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Abstract 
Controlling soil erosion and the transport and deposition of suspended sedi-
ment to receiving waters, especially in relation to the modifying influences 
of, and interplay between, climate and land-use alterations, is essential for 
effective watershed management. The Atlantic Canada—New England re-
gion is expected to experience elevated rainfall erosivity due to climate 
change over the next century. Using the projected higher precipitation 
amounts of 5% and 10% for future scenarios of 5 and 25 years for the re-
gion, and a spatially-explicit, integrated (GIS, RUSLE) model for a rural wa-
tershed in Nova Scotia, predicted increases in total erosion rates of 4.9 and 
9.9%, respectively. Modelled scenarios altering buffer strips based on either 
consistent or slope-variable widths between 30 m (the legal requirement) to 90 
m were found to correspond to reductions in predicted total watershed ero-
sion rates from 11% to 32%. Assuming and extending the 1:1 concordance 
between projected precipitation and estimated soil erosion for this particular 
watershed into the more distant future of 26 to 55 years, suggests that the 25% 
increase in soil erosion predicted over this period would have to be offset by 
expanding the protective buffer strips to a consistent width of 70 m. Adoption 
of such a protective management scheme would subsume 19% of the terrestri-
al area of the study watershed and thus consequent reductions in land availa-
ble for agricultural production and timber harvest. 
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1. Introduction 

Understanding the interplay between climate and land-use management factors 
related to soil erosion is essential to achieving the long-term sustainable man-
agement of forested and agricultural ecosystems [1]. Controlling soil erosion and 
the transport and deposition of suspended sediment to receiving waters is rec-
ognized as being one of the most important tools of effective watershed man-
agement [2] [3]. In particular, because phosphorus can be transported through 
movement of soil particles, and because it is often the element limiting freshwa-
ter productivity, predictions of potential erosion and thus nutrient export are 
critical for managing aquatic eutrophication [4].  

Soil erosion rates are susceptible to changes in climate, in particular to altera-
tions in rainfall [5] [6] [7] [8] [9], due to the erosive force of rain being directly 
related to both surface and interrill erosion [10] [11]. But climate alone is of 
course not the sole determinant of the mechanisms and magnitude of soil ero-
sion. This is because many of those watersheds in which we are most interested 
in predicting erosion are also those that are characterized by the presence of 
human activity. It is therefore essential to understand how changes in regional 
climate act either in synergy or in opposition to local landscape modifications. 
For, as Hatfield and Prueger [8] aptly phrase it, “Changing precipitation patterns 
and intensity under climate change scenarios could have a major impact on the 
response of various management practices.” One example of this is Blais et al.’s 
[12] study of sediment deposition rates in northwestern Ontario lakes. Here the 
authors determined that the effects of regional drought on decreasing erosion 
completely superseded any increases in erosion brought about by forestry opera-
tions (watershed clearcutting and road construction), thereby moderating the 
potential deleterious impacts of the latter. But in those regions where climate 
change models predict increases rather than decreases in rainfall, and thus pre-
dict elevated soil erosivity, it is meritorious to exhibit heightened concern about 
the long-term health of aquatic resources due to the potential for acerbating 
problems already ensuing from possibly less-than-perfect practices of land-use 
management. In such cases, there will be a need to implement best management 
practices (BMPs) in order to ensure the protection of aquatic integrity.  

