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Abstract 
In the present work, the collinear equilibrium points of the restricted 
three-body problem are studied under the effect of oblateness of the bigger 
primary using an analytical and numerical approach. The periodic orbits 
around these points are investigated for the Earth-Moon system. The Lissaj-
ous orbits and the phase spaces are obtained under the effect of oblateness. 
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1. Introduction 

One of the most important object in astrodynamics is the restricted three-body 
problem, which has many applications in space missions. It deals with the 
motion of an infinitesimal mass under the effect of gravitational attraction of 
two bodies, called primaries, which move in a Keplerian orbit around their 
common center of mass. 

This problem has five libration points: three of them are called the collinear 
points 1 2,L L  and 3L , which lie on the line joining the two primaries; the other 
two are called the triangular points 4L  and 5L  [1] [2]. Several studies have 
been carried out on the collinear libration points by considering the oblateness 
of one or two primaries for the circular restricted three-body problem. Sharma 
and Subbarao [3] investigated the the locations of the five libration points under 
the effect of oblateness of the more massive primary for some systems of celestial 
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bodies. Ibrahim A. [4] investigated the libration points for the Sun-Earth-Moon 
System. Ismail M. [5] studied the effect of solar radiation pressure on the 
libration points of the restricted four-body problem. 

The existence of the periodic orbits near the collinear libration points was 
treated by many authors. Grgory A. [6] determined a class of Eight Lissajous 
orbits near collinear libration points by using Lindstedt Poincares technique. 
Celletti A. [7] analyzed the Lissajous and halo orbits near the collinear libration 
points by using the classical perturbation theory. In this paper, the restricted 
three-body problem is studied by considering the more massive primary as an 
oblate spheroid. The Lissajous orbits in this case are presented, and also the 
phase spaces are obtained. 

2. Equations of Motion 

Using a barycentric-synodic coordinate system ( ), ,ξ η ζ  and dimensionless 
variables, the equations of motion of a test particle in the circular restricted 
three-body problem under the effects of oblateness of the bigger primary can be 
expressed as  

2n Uξξ η− =

                           (1) 

2n Uηη ξ+ =                           (2) 

Uζζ =                             (3) 

where, 

( )( ) ( )( )( ) ( )2
3 5 3
1 1 2

11 1
,

A
U n

R R Rξ

µ ξ µµ µ ξ µ µ ξ
ξ

− −− + + −
= − − −       (4) 

( ) ( )( )2
3 5 3
1 1 2

11 A
U n

R R Rη

η µη µ ηµ
η

−−
= − − −               (5) 

( ) ( )( )
3 5 3
1 1 2

11 A
U

R R Rζ

ζ µζ µ ζµ−−
= − − −                (6) 

where 1R µ ξ= +  and 2 1.R µ ξ= + −  
The mean motion n of the primaires is given by ( )2 1 3 2n A= + , where 

( ) ( )2 2 25e pA r r R= −  is the oblateness coefficient of 1m  having the equatorial 
and polar radii as er  and pr , respectively. 

3. Location of the Libration Points 

The collinear equilibrium points can be obtained by solving Equations (4), (5) 
and (6) when 0η ζ= =  that yields  

( )( ) ( )( )( ) ( )2
3 5 3
1 1 2

11 1A
U n

R R Rξ

µ ξ µµ µ ξ µ µ ξ
ξ

− −− + + −
= − − −       (7) 

The coordinate of the collinear Points 1 2,L L  and 3L  are 

1 11 xξ µ= − − , 2 21 xξ µ= − + , 2 3xξ µ= +  
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where 1 2,x x  and 3x  satisfy seventh degree polynomials:  

( ) ( ) ( )
( ) ( )
( )

7 6 5
1 1 1

4 3
1 1

2
1 1

3 2 3 15 2 10 12 30 8 20

18 30 12 22 12 15 4 14

6 6 8 4 8 2 0

A x A A x A A x

A A x A A x

A A x x

µ µ µ µ

µ µ µ µ

µ µ µ µ

+ + − + − + + − + − +

+ − + − + + − + − +

+ − + + + + + =

   (8) 

( ) ( ) ( )
( ) ( )
( )

