorov. 

Quantum mechanics gave birth to a new kind of probabilities which are not 
definitely non-negative and which are called quasiprobabilities. The first and, for 
some reason, forever the most important such quasiprobability is the Wigner 
quasiprobability ( ),W q p  [1] (see also [2]), often called Wigner function. Due 
to substitution of the classical canonical variables ( ),q p  by non-commuting 
operators ( ),Q P  (commutator [ ], iQ P I=  ; I identity operator in representation  

space; 
2π
h

≡ , h Planck’s constant) in quantum mechanics a single event is not  

determined as in classical theory by a (displaced) delta function  
( ) ( ) ( )0 0,F q p q q p pδ δ= − −  and its trajectory in phase space is not defined 

and one may best have moving “spots” of events with minimal uncertainty 
products 2q p∆ ∆ =   equivalent to Gaussian distribution functions with 

2q p∆ = ∆ = 
  

( ) ( ) ( ) ( )
2 2

0 01, exp , d d , 1,
π

q q p p
F q p q pF q p

 − + − = − ∧ = 
  

∫
 

   (1.1) 
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with all possible points (displacements 0q  and 0p ) in phase space. The func-
tions ( ),F q p  to different displacements ( )0 0,q p  are overlapping and, there-
fore, are not independent from each other. The canonical operators ( ),Q P  are 
determined up to unitary transformations which preserve the commutation rela-
tions and correspond to canonical transformations in classical theory [3]. 

Expectation values cannot only be calculated by probability or distribution 
functions ( ),F q p  but also from all of their transforms which can be uniquely 
inverted, for example, with the Fourier transform or with the Radon transform 
of ( ),F q p  or also from the wave functions. An important criterion for a 
probability function ( ),F q p  is that a displacement of the state in the phase 
plane displaces the arguments ( ),q p  in corresponding way. In Section 4 we 
calculate the Wigner quasiprobability for a particle in a square well with infi-
nitely high impenetrable walls. This example provides a Wigner quasiprobability 
which for the spatial coordinate q vanishes outside the wall borders and there-
fore is not smooth (infinitely differentiable with continuous derivatives) at the 
wall borders. Due to the quadratic energy spectrum it possesses internal 

( )1,1SU -symmetry. Both properties are equivalent [4]. In Section 5 we make 
the transition from canonical operators to pairs of boson annihilation and crea-
tion operators (and, correspondingly, complex coordinates) that is important for 
quantum optics, e.g., [5]-[10]. The coherent states are here a very effective mean 
for the treatment of many problems but it is less known that the Fourier trans-
formation of coherent states provides anew coherent states (Section 6 and Ap-
pendix A). A further effective mean for the short representation of many basic 
relations of quantum optics is the use of Laguerre 2D polynomials which we 
dealt with in some papers (see [11] and references therein) which is shortly 
touched in Section 7. From Section 8 on we prepare the calculation of the Wign-
er quasiprobability for coherent phase states and which similar to states in an 
infinitely high square well (Section 4) possess internal ( )1,1SU -symmetry 
(Perelomov [12] [13] [14]). The difficulty is here that a very unorthodox entire 
function is involved (Appendix D). In the paper [15] the authors claim that 
they calculate the Wigner function for a phase state but they make this for a 
non-normalizable London phase state and the calculated function is properly 
speaking not a Wigner function and is non-normalizable (Sections 8-11). Due 
to the presence of the mentioned unorthodox entire function which is difficult 
to manage the Wigner quasiprobability of a coherent phase state is less appro-
priate for the calculation of expectation values and variances. We discuss in 
addition in Sections 12-14 another possibility by means of Generalized Eule-
rian numbers, which we represented in a recent publication [16] (see also [17] 
[18]). 

2. The Wigner Quasiprobability in Different  
Representations and Their Equivalence 

In quantum mechanics it is not possible to find a probability function ( ),F q p  
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over the phase space which satisfies all requirements for such functions from 
classical theory for the calculation of expectation values, in particular, positive 
semi-definiteness. One also cannot translate in a unique way a classical function 
( ),A q p  over the phase space ( ),q p  into a quantum-mechanical function of 

the operators ( ),A Q P  since such a function is ill-defined without giving a rule 
for the ordering of the non-commuting operators ( ),Q P  in this function. Thus 
one has two problems, first to give an ordering rule for operator functions 
( ),A Q P  which substitute classical functions ( ),A q p  and then to find a qua-

sidistribution function which allows to calculate all expectation values of 
well-defined operator functions and which should be in best agreement with the 
classical distribution function. This is only possible by compromises. 

The functions ψ ∈  of the irreducible representation of the Heisen-
berg-Weyl (Lie) algebra of the canonical commutation relations  
[ ] ( )† †, i , ,Q P I Q Q P P= = =  in an infinite-dimensional Hilbert space   form 
the deeper level discovered by quantum mechanics to which we do not possess a 
direct access with macroscopic instruments and in almost all measurable expec-
tation values we have it to do with the representation *×   of objects of 
combinations of ϕ ψ  or, more generally, ϕ ψ . 

For functions ( )f Q  of Q or ( )f P  of P alone one does not have the or-
dering problem and expectation values of such operator functions for pure states 
ψ  can be calculated with two (different!) normalized functions ( )W q  or 
( )W p , correspondingly, according to  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

d , d 1,

d , d 1.

f Q f Q qW q f q qW q

f P f P pW p f p pW p

ψ ψ

ψ ψ

+∞ +∞

−∞ −∞

+∞ +∞

−∞ −∞

≡ = =

≡ = =

∫ ∫

∫ ∫
      (2.1) 

The two (different) functions ( )W q  and ( )W p  satisfy all requirements for 
genuine positively semi-definite probability densities. 

Wigner, apparently, looked for a quasidistribution function ( ),W q p  nor-
malized according to  

( )d d , 1,q pW q p
+∞ +∞

−∞ −∞
=∫ ∫                       (2.2) 

which integrated over one of the canonical variables ( ),q p  possesses the prop-
erty (  density operator)  

( ) ( ) ( ) ( )d , , d , ,W q pW q p q q W p qW q p p p
+∞ +∞

−∞ −∞
≡ = ≡ =∫ ∫    (2.3) 

and which is the best compromise for such a function in quantum theory and 
found [1] [2]1  

 

 

1Wigner denotes it by ( ),P x p  and generalizes it to n dimensions 

( ) ( )
( )1 1

1 1, , , ; , , ;
π πn n nx p x x p p→ → 





. He remarks that it was found together with L. Szilard. 

We apply here Dirac’s notation for states with ( ) *q q qψ ψ ψ≡ =  and write it for density op-

erators   with ψ ψ→  for pure states ψ . 

https://doi.org/10.4236/apm.2018.86034


A. Wünsche 
 

 

DOI: 10.4236/apm.2018.86034 568 Advances in Pure Mathematics 
 

( ) ( )0
0 0 0

21, d exp i , ,
π

pqW q p q q q q q Q q q q
+∞

−∞

 = − + = 
 ∫

 

   (2.4) 

where q  are the eigenstates of the operator Q to eigenvalues q. By Fourier 
transformation according to  

1 1d exp i , d exp i ,
2π 2π

pq qpp q q q p p
+∞ +∞

−∞ −∞

   = + = −   
   ∫ ∫

 

 

  (2.5) 

one finds the analogous formula by the wave functions p ψ  in momentum 
representation  

( ) ( )0
0 0 0

21, d exp i , .
π

qpW q p p p p p p P p p p
+∞

−∞

 = + − = 
 ∫

 

   (2.6) 

In this transformation we used the scalar products  

( ) ( ) *1, , exp i ,
2π

pqq q q q p p p p q p p qδ δ  ′ ′ ′ ′= − = − = = 
 

 (2.7) 

and the completeness relations  

d d .q q q p p p I
+∞ +∞

−∞ −∞
= =∫ ∫                    (2.8) 

The definitions (2.4) and (2.6) are fully equivalent to the following definition 
( ( )TraceA A≡  denotes the trace of an operator A)  

( ) ( ) ( ), exp ,W q p Q P q p
q p

δ δ
 ∂ ∂

= − − ∂ ∂ 
            (2.9) 

showing explicitly the symmetry between the canonical variables ( ),q p  in the 
definition of the Wigner quasiprobability. The equivalence of (2.9) to (2.4) and 
(2.6) can be proved, for example, as follows. Starting from (2.9) and using the  

well-known relation 
[ ]1 ,

2e e e
A B A BA B + +

=  if A and B commute with the commutator  

[ ],A B , i.e. [ ] [ ], , , , 0A A B A A B   = =    , and the completeness of the states q  
according to (2.8), one finds  

( ) ( )

( ) ( )

( ) ( )

exp

exp exp exp
2 2

d d exp exp
2

d d exp
2

Q P q p
q p

Q QP q p
q p q

q qq q q q q P q q p
p q

q qq q q q q P q q
p

ρ δ δ

ρ δ δ

δ δ

δ

+∞ +∞

−∞ −∞

+∞ +∞

−∞ −∞

 ∂ ∂
− − ∂ ∂ 

     ∂ ∂ ∂
= − − −     ∂ ∂ ∂     

′ ′′   ∂ + ∂′ ′′ ′ ′′ ′′ ′= − −   ∂ ∂   
′ ′′ ∂ + ′ ′′ ′ ′′ ′′ ′= − −   ∂   

∫ ∫

∫ ∫



 ( )

( )0 0 0 0 02 d exp ,

p

q q q q q q q P q q p
p

δ

δ
+∞

−∞

 ∂
= − + + − − ∂ 
∫ 

 (2.10) 

where we made the substitution 0 0,q q q q q q′ ′′= − = +  with  

0d d 2d dq q q q′ ′′∧ = ∧  of the integration variables. In a last step using the com-
pleteness of the states p  according to (2.8) and their scalar products q p  
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given in (2.7), one calculates  

( )

( )
( )

( ) ( )

0 0

0 0

0 0 0

exp

d exp

21 1exp i exp i .
2π 2π

p p

q q P q q p
p

p q q p p q q p p
p

p q q p q q pq

δ

δ

δ
+∞

−∞

′−

 ∂
+ − − ∂ 

 ∂′ ′ ′ ′= + − − ∂ 

 + − −  = =   
  

∫


   

      (2.11) 

Thus the relation (2.10) in connection with (2.11) proves the equivalence of 
(2.9) to (2.4). 

We now give a representation of the Wigner quasiprobability by the displaced 
parity operator. With respect to the complete sets of eigenstates q  or p  of 
the Hermitean operators Q or P the parity operator Π  acts according to  

, ,q q p pΠ = − Π = −                  (2.12) 

and the parity operator Π  itself can be represented by the following equivalent 
integrals  

† 1 2d d , .q q q p p p I
+∞ +∞ −

−∞ −∞
Π = − = − = Π = Π Π =∫ ∫       (2.13) 

From this follows  

( ) ( ), , , , ,Q Q P P D q p D q pΠ = − Π Π = − Π Π = − − − Π       (2.14) 

and furthermore  

( ) ( )† †, , , , ,Q Q P P D q p D q pΠ Π = − Π Π = − Π Π = − − −      (2.15) 

where ( ),D q p  is the unitary displacement operator defined by2  

( ) ( )( ) ( ) ( )( )1
, exp i , , , , .qP pQD q p D q p D q p D q p

−− ≡ − = − − = 
 

†   (2.16) 

Factorizations (or disentanglements) of the operator ( ),D q p  are obtained 
by the already mentioned theorem used to derive Equation (2.10) and are  

( )

( )

, exp i exp i exp i
2

exp i exp i exp i , 0,0 .
2

qp qP pQD q p

pq pQ qP D I

     = −     
     
     = − − =     
     

  

  

     (2.17) 

The product of two displacement operators is also a displacement operator 
(group property) multiplied by a phase factor  

( ) ( ) ( ), , exp i , ,
2

qp pqD q p D q p D q q p p
′ ′− ′ ′ ′ ′= − + + 

 

       (2.18) 

with the trace  

( ) ( ) ( ) ( ) ( ) ( ) ( ), , 2π , , 2π .D q p D q p q q p p D q p q pδ δ δ δ′ ′ ′ ′= + + = 
 (2.19) 

 

 

2Klauder and Sudarshan [6] (see also Klauder and Skagerstam [8]) denote it by ( ),U p q  and the 
coherent states by ,z p q≡ . 
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The displaced parity operator ( ),q pΠ  is defined as a Hermitean operator by  

( ) ( ) ( )( ) ( )( )† †
, , , , .q p D q p D q p q pΠ ≡ Π = Π            (2.20) 

Using (2.10), (2.18) and (2.19) and 2 IΠ =  one derives the following proper-
ties of the displaced parity operator  

( ) ( ) ( ) ( ) ( )π 1, , , , .
2 2

q p q p q q p p q pδ δ′ ′ ′ ′Π Π = − − Π = Π =
   (2.21) 

and according to definition (2.20)  

( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

2

2

, , , , ,

, , ,

q p D q p D q p D q p D q p

D q p D q p I

Π = Π Π

= Π =

† †

†
      (2.22) 

where we used the property 2 IΠ =  given in (2.13). 

The Wigner quasiprobability ( ),W q p  is up to a factor 
1
π

 the expectation  

value of the displaced parity operator Π  in the following sense  

( ) ( ) ( ) ( )( )†
0 0 0

1 1, , , d , .
π π

W q p q p D q p q q q D q p
+∞

−∞
= Π = −∫
 

    (2.23) 

From this follows taking into account that 0q q+  and 0q q−  are right- 
and left-hand eigenstates of Q  

( )

0 0 0

0 0 0

0
0 0 0

,

1 exp i exp i d exp i exp i
π

1 d exp i exp i
π

21 d exp i ,
π

W q p

pQ qP qP pQq q q

pQ pQq q q q q

pqq q q q q

+∞

−∞

+∞

−∞

+∞

−∞

       = − − −       
       

   = + − −   
   

 = + −  
 

∫

∫

∫

    

  

 





 

  (2.24) 

and it can now be seen that ( ),W q p  in (2.23) is identical with the Wigner de-
finition (2.4). 

