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Abstract 
An optimal estimator of quantum states based on a modified Kalman’s filter is 
proposed in this work. Such estimator acts after a state measurement, allowing 
us to obtain an optimal estimate of the quantum state resulting in the output 
of any quantum algorithm. This method is much more accurate than other 
types of quantum measurements, such as, weak measurement, strong mea-
surement, and quantum state tomography, among others.  
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1. Introduction 

The problem of measurement in quantum mechanics [1] has been defined in 
various ways, originally by scientists, and more recently by philosophers of 
science who question the foundations of quantum mechanics. Measurements are 
described with diverse concepts in quantum physics such as: 
 wave-functions (probability amplitudes) which according to the linear 

Schrödinger equation involve a unitary and deterministic operator, thus pre-
serving information,  

 superposition of states: linear combinations of wave-functions with complex 
coefficients that carry phase information and produce interference effects, 
known as the principle of superposition, 

 quantum jumps between states accompanied by the “collapse” of the 
wave-function that according to Dirac’s projection postulate in a von Neu-
mann’s Process can destroy or create information, 

 collapses and jumps probabilities given by the square of the absolute value of 
the wave-function for a given state, 

 values for possible measurements given by the eigenvalues associated with 
the eigenstates of the combined measuring apparatus and measured system, 
in other words, the axiom of measurement, 
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 the Heisenberg’s uncertainty principle. 
The original problem stems from Niels Bohr’s “Copenhagen interpretation” of 

quantum mechanics since our measuring instruments, which are usually ma-
croscopic objects and treatable with classical physics, can give us information 
about the microscopic world of atoms and subatomic particles like electrons and 
photons. 

Bohr’s idea of “complementarity” insisted that a specific experiment could re-
veal only partial information—for example, the position of the particle. Whereas 
“exhaustive” information requires complementary experiments, for example 
when determining the momentum of the particle, responding to the limits of the 
Heisenberg’s uncertainty principle.  

Some of us define the problem of measurement simply as the logical contra-
diction between two laws describing the motion of quantum systems: the first 
one talks about the unitary, continuous, and deterministic time evolution of the 
Schrödinger equation, whereas the second one involves their complete opposite 
counterpart, i.e., the non-unitary, discontinuous, and indeterministic collapse of 
the wave-function. John von Neumann saw a problem with two distinct (indeed, 
opposing) processes. 

The mathematical formalism of quantum mechanics does not provide a way 
to predict when the wave-function stops evolving in a unitary fashion and col-
lapses. Experimentally and practically, however, we can say that this occurs 
when the microscopic system interacts with a measuring apparatus. 

Others define the measurement problem as the failure to observe macroscopic 
superpositions.  

Decoherence theorists, e.g., H. Dieter Zeh and Wojciech Zurek, who use var-
ious non-standard interpretations of quantum mechanics that deny the projec-
tion postulate—quantum jumps—and even the existence of particles, define the 
measurement problem as the failure to observe superpositions such as 
Schrödinger’s cat. They also claim that unitary time evolution of the wave-function 
according to the Schrödinger wave-equation should produce such macroscopic 
superpositions. 

Physics of Quantum Information treat a measuring apparatus in a quantum 
mechanically manner by describing its parts as in a metastable state like the ex-
cited states of an atom: the critically poised electrical potential energy in the 
discharge tube of a Geiger counter, or the supersaturated water and alcohol mo-
lecules of a Wilson cloud chamber. The pi-bond orbital rotation from cis- to 
trans- in the light-sensitive retinal molecule is an example of a critically poised 
apparatus. 

Excited (metastable) states are poised to collapse when an electron (or pho-
ton) collides with the sensitive detector elements in the apparatus. This collapse 
is macroscopic and irreversible, generally a cascade of quantum events that re-
lease large amounts of energy, increasing the (Boltzmann) entropy. But in a 
“measurement” there is also a local decrease in the entropy (negative entropy or 
information). The increase in the global entropy is normally orders of magni-
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tude more than the decrease in the small local entropy (an increase in stable in-
formation or Shannon entropy) that constitutes the “measured” experimental 
data available to human observers. 

The creation of new information in a measurement follows the same two core 
processes of all information creation—quantum cooperative phenomena and 
thermodynamics. These two are involved in the formation of microscopic ob-
jects like atoms and molecules, as well as macroscopic objects like galaxies, stars, 
and planets. 