7 6 5
2 2 2

4 3
2 2

2
2 2

3 2 3 15 2 10 12 30 8 20

18 30 12 22 12 15 4 14

6 6 8 4 8 2 0

A x A A x A A x

A A x A A x

A A x x

µ µ µ µ

µ µ µ µ

µ µ µ µ

+ + − + − + − + − +

+ − + − + − + − +

+ − − − + − =

    (9) 

( ) ( ) ( )
( ) ( )
( )

7 6 5
3 3 3

4 3
3 3

2
3 3

3 2 3 6 2 4 6 3 4 2

3 2 2 3 3 2 2

6 6 8 4 8 2 0

A x A A x A A x

A x A A x

A A x x

µ µ µ µ

µ µ µ µ

µ µ µ µ

+ + + + + + + + +

+ + − + − + −

+ − − − + − =

      (10) 

Each of Equations (8), (9) and (10) has three complex pairs roots, whose equal 
imaginary parts in magnitude and only one real number represents the position 
of corresponding collinear point. The intersections of curves for Figure 1 with 
horizontal axis represent the three collinear libration points under the effect of 
oblateness. 

4. The Motion around Collinear Libration Points 

To study the motion of an infinitesimal neighborhood around the libration 
points the variationally variables ( ), ,ξ η ζ  are introduced such that 

, ,i i ix xL y yL z zLξ η ζ= − = − = −  

where, , ,i i ixL yL zL  represent the shift around the collinear points. 
The resulting linear variationally equations for motion about iL  are written 

as follows, 

2 ,xx xy xzn U U Uξ η ξ η ζ− = + +

                  (11) 

2 ,yy yz xyn U U Uη ξ η ζ ξ+ = + +

                  (12) 

 

 
Figure 1. The positions of collinear libration points. 
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.zzUζ ζ=                             (13) 

where, 

( )
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Because of all the libration points are in-plane, the partial derivatives 
containing z-components are vanished. Therefore, Equations (11) through (13) 
become 

2 xx xyn U Uξ η ξ η− = +

                       (14) 

2 yy xyn U Uη ξ η ξ+ = +

                       (15) 

Then characteristic equation corresponding to Equations (14) and (15) is [8]  

( )( )4 2 2 24 0xx yy xx yy xyU U n U U Uλ λ λ+ − − + + − =            (16) 

At the collinear points the values of 0xxU > , 0yyU <  and 0xyU =  hence 
2 0xx yy xyU U U− <  so the roots of the characteristic Equation (16) are found to be 

1,2λ λ= ± , 3,4 isλ = ± , λ  and s are real. Let the variational of elements depend 
on time given by  

4

1
e it

i
i

A λξ
=

= ∑                          (17) 

4

1
e it

i
i

λη β
=

= ∑                          (18) 

where iA  and iβ  are constant coefficients. and 
( )2

2
i i xx

i i i
i xy

A U
Ac

U

λ
β

λ

−
= =

−
, 

( 1,2,3,4i = ). 
To get the values of constants iA  and iβ . Let 0 0 0, ,ξ η ξ  and 0η  be the 

initial coordinates and components of velocity then Equations (17) and (18) give 
at t = 0 

0 1 2 3 4A A A Aξ = + + +                       (19) 

0 1 1 2 2 3 3 4 4A A A Aξ λ λ λ λ= + + +                   (20) 

( ) ( )0 1 1 2 3 4c A A ic A Aη = + + +                   (21) 

( ) ( )0 1 1 1 2 3 4c A A isc A Aη λ= + + +                  (22) 

By putting 1 2 0A A= =  to eliminate unstable frequencies 1λ  and 2λ , then 
the Equations (19) through (22) become  

0 3 4A Aξ = +                          (23) 

( )0 3 4ic A Aη = +                        (24) 

( )0 3 4isc A Aη = +                        (25) 

0 3 3 4 4A Aξ λ λ= +                        (26) 

0 0
3 2 2

iA
c

ξ η
= −                         (27) 

0 0
4 2 2

iA
c

ξ η
= +                         (28) 