3. Further Properties of the Wigner Quasiprobability 

We refer now further properties of the Wigner quasiprobability (e.g., [5] [6] [7] 
[8] [10] [19] [20] [21]). Since the density operator   and the displaced parity 
operator ( ),q pΠ  are Hermitean operators the Wigner quasiprobability ( ),W q p  
according to (2.23) is a real-valued function  

( ) ( )( )*, , .W q p W q p=                         (3.1) 

However, it is not positively semi-definite and may possess regions of negativ-
ity. It is normalized if the trace of the density operator   is normalized (in-
tegrations without writing the limits go over the whole phase space)  

( )d d , 1.q pW q p= ∧ =∫                       (3.2) 

https://doi.org/10.4236/apm.2018.86034


A. Wünsche 
 

 

DOI: 10.4236/apm.2018.86034 571 Advances in Pure Mathematics 
 

The Wigner quasiprobability ( ),W q p  contains the complete information of 
the density operator   and it can be reconstructed from the Wigner quasipro-
bability by the formula  

( ) ( )2 d d , , .q pW q p q p= ∧ Π∫                   (3.3) 

This can be derived by inserting   according to (3.3) into (2.23) and using 
the properties (2.21) of the displaced parity operator. 

The Wigner quasiprobability ( ),W q p  is restricted by  

( )1 1, .
π π

W q p− ≤ ≤ +
 

                     (3.4) 

This follows using the Cauchy-Bunyakovski-Schwarz inequality in operator 
form † † † †A B B A A A B B≤  (   can be defined as positively semi-definite 
Hermitean operator) from  

( )( )
( )

( ) ( )

( )
( )

 

( )

( )
( )( )

( )

††

2

2

2

2
2

2 2

1, , ,
π

1 , ,
π

, ,
π π

B ABA

I

W q p q p q p

q p q p

q p
=

= Π Π

= Π Π

≤ Π =



 





 

 

   

 
 

       (3.5) 

and taking into account 1=  one has proved (3.4). It can be also derived 
from (2.4). In comparison to the bound (3.4) a classical probability function of 
two real variables ( ),q p  apart from being non-negative must not possess such 
a bound. 

From (3.3) follows for the product of two density operators 1  and 2  to 
the Wigner quasiprobabilities ( )1 ,W q p  and ( )2 ,W q p  using 2 IΠ =   

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1 2

1 2

1 2

4 d d d d , , , ,

4 d d d d , , ,

, , ,

4 d d d d , , 2 , 2 2 , 2 ,

q p q p W q p W q p q p q p

q p q p W q p W q p D q p

D q p D q p D q p

q p q p W q p W q p D q p D q p

′ ′ ′ ′ ′ ′= ∧ ∧ Π Π

′ ′ ′ ′= ∧ ∧

′ ′ ′ ′⋅Π − − Π − −

′ ′ ′ ′ ′ ′= ∧ ∧ − −

∫ ∫
∫ ∫

∫ ∫



  (3.6) 

or if we apply the product formula (2.18) for displacement operators  

( ) ( )
( ) ( ) ( )( )

1 2 1 24 d d d d , ,

2
exp i 2 , 2 .

q p q p W q p W q p

qp pq
D q q p p

′ ′ ′ ′= ∧ ∧

′ ′− 
′ ′⋅ − − 

 

∫ ∫





         (3.7) 

For the trace over the product of two density operators 1  and 2  corres-
ponding to two Wigner quasiprobabilities ( )1 ,W q p  and ( )2 ,W q p  one ob-
tains (e.g., [2] [10] [19] [20] [21])  

( ) ( )1 2 1 2 1 20 2π d d , , 1.q pW q p W q p≤ = ∧ ≤ =∫          (3.8) 

If the two states are mutually orthogonal that means if 1 2  vanishes then 
the integral over the two Wigner functions also vanishes and vice versa, i.e.  
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( ) ( )1 2 1 20, 0 d d , , ,q pW q p W q p= ⇔ = ∧∫             (3.9) 

that can be expressed as orthogonality of the corresponding Wigner quasiproba-
bilities. In particular, the Wigner quasiprobabilities ( ),nW q p  for the discrete 
orthonormalized eigenstates ( ), 0,1, 2,n nψ =   of a Hermitean operator are 
orthogonal to each other and in orthormalized form one finds  

( ) ( ) ( )2
, ,2π d d , , , .m n m n m n m n m nq pW q p W q pδ ψ ψ ψ ψ δ= = ∧ =∫   (3.10) 

This is only possible if with exception of the ground state 0ψ  of a Hamilto-
nian the Wigner quasiprobability to all other states possesses regions of negativi-
ties. 

In case of 1 2= ≡    one finds from (3.8)  

( )( )22 22π d d , 1, 1, ,q p W q p ψ ψ= ∧ ≤ = ⇒ =∫       (3.11) 

For 2 1=  one has a pure state that requires the equality sign in (3.11) for 
the integral over the squared Wigner quasiprobability that can be used as indi-
cator for a pure state. 

4. The Wigner Quasiprobability for a Particle in a Square  
Well with Infinitely High Impenetrable Walls 

As an example, we consider the stationary Schrödinger equation for a particle in 
a square well with width a symmetrically to the coordinate origin 0q =  and 
with infinitely high impenetrable walls (e.g., [22]) (Figure 1)  

( ) ( ) ( )
2 2

2 .
2 n nU q q E q

q
ψ ψ

µ
 ∂
− + = 

∂ 

                (4.1) 

The wave functions ( )n q qψ ψ≡  of the eigenstates nψ  to energy nE  
( µ  mass of particle)  

( )
2 2 2 2

2
0 02 2

π π1 , ,
2 2n nE n E E

a a
ε

µ µ
= + ≡ ≡

 

 

( ) ( )21 , 0,1, 2, ,n n nε = + =                   (4.2) 

as it is well known, are ( ( ) ( ) ( ) ( )0, 0 , 1, 0x x x xθ θ= < = >  Heaviside jump 
function)  

( ) ( )

( ) ( ) ( )

2 1sin 1 π
2 2

1 , 0,1,2, ,

n

n
n

q aq n q
a a

q n

ψ θ

ψ

    = + + −    
    

= − − = 

           (4.3) 

In representation by the coordinate of the canonical momentum 
( )n p pψ ψ≡  (see (2.5)) they are (Figure 1)  

( )

( )

( ) ( )

( )

( )

1 π 1 π
sin sin

2 21 i i ,
1 π 1 π2 π

2 2

nn
n

pa n pa n
ap

pa n pa n
ψ

 − + + +   
    
    = + − − + + + 
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Figure 1. Square well potential with infinitely high walls and first 6 eigenfunctions in position and momentum representation.

  

( )( ) ( )( ) ( )2 2 1Im 0, Re 0, 0,1, .m mp p mψ ψ += = =            (4.4) 

For the Wigner quasiprobability ( ),W q p  of an arbitrary state with density 
operator    

( ) ( ),
0 0

, ,m n n m
m n

W q p W q pψ ψ
∞ ∞

= =

= ∑∑                 (4.5) 

calculated from (2.4) we find  

( ),
1,

2π 2

22sin π 1
22exp i π 1

22 π
2

22sin π 1
22exp i π 1

22 π
2

n m
aW q p q

qpa n m
an m q

pa n ma

qpa n m
an m q

pa n ma

θ  = − 
 

   + + + −       −      ⋅ + +    + +   +



  + + − −      −     + − +   + +   −
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2
sin π 1

22 2exp i π 1
2 π

2
2

sin π 1
22 2exp i π 1 .

2 π
2

qpa n m
an m q

pa n ma

qpa n m
an m q

pa n ma

  − + −      + +     − + +   −   +

  − − −       + +      − − +    −   −











   (4.6) 

For the eigenstates nψ  of the Hamilton operator to this system this leads to  

( )
( )

( )

( )

( )

( ) ( )

,

2
sin 1 π 1

2,
2π 1 π

2
sin 1 π 1

1 π

2
sin 1

2 1 cos 2 1 π .

n n

n

qpaa nq a
W q p pa n

qpa n
a

pa n

qpa
aqn paa

θ
      + + −   −           = 
 + +



   − + −       +
− +

  
−        + − +  

  

















    (4.7) 

They are illustrated in Figure 2. 
We emphasize here that the calculation of expectation values from the Wigner 

quasiprobability is by no means in every case the simplest way. Often it is much 
simpler to calculate them from the wave functions in position or momentum re-
presentation. However, the principal possibility to calculate them from the 
Wigner quasiprobability shows the way of correspondences between classical 
and quantum mechanics including the transition from the last to the classical 
phase space by approximations. 

A Hamilton system of one degree of freedom with a general quadratic energy 
spectrum 2

nE An Bn C= + +  with constants ( ), ,A B C  such as (4.2)3 can be 
considered by the group ( )1,1SU  with the basis operators ( )0, ,K K K− +  of its 
Lie algebra [4]  

( ) ( )†
1 1

0 0
1 ,n n n n n

n n
K n Kε ψ ψ ψ ψ

∞ ∞

− + + +
= =

≡ = + =∑ ∑  

( ) ( )†
1 1

0 0
1 ,n n n n n

n n
K n Kε ψ ψ ψ ψ

∞ ∞

+ + + −
= =

≡ = + =∑ ∑  

 

 

3In a general quadratic energy spectrum 2
nE An Bn C= + +  with three real constants ( ), ,A B C  

our abbreviation 0E  in (4.2) corresponds to the more general 0E A→  and nε  to general 

2
n

B Cn n
A A

ε → + + . 
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Figure 2. Wigner quasiprobabilities for first 6 eigenstates nψ  of square well with infinitely high impenetrable walls 

( )0,1, ,5n =  . ( ),W q p  vanishes for 
2
aq ≥ . We set 1= ; (made by “Mathematica 6” in 2011). 

 

( ) ( )†
0 1 0

0 0

1 1 ,
2 2n n n n n n

n n
K n Kε ε ψ ψ ψ ψ

∞ ∞

−
= =

 ≡ − = + = 
 

∑ ∑        (4.8) 

which satisfy the commutation relations  
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[ ] [ ] [ ]0 0 0, 2 , , , , .K K K K K K K K K− + − − + += = − = +          (4.9) 

The Casimir operator C as invariant of the considered irreducible representa-
tion is  

( ) ( )

( )

2
0

0

1
2

1 1 11 , .
4 4 2n n

n

C K K K K K

I k k I kψ ψ

− + + −

∞

=

≡ − +

= − = − ≡ − ⇒ =∑
        (4.10) 

Thus the considered system corresponds to the index 1
2

k =  of the  

irreducible representation. The completeness relation is here  

0 n nn Iψ ψ∞

=
=∑ . 

The Hamilton operator H of the system can be represented by  

( ) ( )2
0 0 0

0

1 1 .
2 n n

n
H E K K E K K K K I E n ψ ψ

∞

− + − + + −
=

= = + + = +∑    (4.11) 

In addition we introduce the operators E−  and E+  by  

( ) ( ) [ ]† †
1 1 0 0

0 0
, , , .n n n n

n n
E E E E E Eψ ψ ψ ψ ψ ψ

∞ ∞

− + + + + − − +
= =

≡ = ≡ = =∑ ∑   

(4.12) 

Their commutation relations with the operator 0K  are  

[ ] [ ]0 1 0 1
0 0

, , , .n n n n
n n

K E E K E Eψ ψ ψ ψ
∞ ∞

− + − + + +
= =

= − = − = = +∑ ∑     (4.13) 

These relations may be considered as a possible equivalent to the quan-
tum-mechanical commutation relations for classical action j and phase ϕ  with 
the classical to quantum correspondences ( )i ie , eK Kϕ ϕ−

− +→ →  if the action 
operator J is determined by  

0
0

1 .
2 n n

n
J K n ψ ψ

∞

=

 ≡ = + 
 

∑ 
                (4.14) 

Hamilton operator H and action operator J are here not generally proportion-
al as it is the case for a harmonic oscillator and, therefore, is omnipresent in 
quantum optics. Due to  

0
,n n

n
E E Iψ ψ

∞

− +
=

= =∑  

( )†
1 1 0 0

0
.n n

n
E E I E E E Eψ ψ ψ ψ

∞

+ − + + − + − +
=

= = − ≠ =∑       (4.15) 

The operators E−  and E+  are not unitary operators and it is not possible to 
determine a Hermitean phase operator from them by transition to the Loga-
rithms ( )i log E−−  or ( )i log E+ . This is related to the fact that in classical 
theory the transition from canonical variables ( ),q p  to action-angle variables 
( ),j ϕ  possesses a defect as a canonical transformation for 0j =  with unde-
termined ϕ  there. 

For systems such as here a quantum-mechanical particle in a potential well or, 
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more generally for example, in other potentials (e.g. Pöschl-Teller potentials [22]) 
the Wigner quasiprobability plays a subsidiary role for the calculation of expec-
tation values since for mixed powers of operators Q and P they are mostly not of 
great interest. The operators Q and P are here not involved in a symmetrical way 
in the Hamiltonian and, intuitively, play an “absolute” role independently of 
possible canonical transformations mixing the variables. 

5. Transition to Complex Conjugate Coordinates in Quantum  
Optics and Coherent States 

The following well-known considerations serve at once for the further introduc-
tion of our notations. The Hamilton operator H ′  to a one-dimensional har-
monic oscillator of frequency ω  in quantum mechanics of a (charged)  

particle in a potential ( ) 2

2
kV q q= , (

( )2

2

,V q p
k

q
∂

=
∂

 its second derivative), and 

with kinetic energy ( )
2

2
pT p
m

=  (m mass) can be represented by  

2 2 2 21 1 , .
2 2 2
k kH Q P m Q P

m m m
ω

ω ω
ω

 ′ ′ ′ ′ ′= + = + ≡ 
 

         (5.1) 

By a unitary transformation ( ) ( ) 1, , ,Q P Q P m Q P
m

ω
ω

 ′ ′ ′ ′↔ =  
 

 the  

Hamiltonian H ′  is transformed to  

( )2 2 ,
2

H Q Pω
= +                         (5.2) 

which is the usual form for a member (mode) of the sum of harmonic oscillators 
into which a bounded electromagnetic field in quantum optics can be decom-
posed. Canonical coordinate and momentum ( ),Q P  are then in “symmetric 
way” related to the electric and magnetic field and have nothing to do with 
“coordinate” and moment of the mode as wave packet in free space. 