According to the correspondence principle, all the laws of quantum physics 
asymptotically approach the laws of classical physics in the limit of large quan-
tum numbers and large numbers of particles. Thus, Quantum Mechanics can be 
used to describe large macroscopic systems. 

Does this mean that the positions and momenta of macroscopic objects are 
uncertain? Yes, it does. Although the uncertainty becomes vanishingly small for 
large objects, it is not zero. Niels Bohr used the uncertainty of macroscopic ob-
jects to defeat Albert Einstein’s several objections to quantum mechanics at the 
1927 Solvay conferences. 

But Bohr and Heisenberg also insisted that a measuring apparatus must be 
regarded as a purely classical system, since they cannot have it both ways: clas-
sical and quantum. So, can the macroscopic apparatus also be treated by quan-
tum physics or not? Can it be described by the Schrödinger equation? And, can 
it be regarded as in a superposition of states? 

The most famous examples of macroscopic superposition are perhaps 
Schrödinger’s cat, which is claimed to be in a superposition of being alive and 
dead at the same time for a cat in a box, and the Einstein-Podolsky-Rosen expe-
riment, in which entangled electrons or photons are in a superposition of 
two-particle states that collapse over macroscopic distances to exhibit properties 
“non-locally” at a speed faster-than-light. 

These treatments of macroscopic systems with quantum mechanics were in-
tended to expose inconsistencies and incompleteness in quantum theory. The 
critics hoped to restore determinism and “local reality” to Physics. They resulted 
in some strange and extremely popular “mysteries” about “quantum reality”, 
such as the “many-worlds” interpretation, “hidden variables”, and signaling at a 
faster-than-light speed. 

Physics developed a quantum-mechanical treatment of macroscopic systems, 
especially a measuring apparatus to show how it can create new information. If 
the apparatus were describable only by classical deterministic laws, no new in-
formation could come into existence. The apparatus needs to be adequately de-
termined only, i.e., “classical” to a sufficient degree of accuracy. 

Everything said so far indicates how sensitive is quantum computing to the 
correct measurement of the quantum states. 

On the other hand, a new technology allows us to avoid the problem of quan-
tum measurement [2] [3]. However, this technology lets us work exclusively with 
Computational Basis States (CBS), i.e., pure and orthogonal quantum base states. 
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In other words, none of the quantum measurement techniques currently in 
use: weak measurement, strong measurement, projective measurement and 
quantum state tomography allow a correct recovery of a generic quantum state 
resulting from the exit of a quantum algorithm without destructively distorting 
said state. This problem converts several (almost all) areas of Quantum Informa-
tion Processing into mere theoretical speculations, namely: Quantum Algo-
rithms, Quantum Image Processing, Quantum Signal Processing, Quantum 
Neural Networks, among others; which work fundamentally with generic qubits. 
Obviously, a new procedure to accurately estimate a generic quantum state is 
imperative as quantum technology advances. 

Therefore, a new method of quantum measurement in the case of generic qu-
bits becomes imperative (i.e., not just for CBS) and more accurate than the me-
thods currently in use [4]-[26]. Thus, in this work, we present a novel proposal 
to recover quantum state to the output of a quantum algorithm after its mea-
surement via a modified Kalman’s Filter [27] [28] [29] [30] [31], and Recursive 
Least Squares (RLS) filter [32] [33] [34], too. This is the essence of this work, 
which is organized as follows: Preliminaries to the new quantum measurement 
method are outlined in Section 2. A tour from Schrodinger equation to quantum 
algorithms is presented in Section 3. The new method (optimal state estimator) 
is outlined in Section 4. Finally, Section 5 provides a conclusion and future work 
proposals of this paper. 

2. The Quantum Measurement Problem 

In this section, we present the following topics: 
− Wave-function collapse. 
− Quantum Measurement Problem. 
− Before and after measurement. 
− Types of measurement and state reconstruction. 

2.1. Wave-Function Collapse 

In quantum mechanics, wave-function collapse is the phenomenon in which a 
wave-function (initially in a superposition of several eigenstates) appears re-
duced to a single eigenstate after interaction with a measuring apparatus [35]. It 
is the essence of measurement in quantum mechanics, and connects the 
wave-function with classical observables like position and momentum. Collapse 
is one of the two processes by which quantum systems evolve in time; the other 
is continuous evolution via the Schrödinger equation [36]. However in this role, 
collapse is merely a black box for thermodynamically irreversible interaction 
with a classical environment [37]. Calculations of quantum decoherence predicts 
apparent wave-function collapse when a superposition forms between the quan-
tum system’s states and the environment’s states. Significantly, the combined 
wave-function of the system and environment continue to obey the Schrödinger 
equation [38]. 