Few BMPs deliver more ecosystem goods and services per unit areal coverage 
than do riparian buffer strips [13] [14], particularly in relation to reducing the 
transport and deposition of soil to otherwise threatened lakes and rivers, such as 
those in Canada [10] [15] [16] [17]. There exists a great variability in jurisdic-
tional recommendations of buffer strip design and management [18] [19] [20], 
including in Canada [15] [21] [22]. Specifically, management practices concern-
ing vegetated riparian buffers have been the subject of recent studies in Atlantic 
Canada [23] [24] [25] [26]. In a comprehensive review, Capron et al. [27] iden-
tify riparian ecosystems as being those landscapes that will be in particular need 
for adapting human activities in the face of climate change. One obvious 

https://doi.org/10.4236/gep.2018.66002


R. L. France et al. 
 

 

DOI: 10.4236/gep.2018.66002 14 Journal of Geoscience and Environment Protection 

 

land-use decision that needs to be considered, therefore, for Atlantic Canada and 
elsewhere, concerns whether existing recommendations about the width of pro-
tective buffer strips will have to be reexamined in order to mitigate the threat of 
increased erosion predicted for certain regions under the auspices of climate 
change.  

Models of soil erosion in response to climate change predictions have existed 
for more than a decade [28] [7]. And these have been undertaken on different 
scales of resolution, ranging from regions [5], to large areas [6], to specific loca-
tions on simulated landscape typologies [29]. One of the most useful approaches 
in comprehensive nutrient management planning on a watershed scale has 
proven to be the geo-spatial application of erosion models through geographic 
information system (GIS) analyses [30] [31]. In particular, the integration of the 
long established and revised universal soil loss equation (RUSLE) with spatially 
explicit mapping through GIS analysis promises to generate the most accurate 
predictions of soil erosion for watersheds [32] [33] [34].  

The Atlantic Canada—New England bioregion is predicted to experience in-
creases in rainfall erosivity consequent with climate change over the next cen-
tury [5]. Further, due to presence of a thin glacial overburden of easily dislodged 
soils, lakes and rivers in these watersheds are sensitive to a variety of anthropo-
genic landscape disturbances [35] [36] [37]. This has led to a growing number of 
geo-spatial and modelling studies of soil erosion and nutrient export in the re-
gion [38]-[44].  

The purpose of the present study was to investigate potential changes in the 
magnitude of soil erosion for a small watershed in Nova Scotia, Canada in re-
sponse to alterations in climate (precipitation amount) and land-use manage-
ment (buffer strip allocation) through use of an integrated, spatially-explicit 
model based on application of the RUSLE and GIS analysis.  

2 Materials and Methods 

Study Area 
We applied climate change projections of altered annual precipitation and of 

hypothesized land-use alterations of buffer strip widths to the North River wa-
tershed located at the head of the Bay of Fundy in the Colchester County region 
of north-central Nova Scotia. The North River drains into the Salmon River, 
which flows into Cobequid Bay near Old Barns (Figure 1 & Figure 2). The 
combined watershed area of the North and Salmon Rivers is 740 km2 [45], of 
which 35% had been deforested by the year 2000 [46] (Figure 3). The North 
River (Figure 4) flows 30 km from its headwaters to the tidal outlet near the 
joint cities of Truro and Bible Hill, which have a combined population of about 
twenty thousand. The watershed has a shallow gradient in that there is only a 
310 m difference in elevation along the complete length of the stream network. 
Riparian slopes are also gentle, with an overall mean surface slope of 9% and the 
large majority being less than 15%. Until about a quarter of a century ago, forests  

https://doi.org/10.4236/gep.2018.66002


R. L. France et al. 
 

 

DOI: 10.4236/gep.2018.66002 15 Journal of Geoscience and Environment Protection 

 

 
Figure 1. Province of Nova Scotia and study area of North River watershed, latitude 45.4˚N; longitude 63.3˚W. Source: [46]. 