We introduce now the pair of boson annihilation and creation operators 
( )†,a a  and corresponding complex conjugate variable ( )*,α α  by  

† * *i i i i i d d, , , , d d ,
2 22 2 2 2

Q P Q P q p q p q pa a α α α α+ − + − ∧
= = = = ∧ =



   

  (5.3) 

with the inversion  

( ) ( ) ( ) ( )† † * *, i , , i .
2 2 2 2

Q a a P a a q pα α α α= + = − − = + = − −
     (5.4) 

From this results the representation of the Wigner quasiprobability by the 
following substitution in (2.9)  

†
*exp exp ,Q P a a

q p α α
 ∂ ∂ ∂ ∂ − − = − −   ∂ ∂ ∂ ∂  

             (5.5) 

plus the substitution of ( ) ( )q pδ δ  by ( )*,δ α α  with  

( ) ( ) ( )* * *i d d , , 0,0
2

f fα α δ α α α α∧ =∫ . The Hamilton operator (5.2) takes on  
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the form  

( )† † † † †1 , , , .
2 2

H aa a a N I N a a N a a Iω ω   = + = + ≡ = =    
 

   (5.6) 

The transition from (5.2) (or equivalently from (5.6)) to (5.1) and inversely is 
a special squeezing transformation with real squeezing parameter *ζ ζ=  and  

with the correspondence 1
1

m km ζ
ω

ζ
+

= ≡
−

 and, therefore, a canonical  

transformation. 
The eigenstates n  (number states) of the number operator N to eigenvalues 
( ), 0,1, 2,n n =   are  

†
†, 0 , 1 , 1 1 .

!

naN n n n n a n n n a n n n
n

= = = − = + +   (5.7) 

The vacuum state 0  as ground state of the Hamilton operator H in (5.6) 
for a single mode of the electromagnetic field is in quantum optics considered as 
the genuine vacuum to this single mode in contrast to possible squeezed vacua 
but, apparently, in agreement with experiments. 

Coherent states α  are the displaced states (or excitations) of the vacuum 
state 0  as follows  

( ) ( ) ( )
*

* *

0

*

0

, 0 exp exp exp 0
2

exp .
2 !

n

n

D a a

n
n

αα
α α α α α

αα α

=

∞

=

 
= = − − 

 

 
= − 

 
∑



†

       (5.8) 

The displacement operator ( )*,D α α  in variables ( )*,α α  was introduced 
by Glauber [5] and is defined by  

( ) ( ) ( )* *, exp exp i , .qP pQD a a D q pα α α α − = − ≡ − = 
 

†       (5.9) 

The coherent states α  are the right-hand eigenstates of the operator a to 
complex eigenvalues α   

* *
† * *, , exp ,

2
a a αα ββ
α α α α α α β α αβ

 +
= = = − 

 
  (5.10) 

and they are mutually non-orthogonal and (over-)complete. This is well known 
[5] [6] and, e.g., [7], and is written here for convenience. It is, however, less 
known that the two-dimensional Fourier transformation of coherent states pro-
vides again coherent states in the following sense  

* *
*1 i d d exp ,

2π 2 2
βα β α

α α α β
 −

∧ = 
 

∫              (5.11) 

with specialization 0β =  to the vacuum state 0 0β = ≡  (vacuum state 
0  possesses even parity, i.e., 0 0Π = + )  

( )* * *1 i 1 id d d d , 0 0 0 .
2π 2 2π 2

Dα α α α α α α∧ = ∧ = Π =∫ ∫   (5.12) 
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Relation (5.11) is one of the possible forms to show the over-completeness of 
the coherent states. This can be also proved using the group integral over the 
displacement operators (see Appendix B)  

( ) ( )* *1 i 1 1d d , d d , , ,
2π 2 4π 2

D q pD q pα α α α∧ = ∧ = Π Π =∫ ∫


   (5.13) 

providing the parity operator Π  as “sum” (integral) over all weighted elements 
of the Heisenberg-Weyl group. 

A general group relation for arbitrary operators A which includes the 
(over-)completeness of coherent states is the following ( A  is trace of A)  

( ) ( )( )†* * *1 i d d , , .
π 2

D A D A Iα α α α α α∧ =∫            (5.14) 

It is written in [8] in another but equivalent form (Equation (3.9) there) and is 
the special case for the Heisenberg-Weyl group ( )2,W   (with usual basis 
( ), ,Q P I  of its Lie algebra) of a general relation for unitary irreducible repre-
sentations of a group with an invariant measure and corresponds to the lemmas 
of Schur (properly to the first; the second lemma of Schur includes also inequi-
valent irreducible representations)4. In Appendix B we give a derivation of this 
relation for the case of the Heisenberg-Weyl group. 

A more special form is obtained if we insert in (5.14) the number-state opera-
tors A n m= . With the following two equivalent definitions of the displaced 
number states ,nα  (see Section 7 for more details)  

( ) ( ) ( )* * *1, , , 0 ,
! !

n nan D n D a I
n n

α α α α α α α≡ = = −
†

†      (5.15) 

and find from (5.14) the special form  

*
,

1 i d d , , .
π 2 m nn m m n I Iα α α α δ∧ = =∫             (5.16) 

For 0m n= =  and ,0α α≡  results from this the well-known complete-
ness relation of the coherent states  

*1 i d d ,
π 2

Iα α α α∧ =∫                     (5.17) 

and for 0, 0m n≠ =  the following series of special forms  

( )*1 i d d , 0, 0 .
π 2

m mα α α α∧ = ≠∫               (5.18) 

 

 

4For finite groups G with N elements g G∈  and dimension sn  of the irreducible representation 
( )sD  written by their matrix elements ( ) ( ),

s
i jD q  this possesses the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )*1
, , , , , , .s s s ss s

i j k l i j l k i l j k
g G g G

n nD g D g D g D g
N N

δ δ−

∈ ∈

= =∑ ∑  

If we sum over an operator A in its matrix representation ,i jA  one finds 

( ) ( ) ( ) ( )( )*

, , , , , ,
1 1 1

s s sn n n
s ss

i j j k l k j j i l i l
j k g G j

n D g A D g A A
N

δ δ
= = ∈ =

   
= ≡   

   
∑∑ ∑ ∑

 
that is analogous to the form (5.14). 
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This operator relation can be multiplied by arbitrary states ψ  and we ob-
tain different forms of linear dependence between the coherent states. 

The parity operator Π  using the completeness of the coherent states (5.17) 
can be represented now by  

( )* *

0

1 i 1 id d d d 1 .
π 2 π 2

n

n
n nβ β β β β β β β

∞

=

Π = ∧ Π = ∧ − = −∑∫ ∫   (5.19) 

Using the action of the displacement operators from this relation follows  

( ) ( ) ( )( )
( )

†* * *

* * *

, , ,

1 i d d exp .
π 2

D Dα α α α α α

β β αβ α β α β α β

Π ≡ Π

= ∧ − + −∫
      (5.20) 

where , jα  are displaced number states j . Thus the displaced parity  

operator is the Fourier transformation of the operator 
π

α β α β+ −
 with  

respect to variables ( )*,β β . 

6. The Wigner Quasiprobability in Complex Conjugate  
Coordinates and Related Quasiprobabilities of  
Quantum Optics 

The coherent states form the basis of the representations of the quasiprobabili-
ties used in quantum optics. The representation of ( )*,W α α  in complex con-
jugate coordinates ( )*,α α  by the displaced parity operator and its representa-
tion by displaced number states (5.15) possesses the form (see Section 2, Equa-
tion (2.23) and also [23], Equation (4.1) there)  

( ) ( ) ( )* *

0

2 2, , 1 , , ,
π π

n

n
W n nα α α α α α

∞

=

= Π = −∑          (6.1) 

Inserting the representation (5.20) for the displaced parity operator into this 
relation immediately follows  

( ) ( )* * * *
2

2 i, d d exp .
2π

W α α β β αβ α β α β α β= ∧ − − +∫        (6.2) 

In its structure this is up to a constant factor a two-dimensional Fourier 
transformation of the matrix elements α β α β− +  where the involved 
states are the coherent states5. In this sense it is widely in analogy two the 
one-dimensional Fourier transformation of the matrix elements  

0 0q q q q− +  in the definition (2.4) given by Wigner (or equivalently in 
(2.6)). Apart from the possibility of alternative calculations of the Wigner quasi-
probability for special states the knowledge of different representation may be-
come important in case that one gains a deeper insight in the nature of the 
emergence of such functions. 

 

 

5We mention the identity ( )* *exp exp i qp pqαβ α β
′ ′− − = − 

 

 in real variables by i
2

q pα +
≡



 

and i
2

q pβ
′ ′+

≡


. 
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The reconstruction of the density operator   from the Wigner quasiproba-
bility ( )*,W α α  can be made by the formula  

( ) ( )* * *i2 d d , , .
2

Wα α α α α α= ∧ Π∫                  (6.3) 

The Wigner quasiprobability in representation by the variables ( )*,α α  is re-
stricted in its values by  

( )*2 2, .
π π

W α α− ≤ ≤                        (6.4) 

As another possible basic definition of the (normalized) Wigner quasipro-
bability in complex conjugate coordinates ( )*,α α  follows from (2.9) using 
(5.5)  

( ) ( )* *
*, exp , ,W a aα α δ α α

α α
∂ ∂ ≡ − − ∂ ∂ 

 †             (6.5) 

where the delta “functions” in representation by real coordinates and complex  

conjugate coordinates are related by ( ) ( ) ( )*1 ,
2

q pδ δ δ α α=


. Using (6.1) and  

taking into account that   is an arbitrary density operator from (6.5) follows 
the pure operator relation  

( ) ( ) ( )† * *
*

0

2 2exp , 1 , , , .
π π

n

n
a a n nδ α α α α α α

α α

∞

=

∂ ∂ − − = − ≡ Π ∂ ∂ 
∑   (6.6) 

It is normalized as follows by partial integration  

( )

( )

* *
*

* *
*

i d d 1exp ,
2

i d d , exp 1 .
2

I

a a

a a I

α α δ α α
α α

α α δ α α
α α

=

∂ ∂ ∧ − − ∂ ∂ 
∂ ∂ = ∧ + = ∂ ∂ 

∫

∫


†

†
          (6.7) 

This is in agreement with  

( )

( )

* *

*

0

0 0

2 i d d ,
π 2

1 i2 1 d d , ,
π 2

12 lim ,
1

n

n
n

n

n n

I I
ε

α α α α

α α α α

ε
ε

∞

=

∞

→+ =

∧ Π

= − ∧

− = − = + 

∫

∑ ∫

∑

              (6.8) 

where we used (7.9) but the arising geometric series is only conditionally con-
vergent. 

In anti normal ordering of the operator involved in the definition (6.5) one 
finds  

( )

( )

† *
*

2
† *

* *

exp ,

1exp exp exp , .
2

a a

a a

δ α α
α α

δ α α
α α α α

∂ ∂ − − ∂ ∂ 
 ∂ ∂ ∂   = − − −    ∂ ∂ ∂ ∂     

       (6.9) 
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Introducing into (6.9) the completeness relation (5.17) of the coherent states 
one obtains from (6.5)  

( )

( )

( )
( )* *

2
* *

*

† *
*

2
* * *

* *

,

2

*

1 1 i, exp d d
2 π 2

exp exp ,

1 iexp d d exp ,
2 2 π

1 1exp exp
2 π 2

W

a a

δ α β α β

α α β β
α α

ρ β β δ α α
α α

β β
β β β β δ α α

αα α α

α α
α α

= − −

 ∂
= − ∧ 

∂ ∂ 
∂ ∂   ⋅ − −   ∂ ∂   

 ∂ ∂ ∂ = − ∧ − −   ∂∂ ∂ ∂  

 ∂ ∂
= − ≡ − ∂ ∂ 

∫

∫




 ( )
2

*
* , .Q α α

α α
 
 

∂ ∂ 

 (6.10) 

One may introduce in this way by ( )*,Q α α  the coherent-state quasiproba-
bility also called Husimi-Kano quasiprobability which is connected with the 
Wigner quasiprobability as follows (“*” is notation for convolution of two func-
tions)  

( ) ( ) ( ) ( )

( )( )( ) ( )

2
* * * *

*

* * * *

1 2, exp , exp 2 ,
2 π

2 i d d exp 2 , .
π 2 π

Q W W

W

α α α α αα α α
α α

α α
β β α β α β β β

 ∂
≡ ≡ − ∗ 

∂ ∂ 

= ∧ − − − =∫


 (6.11) 

The normalization of ( )*,Q α α  follows immediately using partial integra-
tion  

( )

( )

( )

* *

2
* *

*

2
* *

*

1

i d d ,
2

i 1d d 1exp ,
2 2

i 1d d , exp 1 1.
2 2

Q

W

W

α α α α

α α α α
α α

α α α α
α α

=

∧

 ∂
= ∧  ∂ ∂ 

 ∂
= ∧ = ∂ ∂ 

∫

∫

∫


             (6.12) 

The coherent-state quasiprobability ( )*,Q α α  (correspondingly ( ),Q q p ) is 
real-valued and restricted by  

( ) ( )* 1 10 , , 0 , ,
π 2π

Q Q q pα α  ≤ ≤ ≤ ≤ 
 

              (6.13) 

due to definition (6.11). It is easy to show that similarly to the Wigner quasipro-
bability a displacement of the state ( ) ( )( )†* *

0 0, ,D Dβ β β β→ =    displaces 
the function ( )*

0 ,Q α α  corresponding to 0  according to  

( ) ( ) ( )* * * *
0 0, , ,Q Q Qα α α α α β α β→ = − − . In the process of “desmoothing” 

the singular zero points of ( )*,Q α α  form the germ cells for the formation of 
regions of negative values of the Wigner quasiprobability ( )*,W α α . 