When the Copenhagen interpretation was first expressed, Niels Bohr post-
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ulated that wave-function collapse cut the quantum world from the classical 
[39]. This tactical move allowed quantum theory to develop without distractions 
from interpretational worries. Nevertheless, it was debated if the collapse was a 
fundamental physical phenomenon, rather than just the epiphenomenon of 
some other processes. If this is the case, then, it would mean that nature is fun-
damentally stochastic, i.e. nondeterministic, and an undesirable attribute for a 
theory [37] [40] [41]. This issue remained incomplete until quantum decohe-
rence entered mainstream opinion after its reformulation in the 1980s [4] [37] 
[38]. Decoherence explains the perception of wave-function collapse in terms of 
interacting large- and small-scale quantum systems, and is commonly taught at 
the graduate level, e.g. the Cohen-Tannoudji textbook [42]. The quantum filter-
ing approach [43] [44] [45] [46] and the introduction of quantum causality 
non-demolition principle [47] allows us to think about a classical-environment 
derivation of wave-function collapse from the stochastic Schrödinger equation. 

2.2. The Quantum Measurement Problem Itself 

The measurement problem in quantum mechanics is the unresolved problem of 
how (or if) wave-function collapse occurs. The inability to observe this process 
directly has given rise to different interpretations of quantum mechanics, and 
poses a key set of questions that each interpretation must answer. The 
wave-function in quantum mechanics evolves deterministically according to the 
Schrödinger equation as a linear superposition of different states, but actual 
measurements always find the physical system in a definite state. Any future 
evolution is based on the state the system was discovered to be in when the 
measurement was made, meaning that the measurement “did something” to the 
process under examination. Whatever that “something” done does not appear to 
be explained by the basic theory. 

To express matters differently (according to Steven Weinberg [4] [5]), the 
Schrödinger wave-equation will determine the wave-function at any later time. If 
observers and their measuring apparatus are themselves described by a determi-
nistic wave-function, why can we not predict precise results for measurements, 
but only probabilities? As a general question: how can one establish a corres-
pondence between quantum and classical reality? [6].  

2.3. Before and after Measuring 

In quantum mechanics, measurement is a non-trivial and highly coun-
ter-intuitive process. First, because measurement outcomes are inherently prob-
abilistic, i.e. regardless of the carefulness in the preparation of a measurement 
procedure, the possible outcomes of such measurement will be distributed ac-
cording to a certain probability distribution. Secondly, once a measurement has 
been performed, a quantum system is unavoidably altered due to the interaction 
with the measurement apparatus. Consequently, for an arbitrary quantum sys-
tem, pre-measurement and post-measurement quantum states are different in 
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general [48]. 
Postulate. Quantum measurements are described by a set of measurement 

operators { }ˆ
mM , which are indexed with m labels for the different measure-

ment outcomes. These outcomes act on the state space of the system being 
measured. Measurement outcomes correspond to values of observables, such as 
position, energy and momentum, which are Hermitian operators [48] [49] cor-
responding to physically measurable quantities. 

Let ψ  be the state of the quantum system immediately before the mea-
surement. Then, the probability that the m-th results occurs by 

( ) †ˆ ˆ
m mp m M Mψ ψ=                       (1) 

where †ˆ
mM  is the adjoint of ˆ

mM , and the post-measurement quantum state is 

†

ˆ

ˆ ˆ
m

pm
m m

M

M M

ψ
ψ

ψ ψ
=                      (2) 

Operators ˆ
mM  must satisfy the completeness relation [48], i.e.,  

†ˆ ˆ
m mm M M I=∑  

because it guarantees that probabilities will sum to one:  

( )†ˆ ˆ 1m mm mM M p mψ ψ = =∑ ∑  

Let us work out a simple example, assuming we have a polarized photon with 
associated polarization orientations “horizontal” and “vertical”, where the hori-
zontal polarization direction is denoted by [ ]T0 1 0= , the vertical polariza-
tion direction is denoted by [ ]T1 0 1= , and (•)T is the transpose of (•). Thus, 
an arbitrary initial state for our photon can be described by the generic quantum 
state 0 1ψ α β= + , where α  and β  ( 1, 1α β≤ ≤ ) are complex num-
bers constrained by the normalization condition 2 2 1α β+ =  and { }0 , 1  
is the computational basis spanning in the Hermitian space 2Η . 