 

 
Figure 2. Combined watershed of the North and Salmon Rivers (including associated subwatersheds) in Colchester Country, No-
va Scotia. Source: [46]. 
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Figure 3. Land use conditions of the combined North and Salmon Rivers watershed in the year 
2000. Source: [46]. Since that time, urbanization, agriculture, and deforestation have spread sig-
nificantly in the lower, middle, and upper portions of the watershed, respectively.  
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Figure 4. Representative images of the North River, Colchester County, Nova Scotia from 
its upper reaches and tidally influenced lower reaches. 

 
accounted for 80% of the land cover in the North River watershed, dominated by 
softwoods (spruces and firs), followed by hardwoods (maples), and mixed stands 
[47]. Since then, the extent of forest cover has decreased, with 60% of the total 
land area now being sylvan [O’Brien, T. Nova Scotia Dept. Natural Resources, 
unpubl. data, 2015] (Figure 5), coincident with a reciprocal increase in the ex-
tent of agricultural land in the mid and lower watershed (now 30% surface 
area; Figure 6), and urbanization (now 10% surface area) in the lower wa-
tershed. Peri-urban agricultural land is being targeted for future housing devel-
opment (Figure 7).  

Zhang [48] conducted a preliminary investigation of the regional susceptibili-
ty for erosion for Colchester County, as determined through GIS analysis [48] 
(Table 1; Figure 8). The purpose of the present study was to follow-up on this 
earlier work by zooming into one particular section of the County, the North 
River watershed, in order to specifically model the effects of simulated climate 
change and land use modification on estimated soil erosion rates. The North 
River watershed was selected in this regard due to it being the subject of exten-
sive study in terms of its hydrology ([45] [46] and more than a dozen govern-
ment “gray literature” reports cited therein) and soil characteristics [47]. The 
soil parent material is glacially derived, with clay till, sandy till, and glaciofluvial 
sands and gravels, covering, respectively, 50%, 30%, and 20% of the surface area. 
All upland soils are regarded as podzols.  

Colchester County, Nova Scotia is considered to be have a humid and tempe-
rate continental climate, moderated by proximity of the ocean. The North River 
watershed receives 696 mm of precipitation a year (monthly mean of 58 mm), of 
which 298 mm occurs as rain during the months of May to October (mean for  
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Figure 5. Forests and forestry operations in the upper watershed of the North River, 
Colchester County, Nova Scotia. 

 

 

https://doi.org/10.4236/gep.2018.66002


R. L. France et al. 
 

 

DOI: 10.4236/gep.2018.66002 19 Journal of Geoscience and Environment Protection 

 

 
Figure 6. Agriculture in the mid and lower watershed of the North River, Colchester 
County, Nova Scotia. 

 

 
 

 
Figure 7. Peri-urban agricultural land zoned for development near the cities of Truro-Bible 
Hill in the lower watershed of the North River, Colchester County, Nova Scotia. 
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Table 1.Classification of soil erosion rates for Colchester County, Nova Scotia. See Figure 
8. Source: [48]. 

Erosion Class Soil erosion rate (tons/km2/year) Erosion potential 

1 0.5 - 15.8 No susceptibility 

2 15.8 - 39.6 Very low susceptibility 

3 39.6 - 77.8 Low susceptibility 

4 77.8 - 148.5 Medium to low susceptibility 

5 148.5 - 285.5 Medium susceptibility 

6 285.5 - 478.1 Medium to high susceptibility 

7 478.1 - 750.5 High susceptibility 

8 750.5 - 1372.0 Very high susceptibility 

 

 
Figure 8. Mosaic of preliminary estimates of spatially-explicit soil erosion susceptibility for Colchester County, Nova Scotia 
(which contains the North River watershed). Classification categories pertain to Class 1 = No susceptibility (light yellow); Class 2 
= Very low susceptibility (yellow/orange); Class 3 = Low susceptibility (light orange); Class 4 = Medium to low susceptibility (me-
dium orange); Class 5 = Medium susceptibility (dark orange); Class 6 = Medium to high susceptibility (orange/red); Class 7 = 
High susceptibility (red); and Class 8 = Very high susceptibility (dark red). Actual soil loss rates for these categories are provided 
in Table 1. Source: [48]. Much of the Salmon River watershed (lower left, south-east corner of the County) has erosion rankings of 
Classes 1 to 3 (i.e. No to Low susceptibilities), whereas portions of the North River watershed (upper, north-central portion of the 
County) has erosion rankings of Classes 5 to 7 (i.e. Medium to High susceptibilities).    
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those months of 50 mm) (Environment Canada, online meteorological data). 
The watershed, and particularly the terminus coastal town of Truro-Bible Hill 
where it joins with the Salmon River, have experienced substantial flooding [45] 
[46], serious enough in the last half decade to garner extensive national press 
and necessitating the consideration of mitigation measures. Most significantly, 
the recent generation of a province-wide watershed assessment framework [49] 
identified several of the watersheds in Colchester County, including that of 
North River, as being those ranked with the highest proportion of erodible soil 
in relation to land-use, and consequently the highest and second-highest threat 
to both surface erosion and ensuing water quality.  