In comparison to the Wigner quasiprobability ( )*,W α α  the quasiprobability  

( )*,Q α α  is smoothed by the operator 
2

*

1exp
2 α α

 ∂
 

∂ ∂ 
 that is not connected  
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with a loss of information. Inversely from given ( )*,Q α α  according to (6.11) 
one may derive the basic formula (6.11) for the Wigner quasiprobability 

( )*,W α α  obtained from ( )*,Q α α . In Appendix C we give a derivation with 
interesting intermediate formulae for applications. 

One may consider more general real-valued quasiprobabilities with a real pa-
rameter r by the following convolution of the Wigner quasiprobability with 
normalized Gaussian functions  

( ) ( ) ( )
2 *

* * *
*

2 2, exp , exp , .
2 πr
rF W W

r r
αα

α α α α α α
α α

   ∂
≡ = − ∗   

∂ ∂   
  (6.14) 

For 1r =  one obtains from ( )*,W α α  the Husimi-Kano quasiprobability 

( )*,Q α α  and for 1r = −  the Glauber-Sudarshan quasiprobability ( )*,P α α  
which may be indirectly introduced by the following formula [5] [6] (Equation 
(7.48)) and [7] (chap. 13) ( { }  means normal ordering of content in braces)  

( ) ( ) ( ){ }* * * *i d d , , , , ,
2

P P a I a Iα α α α α α α α δ α α= ∧ ≡ − −∫  †  (6.15) 

with normalization  

( )* *i d d , 1.
2

Pα α α α∧ =∫                     (6.16) 

At first place is here set the reconstruction formula of the density operator 
from the function ( )*,P α α . 

The quasiprobability ( )*,P α α  possesses an interesting property. All classic-
al normalized probability functions ( )*

cl ,P α α  which are by definition posi-
tively semi-definite but may be not bounded provide inserted into the formula 
for   in (6.15) a possible quantum-optical density operator of one mode. For 
coherent states β  one finds ( ) ( )* * *, ,P α α δ α β α β= − −  and from pure 
states these are the only states with positively semi-definite (generalized) func-
tions as they are also possible for classical probability functions. All other clas-
sical probability functions inserted in (6.15) provide mixed quantum-optical 
density operators. The corresponding Wigner quasiprobabilities for such states 
since they are smoothed functions of ( )*,P α α  according to  

( ) ( ) ( ) ( )
2

* * * *
*

1 2, exp , exp 2 , ,
2 π

W P Pα α α α αα α α
α α

 ∂
= = − ∗ ∂ ∂ 

    (6.17) 

cannot possess regions of negativity or values equal to zero but they are not 
identical with all non-negative such functions. For example, from the pure states 
they do not give the squeezed coherent states. The mentioned states with classic-
al probability functions ( ) ( )* *

cl, ,P Pα α α α=  can be considered at once as the 
“most classical” quantum-optical states and a measure of nonclassicality of an 
arbitrary state may be defined as the nearest distance to such a state (in case of 
pure states the nearest distance to a coherent state [24] [25]). 

The possible quantum-optical functions ( )*,P α α  form a greater manifold 
compared with the possible classical probability functions ( )*

cl ,P α α . For the 
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transition to classical optics by the limiting procedure 0→  all possible 
quantum-optical (usually generalized) functions ( )*,P α α  have to make the 
transition into a classically possible probability function ( )*

cl ,P α α  which is 
then not specific for its quantum-optical origin that may be one key to a deeper 
understanding of this function which seems to be absent now. It has to be noted 
that for the transition 0→  one has primarily to make the transition from va-
riables ( )*,α α  to real canonical variables ( ),q p  according to (6.3). Planck’s 
constant is involved in the denominators of ( )*,α α  and apart from thermo-
dynamic formulae (mixed states) does not fully appear in representations of the 
quasiprobabilities by the complex variables ( )*,α α . 

7. Wigner Quasiprobability in Number-State Representation 

In this Section we derive the number representation of the displaced number 
states and formulae for the Wigner quasiprobability of arbitrary states in expan-
sions of the number states. For symmetries in the formulae it is favorable to use 
the Laguerre 2D polynomials ( )*

,L ,m n z z  instead of the usual generalized La-
guerre or Laguerre-Sonin polynomials ( )Lk

n u  for the representations. The La-
guerre 2D polynomials ( )*

,L ,m n z z  are alternatively defined by (e.g., [11])  

( )

( ) ( ) ( )

{ }

( ) ( ) ( )

( )( )

2
* *

, *

* *
*

*
*

,
*

0

**
,

L , exp

1 exp exp

1

! ! 1
! ! !

L , ,

m n
m n

m n
m n

m n

m n

m n
j m j n j

j

n m

z z z z
z z

zz zz
z z

z z
zz

m n z z
j m j n j

z z

+
+

− −

=

 ∂
≡ − ∂ ∂ 

∂
= − −

∂ ∂

∂ ∂   = − −   ∂∂   

= −
− −

=

∑

          (7.1) 

with the special and limiting cases  

( ) ( ) ( ) ( )* * *
,0 0, , ,L , , L , , L 0,0 1 ! .nm n

m n m n m nz z z z z z n δ= = = −       (7.2) 

For the derivatives of ( )*
,L ,m n z z  from (7.1) follows  

( ) ( ) ( ) ( )* * * *
, 1, , , 1*L , L , , L , L , ,m n m n m n m nz z m z z z z n z z

z z− −
∂ ∂

= =
∂ ∂

     (7.3) 

The more general formulae  

( ) ( ) ( ) ( )* *
, ,*

! !L , L ,
! !

k l

m n m k n lk l

m nz z z z
m k n lz z

+

− −
∂

=
− −∂ ∂

           (7.4) 

follow immediately by repeated application of derivatives from (7.3). 
The relation of the Laguerre 2D polynomials to the generalized Laguerre (or 

Laguerre-Sonin) polynomials ( )Ln uν  is [11]  

( ) ( ) ( ) ( ) ( )* * *
,L , 1 ! L 1 ! L ,n mm n m n n m n m

m n n mz z n z zz m z zz− − − −= − = −       (7.5) 

that shows that the Laguerre-Sonin polynomials may be considered as the radial 
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rudiments of the Laguerre 2D polynomials. 
We now consider the displaced number states ,nα  defined in (5.15). By 

expansion of the operators as functions of †a  in Taylor series and accom-
plishment of their actions onto the number states it is easy to obtain the follow-
ing representation of the displaced number states by the number states [11] 
(Equation (5.8))  

( ) ( )
*

*
,

0

1 1, exp L , .
2 ! !

n

k n
k

n k
n k

ααα α α
∞

=

− 
= − 

 
∑             (7.6) 

We see using (7.2) that the special cases 0, n n≡  and ,0α α≡  are 
correctly obtained. From (7.6) follows for the scalar products of displaced num-
ber states  

( ) ( )
( ) ( )

* * * *

* *
* * *

,

1, , exp ,
2

1
exp L , .

2 ! !

n

m n

m n m D n

m n

β α αβ βα α β α β

αα ββ
αβ α β α β

 = − − − 
 

− +
= − − − 

 

   (7.7) 

Another basic relation for the displaced number states follows from (5.14) in-
serting there A n m=  (see Appendix D)  

( ) ( )( )
( )

*

†* * *

,

1 i d d , ,
π 2

1 i d d , ,
π 2

, , 0,1, 2, .m n

n m

D n m D

n m I I m n

α α α α

α α α α α α

δ

∧

≡ ∧

= = =

∫

∫


            (7.8) 

For m n=  this means the (over-)completeness of the displaced number states 
for arbitrary 0,1,2,n =   including the coherent states ,0α α=  as special 
case 0n = . In (7.8) the numbers ( ),m n  are fixed. If one fixes the displacement 

( )*,α α  one finds immediately  

( ) ( )( )†* *

0 0
, , , , .

n n
I

n n D n n D Iα α α α α α
∞ ∞

= =

=

 = = 
 

∑ ∑


        (7.9) 

This is a completeness relation of the infinite set of displaced number states 
( ), , 0,1,n nα =   for arbitrary fixed ( )*,α α  and together with (7.8) we have 

for them two different systems of completeness relations. 
The Wigner quasiprobability in number-state representation is  

( ) ( )

( )

( )

0

0 0 0

0 0 0

2, 1 , ,
π
2 1 , ,
π
2 1 , , .
π

j

j

j

j m n

j

m n j

W j j

j n n m m j

n m m j j n

α α α α

α α

α α

∞

=

∞ ∞ ∞

= = =

∞ ∞ ∞

= = =

= −

= −

= −

∑

∑ ∑∑

∑∑ ∑







       (7.10) 

Using now the following formula of the form of a generating function for 
products of Laguerre 2D polynomials [11] (Equation (8.4))  
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( ) ( ) ( )

( )( )

( )

* *
, ,

0

* *
*

,

*
* *

,

L , L ,
!

exp L ,

exp L , ,

k

m k k n
k

m n

m n

n
m n

t
z z w w

k
z tw w tztwz t

t t

wtwz t z tw z
t

∞

=

+

−

 + +
= −  

 
 

= − + + 
 

∑

             (7.11) 

in the special case ( ) ( )* *1, , ,t w w z z= =  we find for the Wigner quasiprobabili-
ty from (7.10)  

( ) ( ) ( ) ( ) ( )

( ) ( )

* * * *
, ,

0 0 =0

* *
,

0 0

12, exp L , L ,
π !! !
2 exp 2 L 2 , 2 .
π ! !

j

m j j n
m n j

m n
m n

n m
W

jm n
n m

m n

α α αα α α α α

αα α α

∞ ∞ ∞

= =

∞ ∞

= =

−
= −

= −

∑∑ ∑

∑∑




  (7.12) 

In representation by the canonical variables ( ),q p  this is equivalent to (see 
transformations (5.3) and (5.5))  

( ) ( ) ( )
2 2

,
0 0

1 2 2, exp L i , i .
π ! ! m n

m n

n mq pW q p q p q p
m n

∞ ∞

= =

  +
= − + −       

∑∑
   

  (7.13) 

In special case of the Wigner quasiprobabilities for the number states 
n nρ =  one finds from (7.12) [5]  

( ) ( ) ( )

( )( ) ( )

* * *
,

* *

2 1, exp 2 L 2 ,2
π !
2 exp 2 1 L 4 ,
π

n n

n
n

W
n

α α αα α α

αα αα

= −

= − −
             (7.14) 

and from (7.13)  

( ) ( ) ( )

( )
( )

2 2

,

2 22 2

1 1 2 2, exp L i , i
π !

21 exp 1 L .
π

n n

n
n

q pW q p q p q p
n

q pq p

  +
= − + −       

 + +  = − −      

   

  

     (7.15) 

The Wigner quasiprobability ( ),W q p  for the first 6 number states 
( ), 0,1, ,5n n =   is illustrated in Figure 3. In principle, it is known [5] but we 

illustrate it for easy comparison with the eigenstates of the Hamiltonian for an 
impenetrable square well discussed in Section 4. 

8. Coherent Phase States with London Phase States as Their  
Limiting Case and Quasi-Distribution of Phase 

In this and in the following Sections we discuss coherent phase states and calcu-
late their Wigner quasiprobability. 

As phase states one defines the eigenstates of phase operators. Since the phase 
is only defined up to multiples of 2π only 2π-periodically functions of the phase 
are uniquely defined and as classical basic functions one may choose the func-
tions ( )i 2πe , 0, 1, 2,n n = ± ± 

 which play a role in Fourier analysis. For the  
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Figure 3. Wigner quasiprobability for first 6 number (Fock) states n  to 0,1, ,5n =  . The maximal possible height is 

1
π

 and the maximal possible depth 1
π

−


. We set 1= ; (made by “Mathematica 6” in 2011). 
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quantum-mechanical equivalent operators there exist two concepts. The first is 
the general Weyl correspondence of symmetrically ordered operators [3] and its 
implementation for different categories of functions (see, e.g., [23]). The other 
possibility is to choose the Susskind-Glogower formalism [26] of correspondence 
of the operators E−  and E+  as substitution of the classical functions ie ϕ  and 

ie ϕ−  [27] [28] [29] of the phase ϕ  and which are  

[ ]
=0 0

1 , 1 , , 0 0 , ,
n n

E n n E n n E E E E I
∞ ∞

− + − + − +
=

= + = + = =∑ ∑    (8.1) 

where n  are the number states as normalized eigenstates of the harmonic os-
cillator. From this follows  

( )1 , 0 0, 1 , 0,1,2, .E n n E E n n n− − ++ = = = + =       (8.2) 

We consider now the normalizable right-hand and left-hand eigenstates ε  
of the operator E−  to eigenvalues ε  or *ε , respectively, according to  

*, ,E Eε ε ε ε ε ε− += ⇔ =                  (8.3) 

which are well known (e.g., [29]) and are  

* * *

0 0
1 , 1 , 1.n n

n n
n nε εε ε ε εε ε ε

∞ ∞

= =

= − = − <∑ ∑         (8.4) 

They are called coherent phase states. The scalar product of two coherent 
phase states is  

( )( ) ( ) ( )( )* *
* * *

*
0

1 1
1 1 , 1.