Now, we construct two measurement operators 0
ˆ 0 0M =  and 

1
ˆ 1 1M =  and two measurement outcomes 0 1,a a . Then, the full observable 

used for measurement in this experiment is 0 1
ˆ 0 0 1 1M a a= + . According 

to the Postulate, the probabilities of obtaining outcome 0a  or outcome 1a  are 
given by ( ) 2

0p a α=  and ( ) 2
1p a β= . Corresponding post-measurement 

quantum states are as follows: if outcome is equal to 0a  then 0pmψ = ; if 
outcome is equal to 1a  then, 1pmψ = . 

2.4. Types of Measurement and State Reconstruction 

As we have seen in the previous subsection, quantum measurement is not a mi-
nor issue [4] [5] [6]. In fact, it is an issue still unresolved [7] [8], which would 
make it impossible for every practical effort to implement any genuine quantum 
algorithm in general and quantum image processing algorithm in particular. 
Actually, it is an inherited problem of quantum physics also known as the para-
dox of measurement [9] [10] [11] [12]. 

From a practical point of view, inside the context of quantum image 
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processing, the problem is reduced to the following: suppose we develop a 
quantum algorithm for filtering classic images. Clearly, the first problem would 
be, how to introduce a classical noisy image within a quantum computer, i.e., the 
design of the interfaces classical-to-quantum, and quantum-to-classical. But, the 
second would be, how to measure the results of a quantum filtering algorithm, 
and to take the result of that filtering process and carry it out to the classical 
world, in other words, the recovery of the classical version of the filtered image 
into its original space: the classical world where it was generated. It is obvious 
that an absolutely accurate technique of measurement is needed. Unfortunately, 
all efforts in this regard have been useless [13] [14]. 

However, in the last decade there have been several efforts to remedy this sit-
uation, namely: 
− Weak measurement 
− Restoring the quantum state 
− Quantum state tomography 

Weak measurement is a technique to measure the average value of a quan-
tum observable 

pmψ  without appreciably affecting the initial state ψ  of the 
system being measured [15] [16] [17] [18] [19]. Weak measurements differ from 
normal (sometimes called “strong” or “von Neumann”) measurements in two 
ways: 

1) If 
pmψ  has discrete spectrum (which we assume for simplicity purposes), 

a strong measurement yields an eigenvalue of 
pmψ  when the system is in a 

ψ  state. If the measurement is repeated many times, starting each time with 
the system in a ψ  state, one obtains a sequence of eigenvalues of 

pmψ  
which when averaged yields an approximation to pmψ ψ ψ , the expectation 
of 

pmψ  in the ψ  state. 
By contrast, a weak measurement only yields a sequence of numbers which 

average to pmψ ψ ψ . For example, a strong measurement of the spin of a par-
ticle with a spin −1/2 must yield spin 1/2 or −1/2, but a particular weak mea-
surement could yield spin 100, while a subsequent weak measurement on an 
identical system might be −128.3. Typically, a single weak measurement gives 
little information; only the average of a large number of such measurements is 
meaningful. 

2) A strong measurement changes, or projects, an initial pure state ψ  to an 
eigenvector of 

pmψ . The particular eigenvector obtained cannot be predicted, 
though its probability is determined. This substantially changes the ψ  state 
unless ψ  happened to be close to that eigenvector. 

However, a weak measurement does not substantially change the initial state. 
Weak measurements are usually implemented by coupling the original system 

Ψ  to be measured with an auxiliary quantum meter system M. The measure-
ment along a scale involves—in practice—various microscopic quantum sys-
tems. The composite system is mathematically represented as the tensor product 
of Ψ  with M, denoted MΨ⊗ . A product state in this tensor product is typi-
cally denoted mψ , where ψ  is a state of Ψ  and m  is a state of M. 
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States which are not product states are called entangled states. 
The results obtained by this technique are as weak as its name, therefore, we 

proceed to the next. 
Restoring the quantum state is an effort to recover the original ψ  state 

from the alleged reversibility of a measurement operator through the matrix that 
represents such operator, that is to say, M̂  of Subsection 2.3 [20]. Parrott’s 
work is presented in opposition to the technique of weak measurement in gener-
al and Katz et al. work [17] in particular. Other relevant works mediate between 
the above [21] [22], also without success. 