Soil Erosion Model 
The model used in this project is based on the Revised Universal Soil Loss Equa-

tion (RUSLE) [2] [50] [51]. The RUSLE model includes the parameters of R (rain-
fall), K (soil erodibility), L (slope length), S (slope steepness), C (cover manage-
ment), and sometimes P (support practices; not used in the present case).  

The climatic factor (R) refers to the mean annual summation of individual storm 
erosion index values and is related to the total kinetic energy in maximum 30 mi-
nutes rainfall intensity [52]. The R factor was calculated using the standard equation: 

( )( )30
1 1

1 n m

k
j k

R E I
n = =

 =   
∑ ∑  

where E = total storm kinetic energy (MJ/ha); I30 = the maximum 30 mins rain-
fall intensity; j = the index for the number of years used to compute the average; 
k = the index of the number of storms in each year; n = the number of years to 
obtain average; and m = the number of storms in each year. Decadal-long pat-
terns of monthly rainfall data from four Environment Canada meteorological 
stations, representing the major physiographic zones in Colchester County [53], 
were used to create an R factor map for the entire county [48] (Figure 9). This 
was then made specific for the North River watershed through clipping to gen-
erate a map wherein spatially-explicit soil erosion rates were grouped into three 
categories characteristic of Atlantic Canada [54]: 11 - 22 tons ha−1 year−1 (Mod-
erate), 22 - 33 tons ha−1 year−1 (High), and 33 - 44 tons ha−1 year−1 (Severe). 

The soil erodibility factor (K) measures the susceptibility of soil particles to 
transportation and detachment by the impact of rainfall. In general, large soil 
particles are more difficult to be moved because they require more energy to be 
entrained. The least resistant soil particles are silts and very fine sands. Soil with 
a high content of base minerals are more stable as these contribute to the chem-
ical bonding of the aggregates. Increases in moisture content of a soil weaken 
aggregates because due to reducing cohesiveness. Soils with less than two per-
cent organic carbon, equivalent to about 3.5 percent organic matter can be con-
sidered as erodible. Soil erodibility decreases linearly with increasing organic 
matter over the range of 0 to 10 percent [55]. The soils of Colchester County 
represent 6 of the 9 orders defined in the Canadian system of soil classification,  
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Figure 9. R factor map for Colchester County, Nova Scotia. Source: [48].  
 

and can be divided into 24 soil more specific associations depending on parent 
material, landform, location, and texture [47]. Therefore, the K factor for each 
soil association was calculated using the soil erodibility nomograph based on the 
percent of silt, very find sand, total sand, organic matter, soil structure, and 
permeability of the soil [56]. The K values of some soils were difficult to deter-
mine from the nomograph. Because of this, the standard equation for calculating 
K value [53] was used, based on the percent of silt, clay and sand, soil structure, 
organic matter, and permeability data existing for all the 24 soil associations 
[47]: 

( )( ) ( ) ( )1.14 4100K 2.1M 10 12*a 3.25 b*2 2.5 c*3−= + +  

where M = (percent silt + very fine sand)* (100-percent clay); a = percent of or-
ganic matter; b = the soil structure code used in soil classification; and c = the 
permeability class. A spatially-explicit K factor map was created for the North 
River watershed using GIS. 