1
n

n

ε ε εε
ε ε ε ε εε εε ε ε

εε

∞

=

′ ′− −
′ ′ ′ ′= − − = ⇒ =

′−∑  

(8.5) 

It affirms the chosen normalization factor in (8.4) and shows that the coherent 
phase states ε  are nonorthogonal. They are (over-)complete and are already 
complete for arbitrary constant ε  with 0 1ε< <  that can be shown by con-
tour integral in connection with the dual states [30]. That they are 
(over-)complete as a whole follows from ( i * ie , eϕ ϕε ε ε ε −≡ ≡ )  

( ) ( )

( ) ( )
( )

( ) ( )

*
210 2

1
1 π i

10 π0 20 0

2 1
1

100 20 0

1 ilim d d
Γ 2 1

1lim d d e
Γ 1

12π lim d π π .
Γ 1

m n
m n

m n

n

n n

m n

n n n n I

δεδ

ϕ
δδ

δδ

ε ε
ε ε

δ ε

ε
ε ϕ

δ ε

ε
ε

δ ε

−≤→

+ +∞ ∞ + −
− −→= =

+∞ ∞

−→= =

∧
−

=
−

= = =
−

∫

∑∑ ∫ ∫

∑ ∑∫

       (8.6) 

In the limiting case 1ε →  the coherent phase states ε  become 
non-normalizable. We define  

( )i i

0 0

1 1e , e , 0 2π .
2π 2π

n n

n n
n nϕ ϕϕ ϕ ϕ

∞ ∞
−

= =

≡ ≡ ≤ ≤∑ ∑       (8.7) 
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These are the London phase states (after Fritz London6 [31]). They are com-
plete according to  

( )2π 2π i

0 0
0 0 0

1d d e .
2π

m n

m n n
m n n n Iϕ ϕ ϕ ϕ

∞ ∞ ∞
−

= = =

= = =∑∑ ∑∫ ∫        (8.8) 

Their scalar product is  

( )
( )

i
i

0

1 1 1e .
2π 2π 1 e

n

n

ϕ ϕ
ϕ ϕ

ϕ ϕ
∞

′−
′−

=

′ = =
−

∑                (8.9) 

This is a generalized function, here an analytic functional, which for 
( ), mod 2πϕ ϕ′= , does not give a finite value of ϕ ϕ . To make it a genuine 

analytic functional of variable ϕ  we have to determine the way to deal with the 
singularity at ( )ie 1ϕ ϕ′− =  that we will not discuss here. 

The London phase states can be used to define for arbitrary (pure or mixed) 
states with density operator   a normalized 2π-periodic phase distribution 
( )F ϕ  according to ( 0, 1, 2,k = ± ±  )  

( ) ( ) ( ) ( )2π

0
0, 2π , d 1.F F F k Fϕ ϕ ϕ ϕ ϕ ϕ ϕ≡ ≥ = + =∫       (8.10) 

Since the London phase states are non-orthogonal it is not a genuine proba-
bility but only a “one-dimensional” quasiprobability (however, of other kind 
than the Wigner quasiprobability since it is positively semi-definite) defined 
over the unit circle ( ) ( )ie , 0 2πr r ϕϕ ϕ= = ≤ < . 

For coherent phase states ie ϕε ε=  one finds for ( )F ϕ   

( )
( )( ) ( )

2 2

2 2 2

1 1
.

2π 1 2 cos 2π 1 2sin
2

F
ε ε

ϕ
ϕ ϕε ϕ ϕ ε ε

− −
= =

 −  − − + − +     

  (8.11) 

The centered distribution for coherent phase states (i.e., for 0ϕ = ) which we 
denote by ( )0F ϕ  possesses a very simple Fourier decomposition  

( )
( )( ) ( )( )

( )

2

0 2
1

i

1

1 1 1 2 T cos
2π2π 1 2 cos

1 11 2 cos e .
2π 2π

n
n

n

n n n

n n

F

n ϕ

ε
ϕ ε ϕ

ε ϕ ε

ε ϕ ε

∞

=

∞ +∞

= =−∞

−  ≡ = + 
 − +

 = + = 
 

∑

∑ ∑

   (8.12) 

The used identities are well known from the theory of Chebyshev polynomials 
and involve the relation ( )( ) ( )T cos cosn nϕ ϕ=  and one of the generating func-
tions for the Chebyshev polynomials of first kind ( )Tn x  (e.g., [32], chap. 10.11., 
Equations (2) and (29)). The Fourier series of the more general distribution 
(8.11) can be obtained from (8.12) by the substitution ϕ ϕ ϕ→ − . The phase 
distribution (8.12) is illustrated in Figure 4 for a coherent phase state with 

0.98ε =  (and 0ϕ = ). 
The Fourier amplitudes nε  in (8.12) are strictly decreasing for 1ε <  

from 0n =  on to both sides of n. In the limiting case 1ε →  one derives or 
affirms from (8.12) the known relation of the theory of generalized functions  

 

 

6The elder of the two brothers Fritz and Heinz London, both physicists. 
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Figure 4. Phase distribution ( )0F ϕ  for a phase state ie ϕε ε=  with 0.98ε =  and 0ϕ =  folded and unfolded. The mean 

value of the number operator N is 24.2555N =  from which follows 1 0.0206461
2N

= ; (“Mathematica 10” in 2018). 

 
(e.g., Vladimirov [33], chap. 2, § 9, Equation (35))  

( )i1 e 2π ,
2π

n

n m
mϕ δ ϕ

+∞ +∞

=−∞ =−∞

= −∑ ∑                  (8.13) 

which is also an example for the Poisson transformation of a sum from ordinary 
to reciprocal lattice. 

9. Coherent Phase States as SU(1,1) Coherent States 

Up to now we developed the elementary theory of coherent phase states ε . 
Less elementary is that the coherent phase states are ( )1,1SU  coherent states 
[12] [13] [14] [34]. The definition (8.4) of coherent phase states can be also 
written  

( ) ( )* *

0
1 exp 0 1 0 .

!

n n

n
N a N a

n
ε

ε εε ε εε
∞

=

= − = − ∑† †       (9.1) 

The operators  

,K E N a N N I a− −≡ = = +  

† † ,K NE N a a N I+ +≡ = = +  

( )†
0

1 , ,
2

K N I N a a≡ + ≡                   (9.2) 

form a realization of the Lie algebra ( )1,1SU  with the commutation relations 
(see also (4.9))  

[ ] [ ] [ ]0 0 0, 2 , , , , ,K K K K K K K K K− + − − + += = − = +          (9.3) 

and with the Casimir operator (confer also (4.9) with the same value k)  

( ) ( ) ( )2
0

1 1 11 , .
2 4 2

C K K K K K I k k I k− + + −≡ − + = − ≡ − ⇒ =     (9.4) 
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Interestingly, the index 1
2

k =  of the unitary irreducible representation of  

( )1,1SU  is the same as for the system of a particle in a square well with infi-
nitely high impenetrable walls (see Section 4). 

The generation of the coherent phase states ε  from the vacuum state 0  
by a unitary operator can now be written  

( ) ( ) ( )
*

* *

*

Arth
exp 0 1 exp 0 ,K K K

εε
ε ε ε εε ε

εε
+ − +

 
 = − = − 
 
 

  (9.5) 

and (9.1) follows from the disentanglement of this unitary operator. The first re-
lation on the right-hand side is the unitary approach that means the application 
of a unitary operator to the vacuum state which guarantees the normalization 

1ε ε = . The second relation on the right-hand side is that what we call the 
non-unitary approach meaning the application of the non-unitary operator 

( )exp Kε +  to the vacuum state. The normalization factor *1 εε−  can be ob-
tained in this case by finding disentanglement relations for general group opera-
tions into products of simpler group elements. All formulae for the ( )1,1SU  
group given in Appendix A of [35] among them the disentanglement relations 
are applicable to the present case. 

10. Wave Functions and Further Characteristics of Coherent  
Phase States 

We begin with the Bargmann (-Segal) representation of states (e.g., [8]) which is 
the scalar product of the considered state with analytic but non-normalized  

coherent states 
*

exp
2

αα
α α

 
≡  

 
 concerning complex variable α  and  

which leads in our case of coherent phase states ε  to  

( ) ( )
*

** * *

0
1 1 , ,

!

n

n
f

n

ε α
ε α εε εε ε α α ε ε α

∞

=

= − ≡ − =∑   (10.1) 

where we introduced the very unorthodox entire function ( )f z  of the com-
plex variable z defined by  

( ) ( ) ( )( )**

0
, .

!

n

n

zf z f z f z
n

∞

=

≡ =∑               (10.2) 

This function which is difficult to deal with plays a role, practically, in all re-
presentations of the coherent phase states ε  [36] [37]7. Although the Taylor 
series (10.2) represents an entire function which, therefore, converges in the 

 

 

7Besides a lecture about Hermite and Laguerre 2D polynomials at a Conference in Patras (Greece) I 
presented there in the Section “Open Problems” a short remark about the very unorthodox entire 
function (10.2) and the difficulties of its treatment and it was admitted and desired to publish from 
this one page [37]. Much later, I got an email from Skorokhodov (see Appendix D) with some in-
formation, in particular, about the zeros of this function (35 pairs with high precision). It is a pity 
that with my present computer I was no more able up to now to open again the appended file. 
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whole complex plane this convergence is “very slow” and direct computer calcu-
lations from the series for high values of z  (say, for about 10z ≥ ) are very 
difficult to make. About some progress with this function we give a few informa-
tion in Appendix D. 

From the Bargmann representation (10.1) of the coherent phase states one 
obtains immediately the Husimi-Kano quasiprobability ( )*,Q α α  according to  

( )

( ) ( ) ( )

*

*
* * *

,
π

1 exp .
π

Q

f f

α ε ε α
α α

εε αα ε α εα

≡

−
= −

              (10.3) 

From the normalization of ( )*,Q α α  according to (6.12) follows by the subs-
titutions * * *,z zε α εα= =   

( ) ( )
2*

* *
* 2

πi d d exp , 1.
2 1

zzz z f z f z
ε

ε
εε ε

 
∧ − = < 

− 
∫         (10.4) 

This means that ( ) ( )*f z f z  increases for real z x= → +∞  exponentially 
not faster than ( )( )2exp 1 xδ+  with arbitrary small 0δ > . The order of the  

entire function is equal to 1
2

 (see [38] and Appendix D). 

For the wave functions q ε  one finds  

( )

( )

* 2

1
04

* 2 2

1 2
04

1 1exp H
2 ! 2π

1 1 2exp exp ,
2 4 !π

n

n
n

n

n

q qq
n

q q
q n

εε ε
ε

εε
ε

∞

=

∞

=

 −    = −     
    

    − ∂
= − −       ∂     

∑

∑









 



      (10.5) 

where we applied the generation of the Hermite polynomials ( )Hn z  from the 
monomials nz  according to  

2 2

2

2H exp ,
4

n

n
z c z
c cz

 ∂   = −    ∂    
                  (10.6) 

with a parameter c. With the function ( )f z  defined in (10.2) this and analo-
gously p ε  can be written  

( )

* 2 2

1 2
4

1 2exp exp ,
2 4π

qq f q
q

εε
ε ε

    − ∂
= − −       ∂     



 



 

( )

* 2 2

1 2
4

1 2exp exp i .
2 4π

pp f p
p

εε
ε ε

    − ∂
= − − −      ∂     



 



      (10.7) 

The operator 
2 2

2exp
4
a

x
 ∂
 ∂ 

 with 2 0a >  applied to a function ( )f x  

makes a smoothing of this function and the operator 
2 2

2exp
4
a

x
 ∂
− ∂ 

 with  
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2 0a > , correspondingly, the opposite of this (“desmoothing”). 

11. Calculation of the Wigner Quasiprobability of a  
Coherent Phase State 

For the calculation of the Wigner quasiprobability ( )*,W α α  we have different 
possibilities. The first is that we calculate it from the general relation to the Hu-
simi-Kano quasiprobability ( )*,Q α α  and using the special form (10.3) of the 
last (see Appendix C)  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2
* *

*

* 2
* * *

*

*
* * * *

*

* 2
* *

* *

1, exp ,
2

1 1exp exp
π 2

1 1exp exp
π 2

1 1 1 1exp exp
π 2 2 2

W Q

f f

f f

f f

α α α α
α α

εε
αα ε α εα

α α

εε
αα α α ε α εα

α α

εε
α α ε α εα

αα α α

 ∂
= − 

∂ ∂ 
 − ∂

= − − 
∂ ∂ 

−  ∂ ∂   = − − − −   ∂ ∂   
 −  ∂ ∂  ∂  = − − − −     ∂∂ ∂ ∂     

( )* .

   

(11.1) 

This is in number representation equivalent to the formula (see (7.12) and 
(7.13))  

( ) ( ) ( )* * *
,

0 0

2, exp 2 L 2 ,2 ,
π ! ! m n

m n

n m
W

m n
ε ε

α α αα α α
∞ ∞

= =

= − ∑∑     (11.2) 

where n ε  and mε  can be taken from (8.4) and which we used for the 
calculations. To get ( ),W q p  we have to transform it by relations (5.3). A 
second possibility is the calculation directly from the wave function 
( )q qε ε≡  or from ( )p pε ε≡  via definitions (2.4) or (2.6) with density 

operator ρ ε ε= . A difficulty in the calculation of the Wigner quasiproba-
bility for coherent phase states ε  is the slow convergence of the involved se-
ries and the presence of the unorthodox entire function ( )f z  in the formulae. 
The convergence is caused only by the powers nε  which for 1 1ε−   is 
very slow. 

In Figure 5 we illustrate the calculation of the Wigner quasiprobability for a 
coherent phase state for real 0.98ε = , i.e. for 0ϕ = , made by formula (C.11) 
using their number representation (8.4) with “Mathematica 6” in 20118. 