Nowadays, we know based on Stochastic Processes and Adaptive Filtering 
[27]-[34] that the single matrix inversion in an estimate or identification process 
does not restore the state of a hidden system behind such matrix. This is due to 
the need of modeling the state, the measurement noises, and defining the archi-
tecture of the estimator in an accurate way for a correct system state recovery 
from the observables. This deficiency explains why Wiener’s filter was com-
pletely replaced by Kalman’s filter in the presence of such noises [27] [28] [29] 
[30] [31]. Therefore, this technique is as weak as that to which it opposes. 

Quantum state tomography is the process of reconstructing the quantum 
state (via a density matrix) for a source of quantum systems by measurements 
done on the systems coming from that source [33] [24]. Being the density matrix 
for pure or mixed states, 

( )ˆ m mm p mρ ψ ψ=∑                       (3) 

The source may be any device or system which prepares quantum states either 
consistently into quantum pure states or otherwise into general mixed states. To 
be able to uniquely identify the state, the measurements must be tomographical-
ly complete. That is, the measured operators must form an operator basis on the 
Hilbert space of the system, providing all the information about that state. Such 
a set of observations is sometimes called a quorum. On the other hand, in a 
quantum process tomography, known quantum states are used to prove if such 
quantum process can find out how that process can be described. Similarly, 
quantum measurement tomography works to find out what measurement is be-
ing performed. The general principle behind quantum state tomography is that 
by repeatedly performing many different measurements on quantum systems 
described by identical density matrices frequency counts can be used to infer 
probabilities. These probabilities are combined with Born’s rule to determine a 
density matrix which fits best with the observations [25] [26]. Obviously, this 
method is a rustic estimator of the density matrix and not the states themselves. 
In fact, it is a monitor of the elements of the matrix, only. Therefore, our prob-
lem persists. 

3. From Schrödinger’s Equation to Quantum Algorithms 

3.1. Schrödinger’s Equation and the Unitary Operators 

A quantum state can be transformed into another state by a unitary operator, 
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symbolized as U, with †U U I= , where †U  is the adjoint of U and I is the 
identity matrix, which is required to preserve the inner products: If we trans-
form χ  and ψ  to U χ  and U ψ , then †U Uχ ψ χ ψ= , being 
χ  and ψ  two wave-functions. In particular, unitary operators preserve 

lengths: † 1U Uψ ψ ψ ψ= = . 
On the other hand, the unitary operator satisfies the following differential eq-

uation known as the Schrödinger’s equation [49] [50] [51] [52]: 

( ) ( )
ˆd

d
iHU t U t

t
−

=


                        (4) 

where Ĥ  represents the Hamiltonian matrix of the Schrödinger’s equation, 
2 1i = − , and   is the Planck constant. Multiplying both sides of Equation (4) 

by ( )0ψ  and setting ( ) ( ) ( )0t U tψ ψ= , yields 

( ) ( )
ˆd

d
iHt t

t
ψ ψ

−
=


                       (5) 

The solution to the Schrödinger’s equation is given by the matrix exponential 
of the Hamiltonian matrix for the time invariant case: 

( )
ˆ

e
iHt

U t
−

=                              (6) 

Thus, the probability amplitudes evolve across time according to the following 
equation: 

( ) ( )
ˆ

e 0
iHt

tψ ψ
−

=                         (7) 

Equation (7) is the main piece in building circuits, gates and quantum algo-
rithms, being U who represents such elements [49].  

Finally, the discrete version of Equation (5) is 

1

ˆ
t t

iH
ψ ψ+

−
=


                        (8) 

Equation (8) is the foundation on which we build the optimal estimator of 
quantum states. 