Soil erosion is expected to increase with increases in slope steepness due to the 
relevant increases in velocity and volume of surface runoff. The S factor was de-
rived from a Digital Elevation Model (DEM) created with North River watershed 
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(Figure 10) based on the contour line map, elevation spot map, and the wa-
tershed boundary. From these, a hydrology map was derived for the watershed.  

Projected changes in precipitation amounts, and therefore predicted potential 
soil erosivity, were obtained from the Canadian Regional Climate Model 
(CRCM) [57] [58], as applied to Nova Scotia, Canada (France and Aitchison, in 
prep). In particular, for our study site of the North River watershed, we esti-
mated the influence of regional climate change (i.e. increasing precipitation) on 
soil erosivity by running the integrated (GIS, RUSLE) model with both a 5 and a 
10% increase in the R factor projected for the region. These two scenarios are 
thought to represent first, an immediate and very modest degree of climate 
change, and second, a realistic amount of further change for the near future pe-
riod of the next 25 years in Nova Scotia (France and Aitchison, in prep).  

Reviews of the effectiveness of buffer strips generally converge with an agree-
ment that vegetated riparian zones of a minimum of 30 m width are generally  

 

 

Figure 10. Digital elevation map (DEM) created for the North River Watershed. Shading 
reflects terrain roughness.  
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adequate to maintain water quality [21] [14] [26]. Ontario’s recommended 
guidelines for riparian buffer strip widths (termed “areas of concern”) are based 
on preventing the transport of eroded soil in relation to surface slope: 30 m for 
slopes < 15%, 50 m for slopes of 16% to 30%, 70 m for slopes of 31% to 45%, and 
90 m for slopes > 46% [59] [60]. Because differences exist in buffer strip man-
agement in terms of recommendations for either consistent [26], or in the case 
of Ontario, variable, widths, we estimated the influence of buffer strip BMPs (i.e. 
increasing widths) on soil erosivity in the North River watershed in two ways: 
first, by running the integrated (GIS, RUSLE) model for buffer strips of consis-
tent widths of either 30, 50, 70 or 90 m; and second, by running the model for 
variable width buffers, based on the Ontario framework, as determined in rela-
tion to DEM-calculated riparian slopes, as in France et al. [15]. In both cases, it 
was assumed that the modeled buffer strips would operate at optimal functional-
ity in terms of eliminating all soil transport, a result consistent with measure-
ments of erosion plumes made in Canadian watersheds of similar topography 
[17].  

3. Results 

Existing Soil Erosion 
GIS analysis of the North River watershed revealed the spatial variability of es-

timated soil erosion (Figure 11 top panel). The most abundant erosion category 
was Moderate (Table 2). The total amount of erosion integrated for the entire 
watershed was estimated to be 465,285 tons yr−1 or 20.9 tons ha−1 yr−1 (Table 3).  

Influence of Climate Change 
Increasing the precipitation R factor in the RUSLE model by 5%, thereby 

representing a scenario of realistically expected immediate and very modest cli-
mate change, altered the spatial distribution of estimated erosion in the North 
River watershed (Figure 11 middle panel). Compared to existing conditions, the 
Moderate erosion category decreased and the High and Severe erosion categories 
increased (Table 2). There was an overall 4.9% increase in total watershed ero-
sion to 488,190 tons yr−1 or 21.9 tons ha−1 yr−1 (Table 3).  

Increasing the R factor in the RUSLE model by 10%, thereby representing a 
realistic climate change scenario for the near future, further altered the spatial 
distribution of estimated erosion in the North River watershed (Figure 11 bot-
tom panel). Compared to existing conditions, the Moderate erosion category 
decreased, and the High and Severe erosion categories increased (Table 2). 
There was an overall 9.9% increase in watershed erosion to 511,437 tons yr−1 or 
23.0 tons ha−1 yr−1 (Table 3).  