The maximal value of the Wigner quasiprobability occurs under increasing 
parameter 1ε <  for increasing values 2 2 2q p α+ =   and does not reach  

 

 

8After different trials we found that 0.98ε =  was for us the maximally acceptable value concern-
ing the calculation time. Trials were also made to suppress the visibility of the oscillations at the 
borders due to truncation of the involved series. We needed approximately 40 hours calculation time 
for one such picture (we did not apply any function of exponential type for acceleration of the con-
vergence). In crass opposition to this was the pure calculation time for the given squeezed coherent 
state with some similarity to the Wigner quasiprobability of the coherent phase state which after 
programming according to the known formula was approximately of the order of a very few mi-
nutes. 

https://doi.org/10.4236/apm.2018.86034


A. Wünsche 
 

 

DOI: 10.4236/apm.2018.86034 594 Advances in Pure Mathematics 
 

 
Figure 5. Wigner quasiprobability for a coherent phase state compared with a squeezed coherent state in units 


. The parame-

ters of the coherent phase states are: 0.98ε = , 24.2525N = , 6.22366Q = , 0P = , ( )2 10.7379Q∆ = , ( )2 0.033236P∆ =  

and therefore ( ) ( )2 2 0.597398Q P∆ ⋅ ∆ = . The parameters of the squeezed coherent state are: 24.2476N = , 6.22366Q = , 

0P = , ( )2 10.7379Q∆ = , ( )
( )

2

2

1 0.023282
4

P
Q

∆ = =
⋅ ∆

 and therefore ( ) ( )2 2 0.5Q P∆ ⋅ ∆ = . We set 1= . The partial pic-

ture in second position of second line which is a front sight onto the Wigner quasiprobability shows weakly its negativities. A 
good graphical representation of the small negativities is only possible by showing a small part of the Wigner quasiprobability with 
distortion of the natural scales. It shows that the greatest negativities lie in the neighborhood of small values of q corresponding to 
the zeros of the non-orthodox function ( )f z ; (made by “Mathematica 6” in 2011). 

 

the maximally possible value 1
π

 for Wigner quasiprobabilities, in contrast to  

that for squeezed coherent states, which apart from their displacement from the 
coordinate origin in comparison the squeezed vacuum states are eigenstates of 
the parity operator to parity +1. The Wigner quasiprobability for coherent phase 
states possesses also regions of negativity. They appear in the neighborhood of 
the (singular) zeros of the Husimi-Kano quasiprobability ( ),Q q p  since the last 
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is some averaging of the Wigner quasiprobability and this is only possible if the 
Wigner quasiprobability possesses regions of negativity in its neighborhood. 
According to (10.3) the singular zeros of ( ),Q q p  (or ( )*,Q α α ) are deter-
mined by the zeros of the unorthodox function ( )f z  (see also Appendix D). 
That the Wigner quasiprobability for coherent phase states should possess re-
gions of negativity is also clear from the product (Weierstrass) representation of 
analytic functions because such functions without zeros are functions of the ex-
ponential type and the squeezed coherent states are already the most general set 
of normalizable functions with wave functions and Wigner quasiprobabilities of 
Gaussian type. 

Let us make a few remarks about the article [15]. According to its title, in this 
article the Wigner function of a phase state is calculated and some related func-
tions are represented graphically. As phase state the authors use the London 
phase states ϕ  given here in (8.7) which are non-normalizable (see (8.9)). 
They declare ρ ϕ ϕ=  as the density operator but it is ϕ ϕ = ∞  and the 
obtained “Wigner function” is also non-normalizable and, therefore, is not a 
genuine Wigner quasiprobability. Expectation values cannot be calculated with 
such a function. One may think that the calculated function plays, at least, an 
auxiliary role for the calculation of interesting properties of normalizable phase 
states ie ϕε ε=  for 1ε <  defined in (8.4) from which the London phase 
states (8.7) follow as their limiting case 1ε =  without the normalization factor 

21 ε− . However, we did not find a relation where they may play an auxiliary 
role. The authors [15] made their London phase states finite by truncating the 
sum over n in (8.7) with certain maxn n=  but then the scalar product of these  

changed states is max

2π
n

 and is not normalized to the value equal to 1 and the  

results for the Wigner function are badly defined. In case of our normalizable 
coherent phase states ε  the truncation is made “in natural way” by the pow-
ers ( ), 1nε ε <  for n →∞  which is a very slowly convergent procedure and 
which caused our extremely long calculation times. 

We have to underline the following. To get use from the calculated functions 
in [15] (or its generalization for ϕ ϕ′≠ ) as an auxiliary quantity for calculations, 
for example, of expectation values it has to be given, at least, in general analytic 
form. However, due to the involved unorthodox entire function ( )f z  this is 
very difficult to achieve. This also concerns our calculations of a genuine exam-
ple of the Wigner quasiprobability for coherent phase states ε  in Figure 5. 
This may only serve as a certain illustration but for the calculation of expectation 
values from the Wigner quasiprobability ( ),W q p  this is inappropriate. Some 
expectation values for the coherent phase states ε  can be effectively calcu-
lated in other way that we demonstrate in the next Sections. 

12. Expectation Values of Functions of the Number  
Operator N for Coherent Phase States 

The calculation of expectation values via the Wigner quasiprobability is the most 
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illustrative one concerning the analogy to classical phase space but it is not in 
every case the simplest one and in case of coherent phase states the difficulties 
are almost not to overcome. Therefore, we discuss here and in the next Section 
some other possibilities of calculation of expectation values for coherent phase 
states ε . 

The expectation values kN  of powers of the number operator N are  
0 1,N =  

( ) ( ) ( )

( )
( ) ( )

2 2 1

0
2

2
12 0

1 1

, , 1, 2, ,
1

nkk

n

k l
k

l

N n

E k l k

ε ε

ε
ε

ε

∞
+

=

=

= − +

= =
−

∑

∑ 

          (12.1) 

where ( )1 ,E k l  denotes the Eulerian numbers [17] [18] and also [16] with some 
of the first given in Table 1. 

In particular  
2

2 , ,
11

NN
N

ε
ε

ε
= ⇔ =

+−
 

( )
( )

( )
( )

2 2 2
22 2 2

2 22 2

1
, ,

1 1
N N N N

ε ε ε

ε ε

+
= ∆ ≡ − =

− −
 

( )
( )

( )
( )

( )

2 2 4 2 2

33
3 32 2

1 4 1
, .

1 1
N N

ε ε ε ε ε

ε ε

+ + +
= ∆ =

− −
        (12.2) 

For ( )2N N∆ −  which by definition is the boundary between sub- and su-
per-Poissonian statistics we find  

( )
22

22 2 2
2 0.

1
N N a a a a

ε

ε

 
 ∆ − = − = ≥
 − 

† †             (12.3) 

 
Table 1. Eulerian numbers ( )1 ,E k l . 

k ( )1 ,0E k  ( )1 ,1E k  ( )1 , 2E k  ( )1 ,3E k  ( )1 , 4E k  ( )1 ,5E k  ( )1 ,6E k  ( )1 ,7E k  ( )1 ,8E k  ( )1
0

,
k

l

E k l
=
∑  

0 1         1 = 0! 

1 1         1 = 1! 

2 1 1        2 = 2! 

3 1 4 1       6 = 3! 

4 1 11 11 1      24 = 4! 

5 1 26 66 26 1     120 = 5! 

6 1 57 302 302 57 1    720 = 6! 

7 1 120 1191 2416 1191 120 1   5040 = 7! 

8 1 247 4293 15 619 15 619 4293 247 1  40 320 = 8! 

9 1 502 14 608 88 234 156 190 88 234 14 608 502 1 362 880 = 9! 
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This shows that among the coherent phase states are not states with 
sub-Poissonian statistics for which by definition should hold 2 2 0a a a a− <† † . 
The measure ( )3N∆  shows that the coherent phase states possess for 1ε →  a 
great asymmetry around the mean values ( ),Q P . Furthermore from (12.2) fol-
lows  

2
† †

2

1
2 1 .

1
N aa a a

ε

ε

+
+ = + =

−
                   (12.4) 

We use this result in Section 13 in the calculation of ( )2Q∆  and ( )2P∆ . 
The Hilbert-Schmidt distance to the vacuum state with density operator 

0 0ρ =  is  

( ) ( )

( ){ }

2
HS

2

, 0 0 0 0

2 1 1 2 2 .

d

N

ε ε ε ε

ε ε

≡ −

= − − = ≤
             (12.5) 

For 1ε →  the Hilbert-Schmidt distance [24] [25] to the vacuum state goes 
to the maximally possible ones equal to 2 . The Hilbert-Schmidt distance of 
ε  to an arbitrary coherent state α  is  

( ) { }

( ) ( ) ( ) ( ){ }
HS

* * * *

, 2 1

2 1 1 exp .

d

f f

ε ε α α ε α α ε

εε αα εα ε α

= −

= − − −
           (12.6) 

The minimal distance to a coherent state as possible measure of non-classicality of 
a state [25] is obtained if ε  and α  possess the same phase and is then deter-
mined by the minimum of (12.6) or the maximum of  

( ) ( ) ( )( ) ( )2 22 2 2
0exp = exp 1f fα ε α ε α ε α− − −  with respect to variation 

of α . Due to the difficulties with the unorthodox function ( )f z  it is not easy 
to derive approximations. For 1ε →  the minimal distance (12.6) goes to 2  
that means to the maximal possible one for normalized states. 

13. Expectation Values for Canonical Operators Q and P and  
Their Variances for Coherent Phase States 

In this Section we discuss the calculation of expectation values of the canonical 
operators Q and P and of simple functions of these operators for coherent phase 
states ε . 

We begin with the calculation of the expectation value of the annihilation op-
erator a for which we find from (8.4) the following series  

( )

( )
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* *

0 0

2 *

0 0

2 2 † *

0

1

1 1 1

1 1 , .
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= =
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= =

∞

=

≡ = −

= − + +

= − + =

∑∑

∑∑

∑

             (13.1) 

In the same way we find for the expectation value of the operator a2  
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( )
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         (13.2) 

The right-hand sides of (13.1) and (13.2) are series roughly speaking of the 
type of a Geometric series ( ) ( ) 1

1 00, 1n
nG z z z −∞

=
≡ = −∑ , however, with addi-

tional slowly increasing coefficients in front of nz  which we more generally 
denoted and evaluated in [16] by  

( ) ( ) ( )
( ) ( )

( )1 1
0 0

;! 1; , .
! 1 1

k k
n l
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n l

E k zn
G k z z E k l z

n z z

µ
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µ µµ µ

µ∞

+ +
= =

+ 
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− − 
∑ ∑   (13.3) 

The numbers ( ),E k lµ  are generalized Eulerian numbers for which we found 
the general formula  

( ) ( ) ( )
( )

( )
( )0

1 1 ! !
, .

! 1 ! !

kjl

j

k l j
E k l

j k j l jµ

µ µ
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 − + − +
≡   + − − 
∑             (13.4) 

We see that the sum (13.1) is of the type 1
1 ,
2

G z 
 
 

 and (13.2) of the type 

2
1 ,
2

G z 
 
 

 of a Generalized Geometric series where 1
2

k =  is not an integer and, 

therefore, where the Generalized Eulerian numbers 1
1 ,
2

E l 
 
 

 according to  

(13.4) are non-vanishing for arbitrary 0,1,2,l =  . For integer k the Eulerian 
numbers ( )1 ,E k l  are different from zero only for l k≤  as shown in preceding 
Section [16] [17] [18]. Thus we may write the result of evaluation of (13.1) in the 
form  

*2 †
12 0

1 , , ,
21

l

l
a E l a aε

ε
ε

∞

=

 = = 
 −

∑               (13.5) 

with  
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1
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31 !
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1 1 π, ! 0.886227,
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=
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∑

∑

                (13.6) 

and the result of evaluation of (13.2) in the form  
2 *22

22
0

1 , , ,
21

l

l
a E l a aε

ε
ε

∞

=

 = = 
 −

∑ †                 (13.7) 

with  
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( )
( ) ( )( )2 2
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1 2!1 1 1, 2 1 , , 2 ! 1.
2 ! 2 ! 2 2
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E l l j l j E l
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−     = + − + − = =     −     
∑ ∑   (13.8) 

The splitting of the functions ( )
3
21 z −−  in our case from 1

1 ,
2

G z 
 
 

 and of 

( ) 21 z −−  from 2
1 ,
2

G z 
 
 

 is very important for the acceleration of the  

convergence of series in the evaluation, in particular, for 1z <  in the neigh-
borhood of 1z   and for approximate solutions it is then necessary to  

take into account only a few number of terms of the series 1
1 ,
2

E z 
 
 

 or 

2
1 ,
2

E z 
 
 

. With a few terms of the expansion we find for the series involved in  

(13.5)  
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satisfying for 1ε ≤  the inequality  
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and for the series involved in (13.7)  
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In the following we need also the square of the expression (13.9) for which we 
find the first sum terms of the expansion  

( ) ( ) ( )

2
2

1
0

2 4 6

2 4 6

1 ,
2

1 3 2 2 6 2 5 2 3 6 3 3 6 2 2 6
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 (13.13) 

As an interesting observation we remark that in contrast to the expectation 
values Q  and P  in (13.13) in the coefficients in braces we do not have de-
nominators different from 1 in the corresponding expansions for the squared 
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expectation values 2Q  and 2P . We checked that this is true even up to 25 sum 
terms in the approximation but do not try to generalize it for arbitrary order and 
to prove it. Although this seems to be unimportant for numerical calculations it 
is perhaps interesting for number-theoretic considerations (likely, this is  

connected with 1
2

k =  in the generalized Eulerian numbers ( )1 ,E k l  that their  

squares possess the mentioned property). 
For the expectation values of the canonical operators Q and P we find  

( )
*

2†
12 0

1 , ,
2 2 21
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For their squares we calculate  
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and for their product  
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We come now to the expectation values of the operators 2Q  and 2P  for 
which we find using (13.7)  
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∑ † † †   (13.17) 

We inserted here the result (12.4) for the expectation value of † †aa a a+ . The 
lastly needed expectation value of quadratic combinations of the canonical oper-
ators Q and P is  

2 2

2 *2
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1 i
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1i , .
2 21
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QP PQ a a

E lε ε ε
ε

∞

=

+ = − −
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 −

∑





†

             (13.18) 

This expression is vanishing for *ε ε= ±  that means if ε  is a real or an im-
aginary number. In all other cases of complex numbers ε  it is non-vanishing. 