3.2. Quantum Circuits, Gates and Algorithms 

As we can see in Figure 1, and remember Equation (8), the quantum algorithm 
(with identical considerations for circuits and gates) can be seen as a transfer 
(that makes an input-to-output mapping) that has two types of output: 

a) the result of the algorithm (circuit of the gate), i.e., 1tψ + , and 
b) part of the input tψ , i.e., tψ  (underlined tψ ), in order to impart 

reversibility to the circuit, which is a critical need in quantum computing [1]. 
Besides, we can clearly see a module for measuring 1tψ +  (which will be ex-

tensively discussed in the next section) with their respective output, i.e., 1tϕ + , 
and a number of elements needed for the physical implementation of the quan-
tum algorithm (circuit or gate), namely: control, ancilla and trash [50]. In this 
figure as well as in the rest of them (unlike [49]) a single fine line represents a  

https://doi.org/10.4236/jamp.2018.66114


M. Mastriani 
 

 

DOI: 10.4236/jamp.2018.66114 1372 Journal of Applied Mathematics and Physics 

 

 
Figure 1. Module to measuring, quantum algorithm and the elements needed 
to their physical implementation. 

 
wire carrying 1 qubit or N qubits (qudit), interchangeably, while a single thick 
line represents a wire carrying 1 or N classical bits, interchangeably, too. 

However, the mentioned concept of reversibility is closely related to energy 
consumption, and hence to the Landauer’s Principle. 

On the other hand, computational complexity studies the amount of time and 
space required to solve a computational problem. Another important computa-
tional resource is energy. In this section, we study the energy requirements for 
computation. Surprisingly, it turns out that computation, both classical and 
quantum, can in principle be done without expending any energy. Such energy 
consumption in computation turns out to be deeply linked to the reversibility of 
the computation. 

What is the connection between energy consumption and irreversibility in 
computation? Landauer’s principle provides the connection, stating that, in or-
der to erase information, it is necessary to dissipate energy. More precisely, 
Landauer’s principle may be stated as follows: 

Landauer’s principle (first form): Suppose a computer erases a single bit of 
information. The amount of energy dissipated into the environment is at least 
kBT ln 2, where kB is a universal constant known as Boltzmann’s constant, and T 
is the temperature of the environment around the computer. 

According to the laws of thermodynamics, Landauer’s principle can be given 
an alternative form stated not in terms of energy dissipation, but rather in terms 
of entropy: 

Landauer’s principle (second form): Suppose a computer erases a single bit 
of information. The entropy of the environment increases by at least kB ln2, 
where kB is Boltzmann’s constant. 

Consider a gate which takes two bits as input and produces a single bit as 
output. This gate is intrinsically irreversible because, given the output of the 
gate, the input is not uniquely determined. For example, if the output of the gate 
is 1, then the input could have been any one of 00, 01, or 10. On the other hand, 
the gate is an example of a reversible logic gate because, given the output of the 
gate, it is possible to infer what input must have been. Another way of under-
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standing irreversibility is to think of it in terms of information erasure. If a logic 
gate is irreversible, then some of the information input to the gate is lost irre-
trievably when the gate operates—that is, some of the information has been 
erased by the gate. 

Conversely, in a reversible computation, no information is ever erased, be-
cause the input can always be recovered from the output. Thus, saying that a 
computation is reversible is equivalent to saying that no information is erased 
during the computation. 

Summing-up, the above expressed justifies the inexcusable need for the pres-
ence of tψ  to the output of the quantum gate [49]. 

4. Optimal State Estimator (OSE) 

4.1. Classical State Estimator in Noiseless Environments 

In order to develop an optimal estimate of quantum states, we start defining 
everything on a classical type of estimator called Recursive Least Square RLS [32] 
[33] [34] and derived from the famous Kalman’s filter [27] [28] [29] [30] [31]. 
Such estimator (in time discrete version and in a noiseless environment) is based 
on Figure 2, in which, 

A: plant N N×∈  
M: measurement operator M N×∈  
Δ: unitary delay ( )N N×  
t: time 
X: state to be estimated 1N×∈  
Y: observable 1M×∈  
ε: estimate error 1M×∈  
K: Kalman’s gain N M×∈  
X̂ : estimated state 1N×∈  
Ŷ : output of estimator 1M×∈  
Original System: 

 

 
Figure 2. RLS. 
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1t t tX A X −=                               (9) 

t t tY M X=                               (10) 

Estimator: 

1
ˆ ˆ

t t t t tX A X K ε−= +                            (11) 

ˆ ˆ
t t tY M X=                               (12) 

Then, we can define a priori and a posteriori (respectively) estimate error as: 
ˆ ˆ

t t t t t tY Y Y M Xε − − −= − = −                        (13) 

and 
ˆ ˆ

t t t t t tY Y Y M Xε = − = −                         (14) 