Then Equations (17) and (18) become 

( ) ( )( ) ( ) ( )0 0
0 0

e e sin1 e e cos
2 2

ist ist
ist ist

i st
st

c c

η η
ξ ξ ξ

−
−

−
= + + = +     (29) 
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( )( ) ( ) ( ) ( )0 0 0 0
1 1e e e e cos sin
2 2

ist ist ist istc i st c stη ξ η η ξ− −= − + + = −    (30) 

Lissajoues Orbits at Collinear Points for Earth-Moon System 

To get the Lissajoues orbits around collinear points under the effect of 
oblateness, put 0 0η = , in Equations (29) and (30) then 3 4 0

1
2

A A Aξ ξ= = =   

[ ] ( )cost A stξξ ϕ= +                      (31) 

[ ] ( )sint A stξη ϕ= − +                      (32) 

[ ] ( )cost A tvζζ σ= +                      (33) 

where, ϕ  and σ  are the phase angle. 
Equations (31), (32) and (33) are used to determine the halo and Lissajoues 

orbits around any collinear libration points under the effect of oblateness. 

5. Phase Spaces at Libration Points 

To get the periodic orbits about the libration points the following technique will 
be used. This technique depends on the solution of the system of Equations (1), 
(2) and (3) taken into account the location of libration point as initial values, it is 
needed to reduce the order of the differential equations system as follows, let 

( ) ( )x t u t=                           (34) 

( ) ( )y t v t=                           (35) 

( ) ( )z t w t=                           (36) 

( ) ( ) ( )
( ) ( )( )

( )
( )( )
( )

( ) ( )( )
( )

2
3

1

1
3 5

2 1

1
2

1 1

x t
u t n x t nv t

R t

x t A x t

R t R t

µ µ

µ µ µ µ

− +
= + −

+ − + +
− −



           (37) 

( ) ( ) ( ) ( ) ( )
( )

( )
( )

( ) ( )( )
( )

2
3 3

1 2

1
5

1

1
2

1

y t y t
v t n y t nu t

R t R t

A x t

R t

µ µ

µ µ

−
= − − −

+ +
−



           (38) 

( ) ( ) ( )
( )

( )
( )3 3

1 2

1 z t z t
w t

R t R t

µ µ−
= − −                   (39) 

6. Results and Discussion 

The system of Equations (31), (32) and (33) are used to generate the periodic 
orbits around libration point L2 which Figure 2 displays Lyabnuov planer orbit. 
Figure 3 and Figure 4 demonstrate the Lissajoues orbits around L2 for the 
Earth-Moon system. The system of differential Equations (34) through (39) can 
be solved numerically, a code with MATHEMATICA was constructed to solve  
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Figure 2. Lyapunov orbit around L2. 

 
this system using Implist Runge Kutta method. Figure 5 displays the phase 
space for the motion near L1, also Figure 6 and Figure 7 display the phase space 
near L2 and L3 for the Earth-Moon-spacecraft system. Table 1 displays the 
collinear libration points and the eigen values at each point when the coefficient 
of oblateness A = 0, and A = 0.001. 

7. Conclusion 

Periodic orbits around collinear points in the restricted three-body problem 
have been studied under the effect of oblateness due to the bigger primary which 
enables the uses of these effects in the space missions. The obtained Lissijous 
orbit is one aim of the maneuvers through the path of any space craft. 
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Figure 3. Lissajoues orbit (x, z). 

 
Table 1. Earth-Moon libration points at 0.0121505816µ =  and components of 
charcterstic roots. 

A L1 1,2λ  3,4λ  

0 0.837659 ±2.93205 ±2.33438 i 

0.001 0.837799 ±2.95411 ±2.34699 i 

A L2 1,2λ  3,4λ  

0 1.1551 ±2.17167 ±1.87026i 

0.001 1.00501 ±2.2905. ±1.93957i 

A L3 1,2λ  3,4λ  

0 −1.1551 ±0.276486 ±1.02477i 

0.001 −1.15476 ±0.278137 ±1.02144i 
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Figure 4. Lissajoues orbit (y, z). 
 

 
Figure 5. Phase space at L1. 
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Figure 6. Phase space at L2. 

 

 
Figure 7. Phase space at L3. 
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