Using the results of this Section we calculate in next Section variances to the 
expectation values of the canonical operators. 
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14. Uncertainties, Uncertainty Matrix and Uncertainty  
Correlations 

The uncertainties of the expectation values of the canonical operators empha-
sizing their transformation and invariance properties are well summarized in the 
following symmetric uncertainty matrix S  (e.g., [39])  

( )

( )

2

2

1,
2 ,

1 ,
2

Q Q P P Q

Q P P Q P

 ∆ ∆ ∆ + ∆ ∆ 
 =
 ∆ ∆ + ∆ ∆ ∆ 
 

S             (14.1) 

where Q Q QI∆ = −  and P P PI∆ = −  and expectation values A  are defined 
by A A=   with   the density operator of the considered state. In the pre-
ceding Section we prepared the calculation of this uncertainty matrix for cohe-
rent phase states with density operator ε ε=  by the calculation of partial 
building stones. 

By combination of the results in Equations (13.17) and (13.15) we find for the 
variances ( )2Q∆  and ( )2P∆   

( )
2 2 2

22 2 2
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22 *2
2 2

2 12
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ε ε

ε ε ε ε
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=

∞ ∞

=

 +    ∆ ≡ − = −   
 − −  

 +       + −         −    
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0
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ε ε
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ε ε ε ε
ε

∞

=

∞ ∞

= =

 +    ∆ ≡ − = −   
 − −  

 +       − −         −    

∑

∑ ∑



    (14.2) 

and by combination of (13.18) and (13.16) for the uncertainty correlation  
1
2

Q P P Q∆ ∆ + ∆ ∆   

22 *2
2 2

2 12
0 0

1 1
2 2

1 1i , , .
2 1 11

l l

l l

Q P P Q QP PQ QP

E l E lε ε
ε ε

ε

∞ ∞

= =

∆ ∆ + ∆ ∆ = + −

 −      = − −         −   
∑ ∑

       (14.3) 

We find the following few first terms of expansions of common partial ex-
pressions in (14.2) and (14.3)  

( ) ( )
( )

2
2 2

2 1
0 0

2 4

6

2 4 6

1 1, ,
2 2

= 2 1 4 2 3 6 7 2 5 2 6

3 2 3 2 5 6 2 6

= 0.414214 0.207365 0.000515451 0.00146645 .

l l

l l
E l E lε ε

ε ε

ε

ε ε ε

∞ ∞

= =

    −     
    

− − − − + − −

+ + + − − +

− + + +
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  (14.4) 
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The corresponding expansion for the expression 
2

2
11

1 ,
2

l
l E l ε∞

=

  
  

  
∑  was  

already given in (13.13). 
The uncertainty sum is the trace S  of the uncertainty matrix S  and we 

find  

( ) ( )2 2

2 2 2
2

12 2
0

1 2 1 , .
21 1

l

l

Q P

E l
ε ε

ε
ε ε

∞

=

≡ ∆ + ∆

 +    = −   
 − −    

∑

S



           (14.5) 

It depends only on the modulus ε  of the complex ie ϕε ε=  but does not 
depend on the angle ϕ . Thus it is invariant with respect to rotations of the co-
herent phase states in the phase plane of variables ( ),q p . In the limiting case 

0ε →  using (13.13) and in the limiting case 1ε →  we obtain  

( ) ( )( ) ( ) ( )( )2 2 2 2

0 1
lim , lim .Q P Q P
ε ε→ →

∆ + ∆ = ∆ + ∆ →∞         (14.6) 

The second invariant of the two-dimensional matrix S  with respect to simi-
larity transformations is its determinant [ ]S  which provides here the uncer-
tainty product taking into account the uncertainty correlations for which we find 
using (13.17) and (13.18) together with (13.15) and (13.16)  

[ ] ( ) ( ) ( ) 22 2

22 2 22
2

12 2
0

2 22 2
2 2

2 12
=0 0

1
4

1 2 1 ,
4 21 1

2 1 1, , .
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l l
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Q P Q P P Q

E l

E l E l

ε ε
ε

ε ε

ε
ε ε

ε

∞

=

∞ ∞

=

≡ ∆ ∆ − ∆ ∆ + ∆ ∆

 +     = −     − −   
           − −           −      

∑

∑ ∑

S

      (14.7) 

In the same way as the uncertainty sum S  it depends only on the modulus 
of ε  but not on its angle. If we apply the binomial formula to the two quadrat-
ic terms in (14.7) then the last two terms cancel but we do not come in this way 
to an essentially shorter representation. We come back to this below. In the li-
miting cases we find  

( ) ( ) ( )
222 2

0

1lim ,
4 4

Q P Q P P Q
ε →

 ∆ ∆ − ∆ ∆ + ∆ ∆ = 
 

  

( ) ( ) ( )22 2

1

1lim .
4

Q P Q P P Q
ε →

 ∆ ∆ − ∆ ∆ + ∆ ∆ →∞ 
 

          (14.8) 

The most expressions which we may calculate from Q and P are not invariant 
with respect to the phase of the complex parameter ε . For example, the mean 
values Q  and P  depend on the phase of ε . If we choose  

* ,ε ε ε= =                          (14.9) 

then we find  
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2
12 0

2 1 , , 0.
2 21

l

l
Q E l P

ε
ε

ε

∞

=

 = = 
 −

∑

             (14.10) 

The vector of the mean values ( ),Q P  lies on the positive q-axis and conti-
nuously increases there with increasing 1ε < . For the squares we find  

2 2
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12
0

4 1 , , 0,
2 21

l
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Q E l P

ε
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=

  = =  
 −  

∑            (14.11) 

and for the expectation values 2Q  and 2P   
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          (14.12) 

For the corresponding variances we now obtain the formally asymmetric ex-
pressions for ( )2Q∆  and ( )2P∆   

( )
2 2 2

2 22
2 12 2

0 0

1 2 1 1, 2 , ,
2 2 21 1
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 +  ∆ = −  
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∑

         (14.13) 

The uncertainty correlation (14.3) vanishes in the special case (14.9) that 
means  

0,Q P P Q∆ ∆ + ∆ ∆ =                     (14.14) 

and the matrix (14.1) becomes diagonal. The uncertainty sum is invariant with 
respect to rotations of ε  and therefore we find from (14.13) again the expres-
sion (14.5). For the uncertainty product in the special case (14.9) follows from 
(14.13)  

( ) ( )2 2

2 22 22
2

22 2
0

2 2 22
2 2

1 22 2 2
0 0

1 2 1 ,
4 21 1

4 1 21 1, , .
2 21 1 1

l

l

l l

l l

Q P

E l

E l E l

ε ε
ε

ε ε

ε ε ε
ε ε

ε ε ε

∞

=

∞ ∞

= =

∆ ∆

   +     = −      − −   

 +      − −         − − −   

∑

∑ ∑

   (14.15) 

This is the same as (14.7) in an alternative representation but in the consi-
dered special case (14.9) the uncertainty correlation vanishes. In general, the 
uncertainty product is not invariant with respect of rotations of the state in the 
phase space or here with respect to the phase of ε . The uncertainties obey the 
following general chain of inequalities [39]  
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[ ] ( ) ( ) ( )

( ) ( ) ( ) ( )( )
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2 2 2 2

1
2 4

1 1 .
2 2

Q P Q P P Q

Q P Q P

≤ ≡ ∆ ∆ − ∆ ∆ + ∆ ∆

≤ ∆ ∆ ≤ ≡ ∆ + ∆

S

S



         (14.16) 

As known, in general, the minimal uncertainty product for a given state is on-
ly obtained under special positions of the axes ( ),q p  of the phase space but the 
uncertainty product taking into account the uncertainty correlations provide it 
in every case. The inequality between the square of the uncertainty product tak-
ing into account the uncertainty correlation and the half uncertainty sum is the 
inequality between geometric and arithmetic mean. For imaginary parameter ε  
instead of real one the roles of the axes are interchanged. 

The uncertainties for coherent phase states ε  are graphically represented 
in Figure 6. 

15. Conclusions 

We derived in this article formulae for the calculation of the Wigner quasipro-
bability with emphasis of relations which are symmetric in the canonical opera-
tors ( ),Q P . We applied them to the eigenstates of the one-dimensional square 
well with infinitely high impenetrable walls and in quantum optics to the cohe-
rent phase states. Both considered examples are quantum-mechanical systems 
with ( )1,1SU  symmetry. For the coherent phase states we discussed in detail 
the difficulties of calculations due to a very unorthodox entire function involved 
in such calculations. We tried to bring more light in the calculations of proper-
ties of coherent phase states and of their Wigner quasiprobability which did not 
be dealt with up to now in satisfactory form. 

An interesting question without a clear answer is whether nature can realize  
 

 

Figure 6. Uncertainties for coherent phase states ε . In the partial figure to the left we have chosen 0ϕ =  in ie ϕε ε=  and, 

therefore, 0P = . The partial figure to the right is invariant concerning the choice of ϕ . In the lower curve we see 4 different 
approximations. They are generated with taking into account different numbers of sum terms in the expressions which were 4, 16, 
64, 256. With the upper curve it was made the same but here the differences are not to see; (“Mathematica 10” in 2018). 
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coherent phase states or not. It is meant by this not only an approximate realiza-
tion, for example, by superposition of a few coherent states on a line beginning 
from the center or by squeezed coherent states. The reason as mentioned is that 
in the description of the genuine coherent phase states a very unorthodox function  

0 !

n

n

z
n

∞

=∑  plays a main role which by digital calculations makes considerable  

trouble. Is nature really capable to realize this by an analog physical process 
without such a trouble? 

The Wigner quasiprobability is an essential mean for the illustration of the 
connection of quantum theory with classical mechanics but not in all cases the 
calculation of properties of states from the Wigner quasiprobability is the most 
suited and easiest one as the considered examples show (remind that it was first 
developed for corrections to thermodynamic equilibrium). Interesting in a wider 
sense is, for example, also the interferences seen in the Wigner quasiprobability 
for superpositions of coherent states in the regions of their overlapping which, 
however, could not be considered here. A deeper explanation of the origin of the 
Wigner quasiprobability in possible formulae for expectation values would be 
desirable. We did not discuss here the transition from quantum to classical me-
chanics by transition to the infinite number of commutative irreducible repre-
sentations of the basic operators ( ),Q P  of the Heisenberg-Weyl algebra for 
which the operators α α  form appropriate bases in the space *H H×  [13]. 

Finally, we mention that the Wigner quasiprobability possesses also some-
thing which is to feel as a very aesthetical aspect. 
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Appendix A 
Fourier Transformation of Coherent States and Representation of 
Displaced Parity Operator 

For the following we need some auxiliary integrals. By transition to polar (or real) 
coordinates one finds  

( ) ( )
*

* * * 2 *
2 2

1 i d d exp exp exp ,
2π

zzz z wz w z c ww
c c

 
∧ − − = − 

 
∫       (A.1) 

where c is a parameter. From this one calculates the following more general in-
tegrals (see (7.1))  
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With the substitutions 
*

*, , 2
2 2
w ww w c b→ → →  one obtains the special  

cases  
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* 2 2
2
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∫  (A.3) 

We apply this now. 
Using the first formula in (A.3) with 1b =  one calculates the Fourier trans-

form of a coherent state according to  
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       (A.4) 

and in analogous way  
* *

*1 i d d exp .
2π 2 2

βα β αα α α β
 −
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∫              (A.5) 

Due to  

( )
* *

*, exp ,
2

D αβ α βα α β α β
 −
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               (A.6) 

one has  
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( ) ( )( ) ( )†* * * *, , exp ,D Dα α β β α α αβ α β α β α β− = − + −     (A.7) 

and the displaced parity operator ( ) ( ) ( )( )†* * *, , ,D Dα α α α α αΠ ≡ Π  becomes  

( ) ( )* * * *1 i, d d exp .
π 2

α α β β αβ α β α β α βΠ = ∧ − + −∫   (A.8) 

This together with (6.1) leads to the representation (6.2) of the Wigner quasi-
probability. 

Appendix B 
Completeness Relation over Heisenberg-Weyl Group and  
Application to Displaced Number States 

From the two-dimensional integrals over the complex z-plane  
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∫              (B.1) 

which can be calculated by transition to polar coordinates one obtains  
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0

1 i d d exp L ,
π 2

! ! 1 1 i d d exp
! ! ! π 2

! 1
! ! 1 1 ! .

! !

m n

jm n
m j n j

j

jn n
m j n j m n m n n m n

j

z z zz z z

m n
z z zz z z

j m j n j

n
m m n

j n j
δ δ δ δ δ δ

− −

=

− −
=

∧ −

−
= ∧ −

− −

−
= = − = =

−

∫

∑ ∫

∑

     (B.2) 

Now, using the definitions (7.1) of Laguerre 2D polynomials and their diffe-
rentiations (7.3) and, furthermore, partial integration we calculate the following 
integrals (remind ( ) ( )( )** *

, ,L , L ,k n n kz z z z= )  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )( ) ( ) ( )

* * * *
, ,

* * *
, *

* * *
,*

* * *
,

,0 ,0 , ,

1 i d d exp L , L ,
π 2

1 i1 d d L , exp
π 2

1 i d d exp L ,
π 2
1 i ! !d d exp L ,
π 2 ! !

! ! ! ! .

m l k n

k n
k n

m l k n

k n

m lk n

m n l k

m n l k m n k l

z z zz z z z z

z z z z zz
z z

z z zz z z
z z

m lz z zz z z
m n l k

m l m lδ δ δ δ

+
+

+

− −

− −

∧ −

∂
= − ∧ −

∂ ∂
∂

= ∧ −
∂ ∂

= ∧ −
− −

= =

∫

∫

∫

∫

        (B.3) 

From this follows using the decomposition (7.6) of displaced number states 
into number states  

( ) ( )( )
( ) ( ) ( ) ( )

†* * * *

* * * *
, , ,

0 0

, ,
0 0 0

1 i 1 id d , , d d , ,
π 2 π 2

1 1 i! d d exp L , L ,
π 2! ! ! !