The a priori estimate error covariance is then 

( )( ){ } ( )( ){ }TT ˆ ˆ
t t t t t t t tY M X Y M Xε ε− − − −Ξ = Ξ − −              (15) 

where { }•Ξ  means square error of “•”, and (•)T means transpose of “(•)”. On 
the other hand, the a posteriori estimate error covariance is 

{ } ( )( ){ }TT ˆ ˆ
t t t t t t t tY M X Y M Xε εΞ = Ξ − −                 (16) 

This adaptation process is based on the minimization of the mean square er-
ror criterion defined in the last equation. Developing Equation (16), rearranging 
terms, and minimizing the mean square error with respect to X̂ , we obtain the 
Wiener’s filter for stationary signals: 

1ˆ
MM MYX R r−=                           (17) 

where, MMR  is the autocorrelation matrix M and MYr  is the cross-correlation 
vector of M and Y. In the following equation, we formulate a recursive, 
time-update and adaptive version of Equation (17). In fact, MMR  can be ex-
pressed in a recursive fashion as 

T
, , 1MM t MM t t tR R M M−= +                      (18) 

To introduce adaptability to the time variations of the signal statistics, the au-
tocorrelation estimate in Equation (18) can be windowed by an exponentially 
decaying window: 

T
, , 1MM t MM t t tR R M Mλ −= +                     (19) 

where λ  is the so-called adaptation, or forgetting factor, and is in the range 
0 1λ< < . Similarly, the cross-correlation vector can be calculated in a recursive 
form as 

, , 1MY t MY t t tr r M Y−= +                        (20) 

This equation can be made adaptive using an exponentially decaying forget-
ting factor λ  again: 

, , 1MY t MY t t tr r M Yλ −= +                        (21) 
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For a recursive solution of the least square error Equation (21), we need to 
obtain a recursive time-update formula for the inverse matrix in the form 

1 1
, , 1MM t MM t tR R Update− −

−= +                     (22) 

where “Updatet” is an updated factor to be actualized in each step of time. After 
an extensive series of considerations, developments and replacements, such as 

1
, ,MM t MM tP R−= , we get the following set of equations related to RLS adaptation 

algorithm [32] [33] [34] in a very similar form to Kalman’s filter [27] [28] [29] 
[30] [31]. 

Initial values: 

,0MMP Iδ=                          (23) 

being I the identity matrix and δ  a number different to 0 

0
ˆ ˆ

IX X=                           (24) 

Filter gain matrix: 
1T

, 1 , 1t MM t t t MM t tK P M I M P Mλ
−− −

− − = +                (25) 

Error signal equation: 

1
ˆ

t t t tY M Xε − −
−= −                        (26) 

Estimated states: 

1
ˆ ˆ

t t t tX X K ε− −
−= −                        (27) 

Inverse correlation matrix update: 

[ ]1
, , 1MM t t t MM tP I K M Pλ− −

−= −                    (28) 

Discrete estimator time-update equations: 

1
ˆ ˆ

t t tX A X−
−=                          (29) 

T
, 1 , 1MM t t MM t tP A P A−
− −=                      (30) 

Indeed, A and M are time-invariant [27]-[34]. However, Equation (30) should 
be modified to work in noiseless environments, which are the most real scena-
rios the filter will be used. 

4.2. Quantum State Estimator in Noiseless Environments 

From Equation (2), we have 

†

ˆ

ˆ ˆ
m

pm
m m

M

M M

ψ
ψ ϕ

ψ ψ
= =                   (31) 

being †ˆ ˆ
m mM Mψ ψ  a norm of ˆ

mM , as follows, 

†ˆ ˆ ˆ
m m mM M Mψ ψ=                      (32) 

In fact, we can take any norm of ˆ
mM , even for different ψ  of the original. 

Thus, we will have a  
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ˆ
ˆ

m
m

m

M M
M

ϕ ψ ψ= =                       (33) 

for each m, i.e., a battery of estimators as shown in Figure 3. 
According to Figure 3, A will be the quantum algorithm (circuit or gate), and, 

we can get ψ  for each m with this estimator. Therefore, the complete set of 
equations is: 

Inside Quantum Computer: 

1t t tAψ ψ+ =  (quantum algorithm)               (34) 

1 1t t tMϕ ψ+ +=   (quantum measurement)            (35) 

Optimal State Estimator (OSE): 

1 1ˆ ˆt t t t tA Kψ ψ ε+ += +                    (36) 

1 1ˆ ˆt t tMϕ ψ+ +=                         (37) 