Influence of Riparian Buffer Strips 
The moderate erosion rates calculated for existing conditions for the North 

River watershed are partially a reflection of its shallow terrain. Even given this, 
the BMP of implementing riparian buffer strips of consistent width was found to 
substantially reduce predicted erosion rates (Table 3). These results correspond 
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to decreases in predicted total watershed erosion from existing conditions of 
11%, 18%, 25% and 32% for buffer strip consistent-widths, respectively, of 30 m, 
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Figure 11. Spatially-explicit estimates of soil erosion classifications for Atlantic Canada 
from [54] applied to the North River watershed, Colchester County, Nova Scotia. Light 
yellow = “Moderate” or 11 (lowest observed rate 17) - 22 tons ha−1 yr−1, mid-tone orange 
= “High” or 22 - 33 tons ha−1 yr−1, dark red = “Severe” or >33 (highest rate observed 41) 
tons ha−1 yr−1 for the North River watershed, Colchester County, Nova Scotia under ex-
isting conditions (upper panel), and then projected climate change increases in annual 
precipitation of 5% (middle panel), and 10% (lower panel) for the spatial model (GIS, 
RUSLE) model.  

 
Table 2. Extent (ha and proportion) of the North River watershed (Colchester Country, 
Nova Scotia) experiencing different categories of estimated erosion under existing condi-
tions and modeled scenarios of climate change-induced increases in precipitation of 5% 
and 10%.  

Erosion category 
Existing 

ha 
Existing 

% 
5% increase 

ha 
5% increase 

% 
10% increase 

ha 
10% increase 

% 

Moderate 12,525 56.4 11,528 51.9 10,757 48.5 

High 9479 42.7 9872 44.5 10,644 47.9 

Severe 194 0.9 798 3.6 798 3.6 

 
50 m, 70 m, and 90 m. Application of variable-width buffer strips in concordance 
to riparian slopes (Figure 12) reduced erosion to 401,186 tons yr−1 or 18.3 tons 
ha−1 yr−1, a decrease in predicted total watershed erosion of 12% from existing 
conditions. 
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Table 3. Spatially-explicit estimates of erosion integrated for the entire watershed of the 
North River (Colchester County, Nova Scotia). Values indicate existing conditions and 
modeled scenarios of climate-induced increases of 5% and 10% in precipitation, and im-
plementation of riparian buffer strips of consistent widths of 30 m 50 m, 70 m, and 90 m 
as well as variable widths based on surface slope. 

 tons yr−1 tons ha−1 yr−1 

Existing conditions 465,285 20.9 

Climate change   

5% increase 488,190 21.9 

10% increase 511,437 23.0 

Riparian buffer strips   

30 m 413,697 18.6 

50 m 380,592 17.1 

70 m 348,459 15.7 

90 m 318,459 14.3 

Variable 401,186 18.3 

 

 
Figure 12. Network of streams in the North River watershed of Colchester County, Nova 
Scotia showing buffer strips of variable widths as determined in relation to surface topo-
graphy (i.e. DEM-determined elevation gradients) of 30 m for riparian slopes < 15%, 50 
m for riparian slopes of 16% - 30%, and 70 m for riparian slopes of 31% - 45%.  
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4. Discussion 

In comparison with erosion rates ranging from 7 to 70 tons ha−1 yr−1 that have 
been determined for elsewhere in Atlantic Canada [48] [61] [62] [63] [64], the 
present findings suggest that the North River watershed experiences a moderate 
degree of erosion. The previous studies were conducted using either the RUSLE 
model or radio-cesium decay methods on specific field locations. The present 
study, in contrast, is the first to produce an estimate of soil erosion integrated for 
an entire watershed. That the watershed-level estimate compares well with 
site-specific radio-cesium measures made for another, nearby Nova Scotia loca-
tion [54], gives credence to our belief in the accuracy in the GIS methodology 
used in the present study.  