! .
! !

m n

m n m l k n
k l

m n k l
k l l

D n m D n m

k l
m

m n k l
k l

l m n l l m n I
k l

α α α α α α α α α α

δ α α αα α α α α

δ δ

+ ∞ ∞

= =

∞ ∞ ∞

= = =

∧ = ∧

−
= ∧ −

= = =

∫ ∫

∑∑ ∫

∑∑ ∑

  

(B.4) 
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For an arbitrary operator A follows from this relation  

( ) ( )( )

( ) ( )( )

†* * *

†* * *

0 0

*

0 0

0 0

1 i d d , ,
π 2

1 i d d , ,
π 2

1 i d d , ,
π 2

.

m n

m n

m n

D A D

D n n A m m D

n A m n m

n A m m n I A I

α α α α α α

α α α α α α

α α α α

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

∧

= ∧

= ∧

= =

∫

∑∑ ∫

∑∑ ∫

∑∑

      (B.5) 

This is the (over-)completeness integral (5.14) for displaced operators A and 
follows also from general orthogonality relations of group representations if one 
knows the invariant measure over the Lie group. 

In an analogous way using the number representation of the coherent states 
one calculates  

( )

( ) ( )
{ } ( )

( ) ( )
( )
( ) ( )

* *

*
* *

0 0

, *
* *

0 0 0

0 0 0

1 i d d ,
2π 2

1 i d d exp exp exp
2π 2 2

1 ! ! 1 i d d exp
! ! ! 2π 2 2! !

! 2
1 ,

! !

m n
n jm n

m j n j

m n j
n jn n

n j n

D

m m a a n n

m n m n
j m j n jm n

n
n n n n

j n j

α α α α

ααα α α α

ααα α α α

∞ ∞

= =

−∞ ∞
− −

= = =
−∞ ∞

= = =

∧

  
= ∧ − −     

−  
= ∧ − − −  

−
= = − = Π

−

∫

∑ ∑∫

∑∑ ∑ ∫

∑ ∑ ∑

†

 (B.6) 

where we used the evaluation of the integral in (B.1). 

Appendix C 
Wigner Quasiprobability W(α, α*) from Husimi-Kano  
Quasiprobability Q(α, α*) via Bargmann Representation 

The Wigner quasiprobability ( )*,W α α  can be obtained from the Husimi-Kano 
quasiprobability ( )*,Q α α  by the relation  

( ) ( )

( ) ( )

2
* *

*

2
* *

*

1, exp , ,
2

1, exp , .
2

W Q

Q W

α α α α
α α

α α α α
α α

 ∂
= − ∂ ∂ 

 ∂
⇔ =  ∂ ∂ 

              (C.1) 

We introduce now in ( )*,Q α α  the Bargmann representation ( )*ψ α  of a 
pure state ψ  by an analytic function of the complex variable α   

( )

( ) ( )( )

*

0

* ** *

0

,
!

,
!

n

n

n

n

n
n

n
n

α
ψ α ψ α ψ

α
ψ α α ψ ψ ψ α

∞

=

∞

=

≡ =

≡ = =

∑

∑
            (C.2) 

where 
*

exp
2

ααα α
 

=  
 

 are the analytic (non-normalized) coherent states.  
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Then ( )*,Q α α  is  

( ) ( ) ( ) ( )* * * *1, exp ,
π

Q α α αα ψ α ψ α= −                (C.3) 

and the Wigner quasiprobability (C.1) becomes  

( ) ( ) ( ) ( )
2

* * * *
*

1 1, exp exp .
π 2

W α α αα ψ α ψ α
α α

 ∂
= − − 

∂ ∂ 
         (C.4) 

We will give this formula another principal form using the Lie group 
( )1,1SU . This may be useful for similar considerations to more general quasi-

probabilities. 
Introducing the operators  

2
* *

0* *

1, , 1 ,
2

K K Kαα α α
αα α α− +

∂ ∂ ∂ ≡ ≡ ≡ + + ∂∂ ∂ ∂ 
        (C.5) 

one finds that they satisfy the commutation relations (9.3) and, therefore, form a 
realization of the Lie algebra ( )1,1su  to the Lie group ( )1,1SU . The corres-
ponding Casimir operator C is  

( ) ( )
2

2 *
0 *

1 1 1 .
2 4

C K K K K K α α
α α− + + −

 ∂ ∂  ≡ − + = − −  ∂ ∂   
       (C.6) 

Using the commutation relations  

( ) ( )
2

* * *
* *exp expαα αα α α

αα α α
∂ ∂ ∂  − = − −  ∂∂ ∂ ∂  

 one may transforms (C.4)  

to the form  

( ) ( ) ( ) ( )* * * * *
*

1 1, exp exp .
π 2

W α α αα α α ψ α ψ α
α α

 ∂ ∂   = − − − −   ∂ ∂   
  (C.7) 

The entangled operator *
*

1exp
2

α α
α α

 ∂ ∂   − − −   ∂ ∂   
 of ( )1,1SU  can be  

disentangled using the relations in [37] (Appendix A, Equation (A.14)) accord-
ing to  

( ) ( )

( )

0

*
*

*
*

2
0

2 1
*

*

1exp
2

1 1exp 2 exp exp 2
2 4

1exp exp 2 ,
4

KK K K K K

α α
α α

α α
α α

αα
α α

− + + −

∂ ∂
+ +

∂ ∂

 ∂ ∂   − − −   ∂ ∂   
   = − − + = − −   
   

 ∂
= − − ∂ ∂ 

       (C.8) 

belonging to the unimodular matrix 
1 11
1 32

κ λ
µ ν

−   
=   

   
 with 0ε =  (see [37],  

Equation (A.7)). This leads to the representation of (C.7)  

( ) ( ) ( ) ( ) ( )
*

*
2 1

* * * *
*

1 1, exp exp exp 2 .
π 4

W
α α

α αα α αα αα ψ α ψ α
α α

∂ ∂
+ +

∂ ∂
  ∂ = − − −  ∂ ∂   

 

(C.9) 
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The applied technique is a special case ( 1 2, 1s r= − = ) of the technique applied  

in [11] (Appendix A there) and the operator 
*

*2
α α

α α
∂ ∂
+

∂ ∂  is the operator of  
multiplication of both arguments ( )*,α α  of an arbitrary function ( )*,f α α  
by the factor 2. This leads to the new representation of the Wigner quasiprobability  

( ) ( ) ( ) ( )

( ) ( ) ( )

2
* * *

*

2
* *

*

2 1, exp 2 exp 2 2
π 4

12exp 2 exp exp 4 2 ,2 .
4

W

Q

α α αα ψ α ψ α
α α

αα αα α α
α α

 ∂
= − − 

∂ ∂ 
 ∂

= − − ∂ ∂ 

  (C.10) 

With the definition of Laguerre 2D polynomials ( )*
,L ,m n z z  in (7.1) and us-

ing (C.2) this is equivalent to  

( ) ( ) ( )* * *
,

0 0

2, exp 2 L 2 ,2 .
π ! ! m n

m n

n m
W

m n
ψ ψ

α α αα α α
∞ ∞

= =

= − ∑∑       (C.11) 

The same relation was derived in other way in [23] (Equation (5.16)) and it 
was known also without using Laguerre 2D polynomials. 

Appendix D 

About the Unorthodox Entire Function ( ) ∑
n

n
zf z
n0 !

∞
=≡  

We make here some remarks about the entire function9  

( )
( ) ( )

2 2 1

0 0 0
.

! 2 ! 2 1

n m m

n m m

z z zf z
n m m

+∞ ∞ ∞

= = =

≡ = +
+

∑ ∑ ∑               (D.1) 

playing a main role in calculations with coherent phase states and which is an 
unorthodox function for which it is difficult to obtain usable relations. 

Using the well-known doubling formula of the argument of a Gamma func-
tion one may represent (D.1) with introduction of a new function ( )0f z  as  

follows 
1 ! π
2

  − =  
  

  

( )

( )

2

0

1 1

2

0

1 1! ! ! !
1 2 2

1 1! 2 ! !
2 2

exp .
2

m

m

m m
zf z z

m m m

z f z

∞

=

≥ ≤

 
    − +          = + 
      − +        
 

 
≡  

 

∑

 

           (D.2) 

with limiting case of the product of coefficients  

 

 

9The more general function 
( )0 !

n

n

z
n α

∞

=∑  is shortly considered in the monograph of Titchmarsh [36] 

on p. 255 and it is shown that their order (of growth) is 1/α that means 2 in our case in accordance 
with (D.2). 
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1 1! ! ! !
π2 2lim 1.253314.

1 1 2! !
2 2

m

m m

m m
→∞

   − +   
    = =

   − +   
   

           (D.3) 

The function ( )f x  increases very rapidly for x →+∞  and from (D.2) it can  

be seen that it is favorable to split from ( )f z  a function 
2

exp
2
z 

 
 

 in  

multiplicative way (in accordance with the order of the function) and to consid-
er the remaining function ( )0f z  which for x →+∞  does not increase rapidly 
such as ( )f x  and for x →−∞  does not vanish so rapidly as ( )f x . 

To give an impression of the function ( )0f z  we write down the first 6 sum 
terms of its Taylor series in analytic and in numerical representation  

( ) ( ) ( ) ( )
( ) ( )

2 3 4
0

5 6

2 3 4

5 6

1 1 11 1 2 3 6 3 6 2 2 6
2 6 24

1 115 10 6 2 30 5 15 2 4 5 10 6
120 240

1 0.207107 0.0917517 0.0244292

0.0121629 0.00276074 .

f z z z z z

z z

z z z z
z z

= + + − + + − + + − +

+ − + + − + + − +

≈ + + − −

+ + +





   

(D.4) 

After the first constant term equal to 1 follow alternatingly two sum terms 
with positive and two sum terms with negative signs in its Taylor series. The ze-
ros of the functions ( )f z  and of ( )0f z  are the same but in front of powers 

nz  we have in (D.4) coefficients with approximately n sum terms involving 
square roots. 

The derivatives of the function ( )f z  are  

( ) ( ) ( )2

0 0
1 , 1 ,

! !

n k nk

k
n n

z zf z n f z n
z zn n

∞ ∞

= =

∂ ∂
= + ⇒ = +

∂ ∂∑ ∑       (D.5) 

or for the function ( )0f z   

( ) ( )
2 2

0
0 0

exp exp 1 .
2 2! !

n n

n n

z z z zf z n z
z z n n

∞ ∞

= =

   ∂ ∂
≡ − = − + −   ∂ ∂    

∑ ∑    (D.6) 

The derivatives of ( )f z  cannot be closed in finite way and lead to ever new 
functions of the starting type which grow weakly faster than ( )f z  for 
z x= → +∞ . This is one of the difficulties of treatment of the function ( )f z . 

On the real positive axis z x=  we obviously do not have zeros and all zeros 
possess a positive real part. In [32] we calculated (end of nineties) the first pairs 
of complex conjugate zeros which are (see footnote 10): 

( )

*
1 1 1 1

*
2 2 2 2

*
3 3 3 3

*
4 4 4 4

5

1.71697 i3.18011, 3.61401, 13.0611,
2.88669 i4.09032, 5.00637, 25.0637,
3.75716 i4.81893, 6.11051, 37.3383,
4.47871 i5.44616, 7.05121, 49.7195,
5.10 5? i6.00

z z z z
z z z z
z z z z
z z z z
z

±

±

±

±

±

= ± = =
= ± = =
= ± = =
= ± = =
= ± ( ) ( ) ( )

( ) ( ) ( ) ( )

*
5 5 5

*
6 6 6 6

5? , 7.88 2? , 62. 13? ,
5.6 6? i6.5 1? , 8.6 3? , 74. 42? .

z z z
z z z z±

= =
= ± = =

   (D.7) 
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The function ( )0f z  possesses the same zeros as the function ( )f z  and 
their calculation from this function is perhaps more appropriate (however, each 
coefficient to nz  contains then approximately the sum of n terms of square 
roots of integers). 

It is almost evident that the function ( )f z  does not possess zeros on the real 
negative axis. For this purpose one may calculate the product ( ) ( )f z f z−  ac-
cording to  

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )

0 0 0 0

2 2

0 0

!1 1
! !! ! !

2 !
1 .

! 2 !2 !

k l n nk k

k l n k

m m k

m k

z z z nf z f z
k n kk l n

mz
k m km

∞ ∞ ∞

= = = =

∞

= =

− = − = −
−

= −
−

∑ ∑ ∑ ∑

∑ ∑
     (D.8) 

To prove the absence of zeros of ( )f z  on the negative axis (on the positive 
axis this is clear) it would be sufficient to prove (or more generally to prove ex-
pression in round brackets would be interesting)  

( ) ( )
( ) ( ) ( )

( ) ( )
2 2

0 0

2 ! 2 !
1 0, 1 0, 0 1 .

! 2 ! ! 2 !

m mk k

k k

m m
k m k k m k

α

α
= =

  
 − > − > < <   − −  

∑ ∑   (D.9) 

Then for real z x=  the product ( ) ( )f x f x−  is positive in every case. Nu-
merical calculations show “almost evidence” of this relation but a correct proof 
seems to be difficult and we did not find such up to now. 

All this illustrates that we have a lot of difficulties when we have to work with 
the unorthodox entire function ( )f z  and when we have to apply this func-
tions within more complicated relations. 

In 2008 S. Skorokhodov sent me a nice e-mail with essential passages given in 
the footnote10. It is a pity that with my present computer I can no more open the 
appended file. 
 
 
 
 
 
 
 

 

 

10Dear ... Wuensche! 
I am Skorokhodov Sergey from Computing Centre of the Russian Academy of Sciences. I have 

studied your paper “An unorthodox function” in Jour. of Comput. and Applied Mathem. V. 133 N 
1-2 (2001). ... I have evaluated the first 35 zeros of the function (on a figure -- o) and have derived a 
simple approximation to zeros on the base of combination of two hypergeometric functions 1 1F  
(on a figure in I-st quadrant -- x). The error is rather small. ... I have evaluated also the zeros of the 

entire functions ( ) ( )0
; , 0,1

!

n

n

zf z
n α

α α
∞

=
= ∈∑ . The distribution of zeros is a very interesting also. 
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