Estimate error: 

1 1 1ˆt t tε ϕ ϕ+ + += −                      (38) 

Three important considerations: 
 although A is time-invariant, this methodology also resists the variant ver-

sion. In fact, we can do similar considerations relating to M. Besides, A arises 

from Equation (7), i.e., 
ˆ

e
iHt

A U
−

= =  , then:  

( ) ( ) ( ) ( )
ˆ ˆ

e 0 e
iHt iH t

t t t tψ ψ ψ ψ
− − ∆   

= → + ∆ =      
   

  , which in its discrete 

version will be: ( ) ( )1 1, 1t t t t t t tU Aψ ψ ψ ψ+ + += → = , 

 OSE is a reorganized RLS/Kalman’s filter, but it is the same as them algo-
rithmically speaking, and we started with a poor measurement, however as 
OSE evolves the accuracy of estimate improves through successive measure-
ments. 

Figure 4 shows the complete schematic of Figure 1 but now with the OSE 
added to its output. 
 

 
Figure 3. Modified RLS. 
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Figure 4. Quantum algorithm (circuit or gate), measurement and OSE. 

4.3. Quantum State Estimator in Noisy Environments 

We assume the existence of state and measurement noises, as seen in Figure 5, 
with equation inside a quantum computer 

1 1
s

t t t tA Nψ ψ+ += +  (quantum algorithm)             (39) 

1 1 1
m

t t t tM Nϕ ψ+ + += +  (quantum measurement)          (40) 

where, the random variables 1
s
tN +  and 1

m
tN +  represent the state and measure-

ment noises, respectively. Both are assumed to be independent of each other. In 
practice, 

− the state noise covariance ( )( ){ }Ts s
t tQ N N= Ξ , and  

− the measurement noise covariance ( )( ){ }Tm m
t tR N N= Ξ  

matrices might change with each time-step or measurement, however here we 
assume that both are constant. Thus, only three equations change regarding 
classic estimator, namely, 

Filter gain matrix: 
1T

, 1 , 1t MM t t t MM t tK P M R M P M
−− −

− − = +                  (41) 

Inverse correlation matrix update: 

[ ], , 1MM t t t MM tP I K M P−
−= −                     (42) 

Discrete estimator time update equation: 
T

, 1 , 1MM t t MM t tP A P A Q−
− −= +                     (43) 

However, and as the OSE is a linear system, we can move the state noise to the 
output and work with a unique noise that represents both. Therefore, the last 
equation is not used.  

All these noises may be associated with different factors: quantum noise [48] 
[49] [53] [54] [55], quantum decoherence [48] [56]-[61], and measurement er-
rors [4]-[26]. The accuracy of our estimator (OSE) depends on two aspects 
 our ability to model these noises, and 
 the greater or lesser presence of such noises in the experiment. 
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Figure 5. Modified Kalman’s estimator for noisy environments. 

5. Conclusions and Future Works 

In this paper, we have presented an optimal estimator of quantum states based 
on a modified Kalman’s Filter. Such estimator acts after state measurement, al-
lowing us to obtain an optimal estimate of the quantum state resulting in the 
output of any quantum algorithm (circuit or gate). Finally, the OSE allows us a 
complete estimate of the quantum state in a much more accurate way than me-
thods currently in use, which are: weak measurement, strong measurement, 
projective and quantum state tomography.  

All of them fail to give an exact value for the state of a generic qubit resulting 
from a quantum algorithm. This lack can be seen explicitly in those algorithms 
involved in Quantum Image Processing (QImP) [62]. In that paper, it is clearly 
shown that quantum measurement itself acts as a noise that disturbs what is 
measured, e.g., if the quantum algorithm used consists of a filter which elimi-
nates the noise of an image (inside quantum machine), the quantum measure-
ment—on its way out—will add a new noise to the resulting image, i.e., the im-
age returns to have noise. A question arises automatically: why do we then in-
troduce the image into a quantum machine if after all the filtering must be done 
in the classical environment, that is, outside the quantum machine? For this 
reason, it is very important to apply the innovation of this paper to those algo-
rithms used in QImP. 

Finally and based on our current study, the solution presented in this paper 
for an optimal estimate of a generic quantum state is essential to effectively and 
efficiently face the simulation of all types of quantum algorithms involved in 
quantum information processing, in general, and quantum signal processing and 
quantum neural networks, in particular. 
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