Our spatially-explicit, climate change modelling showed a near 1:1 concor-
dance between forecasted projections of increased precipitation and consequent 
predicted increases in the extent of erosion for the North River watershed. In-
creasing precipitation by 5% resulted in increased total watershed erosion rates 
of 4.9%, and increasing precipitation by 10% corresponded to a 9.9% increase in 
total watershed erosion. Other, non-spatially-explicit models have shown a wid-
er range of predicted increases in soil erosion due to climate change. For exam-
ple, Pruski and Nearing [6] found that each 1% increase in precipitation induced 
either a 0.85%, 2.38%, and 1.66% increase in soil erosion for three simulated 
climate change scenarios and landscape typologies, for an average increase of 
1.7% [7]. They believed that such greater-than-unity increases in erosion from 
elevated precipitation were due to the non-proportional influence of raindrops 
on interrill erosion, as consistent with the RUSLE model [30], although changes 
in vegetation patterns could certainly have played a moderating role as well.  

Our modelled predictions are in agreement with an extensive literature on the 
functional benefits of riparian buffer strips, including Vaidya et al. [37], who 
found progressive protection of water quality for streams in Nova Scotia in rela-
tion to increases in the of buffer widths of intact forest.  

Land-Use Management Implications 
Essential for sustainable resource management is the requirement to compare 

the influences of realized or predicted changes in climate and of land-use man-
agement on watershed erosion in concert. For example, modification of vegeta-
tive cover has been found to either mitigate [7] [8] [65] or have no effect [12] on 
climate change-induced alterations in erosion. The present study suggests that 
implementation of buffer strips of a consistent width of 30 m would be adequate 
to negate the higher erosion rates predicted for the near future scenario of in-
creased precipitation over the next 25 years for a Nova Scotia watershed. As-
suming and extending the 1:1 concordance between projected precipitation and 
estimated soil erosion for this particular watershed for the more distant future of 
the next quarter century (as predicted from the climate change models [66]), 
suggests that the 25% increase in soil erosion over this extended period could be 
offset only by expanding the protective buffer strip to a consistent width of 70 m.  
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The question arises of whether a land-use strategy of applying buffer strips 
should be based on the heuristically appealing variable-widths in relation to ri-
parian slope [67] [15] [22], or rather on the logistically easier to apply and to 
enforce consistent-widths [68] [26]. The present results for a single Nova Scotia 
watershed characterized by low-terrain showed that ascription of a consistent 
buffer strip width of 30 m reduced predicted erosion rates to a magnitude com-
parable to that of applying variable-width buffer strips in relation to riparian 
slope (i.e. by 11% to 12%).  

Notwithstanding the reality of economic costs of $70 ha−1 yr−1 for ameliorative 
field management ensuing to Atlantic Canadian farmers in consequence of soil 
losses of over 20 tons ha−1 yr−1 [54], there may of course be potential economic 
tradeoffs when watershed BMPs, such as buffer strips [24], are proscribed. It is 
understandable that concerns exist among land-use managers about the extent 
of resources that might be “locked up” in such buffer strip reserves. However, 
several Canadian GIS studies have shown that these concerns may be exagge-
rated, at least for non-mountainous areas [15] [26]. The present study suggests 
that expanding protective buffer strips from the legal requirement of 30 m to an 
increased width of 70 m will be needed in order to offset projected increases of 
25% in soil erosion due to regional climate change over the next half century. 
Adopting such a mitigating management scheme would subsume 19% of the 
terrestrial area of the study watershed, and thus will consequent reductions in 
the amount of land available for agricultural production and timber harvest. 
Maintaining the equivalent degree of environmental protection as presently ex-
ists in the face of future climate change will therefore result in economic loses to 
the resource sector in this particular watershed. As has been frequently described 
in the popular press in relation to climate-proofing cities, the present findings 
represent yet another example of how adapting to climate change will come at a 
cost.  
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