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Abstract 

The objective of this study is to consider the flow of temperature dependent 
viscosity and thermal conductivity of free convective heat and mass transfer of 
viscoelastic fluid over a stretching surface with nth order of chemical reaction 
and thermophoresis. The effect of the temperature dependent dynamic vis-
cosity and thermal conductivity together with modified thermal and solutal 
Grashof numbers are properly accounted for in order to enhance the trans-
port phenomenon. Similarity transformations are used to convert and para-
meterize the non-linear partial differential equation to a system of coupled 
non-linear ordinary differential equation. The approximate analytical solu-
tions of the corresponding BVP are obtained through Optimal Homotopy 
Analysis Method (OHAM). The effect of some pertinent parameters is tested 
on velocity, temperature, concentration profiles. It is observed from the com-
putation that, the thickness of the velocity and thermal boundary layer in-
creases with an increase in temperature dependent variable viscosity ξ  and 
thermal conductivity parameters ε  when modified thermal and solutal 
Grashof numbers rG  and cG  are less than zero. It is also observed that the 
concentration layer becomes thinner with increasing thermophoresis para-
meter τ  when the chemical reaction parameter is greater than zero for both 
cases of first and second order of chemical reaction i.e. when 1,2n = . 
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1. Introduction 

Prandtl [1] introduced the concept of Boundary Layer in 1904, in the lecture 
titled “Uber Flussigkeitsbewegungen bei sehr kleiner Reibung” translated into 
English as “On fluid flow with very little friction”. During the course of the 
lecture, he explained that the viscosity of a fluid plays a role in a (very) thin layer 
adjacent to the surface. Base on the theory, the fluid flow region around a solid 
body is divided into two regions; a very thin region in the immediate vicinity of 
a bounding surface, called the boundary layer, where the effect of viscosity is 
significant, and the other region outside the boundary layer where the fluid 
viscosity is negligible. The concept of boundary layers is central to the 
understanding of convection heat and mass transfer between a surface and a 
fluid flowing past it. In mass transfer problem involving phase change 
(evaporation, sublimation, condensation, melting etc.) must also involve heat 
transfer, and the solution of such problems needs to be analyzed by considering 
simultaneous heat and mass transfer. Some examples of simultaneous heat and 
mass problems are drying, evaporating cooling, transpiration cooling, 
combustion of fuel droplets etc. (Cengel and Ghajar [2]). Chemical reactions can 
be classified as either homogeneous or heterogeneous, some mass transfer 
problems involve chemical reactions that occur within the medium and result in 
the generation of a species throughout, such reactions that occur within the 
medium are called homogeneous reactions (Cengel and Ghajar [2]). The study 
of heat and mass transfer with chemical reaction is of great practical importance 
in many branches of science and engineering. The effect of chemical reaction on 
different geometry of the problem has been examined by many authors. 
Gangadhar [3] studied chemically reacting mhd boundary layer flow of heat and 
mass transfer over a moving vertical plate in a porous medium with suction. 
Ibrahim and Makinde [4] discussed chemically reacting mhd boundary layer 
flow of heat and mass transfer over a moving vertical plate with suction. 
Recently, Gireesha et al. [5] investigate effect of chemical reaction on mhd 
boundary layer flow and melting heat transfer of Williamson nanofluid in 
porous medium; it was reported that, chemical reaction in the system results in 
consumption of the chemical and hence, leads to decrease of concentration 
profile. Many fluids are well known to exhibit non-Newtonian behaviour, in 
view of this, non-newtonian fluid is defined as a fluid in which shear stress is not 
directly proportional to deformation rate. An example is paint, it is very thick 
when stored in the can, but becomes thin when sheared by brushing. It is 
imperative to note that, non-Newtonian fluids are generally categorized as 
having time-independent or time-dependent behaviour. It is interesting to note 
that study of non-Newtonian fluids is further complicated by the fact that the 

https://doi.org/10.4236/oalib.1104271


O. K. Koriko et al. 
 

 

DOI: 10.4236/oalib.1104271 3 Open Access Library Journal 

 

apparent viscosity may be time-dependent. It is a usual occurence that after 
deformation, some fluids partially return to their original position when the 
applied stress is released, such fluids are called viscoelastic Pritchard and 
Leylegian [6]. Some recent studies describing the flows of viscoelastic fluid have 
been undertaken by Mishra et al. [7], Olanrewaju et al. [8] Narayana et al. [9], 
Das [10], Choudhury and Das [11]. 

Thermophoresis of particles is referred to as a mechanism of movement of 
small particles in the direction of decreasing thermal gradient. In other words, 
we can say that thermophoresis makes it possible for the deposition of small 
particles on the cold surfaces. The effect of this phenomenon was first observed 
in 1870 by Tyndal [12], when he observed that a particle free zone around a 
heated surface appeared in dusty air, and later in 1884, Aitken [13] came up with 
a prove that the microscopic explanation to the effect was due to the heavier 
bombardment of the particle from the molecules on the hot region compared 
cold region. In this phenomenon, the gas molecules migrating from the hot side 
of the particles have a greater velocity than those migrating from the cold side. 
The faster moving molecules collide with the particles more forcefully. Therefore, 
the velocity attained by the particle is referred to as thermophoretic velocity 
while the force experienced by the suspended particles due to the temperature 
gradient is referred to as thermophoretic force, and the direction of the force is 
opposite to the temperature gradient. Stanford Shateyi [14]. Thermophoresis is 
often experienced in our day-to-day living, and some common experience of this 
phenomenon is the blackening of glass globe of kerosene lanterns, blackening of 
the white florescent bulb, chimmeys and industrial furnace walls by carbon 
particles. The principle of thermophoresis is utilized to manufacture graded 
index silicon dioxide and germanium oxide optical fiber performs used in the 
field of communications. Moreso, thermophoresis has many practical 
applications in aerosol technology, deposition of silicon thin films and 
radioactive particles in nuclear reactor safety simulations as reported by Hayat 
and Qasim [15], Alam et al. [16]. 

The objective of this study is to consider the heat and mass of an electrically 
conducting viscoelastic fluid flow over linearly stretching sheet. The novelty of 
the study is to investigate the effect of thermophoresis and nth order of chemical 
reaction on viscoelastic fluid considering variable thermophysical properties. 

2. Mathematical Formulation 

The incompressible second-order fluids whose constitutive equation based on 
the postulate of gradually fading memory was given by Coleman and Noll [17] as 

2
1 1 2 2 1 ,T pl A A Aµ α α= − + + +                     (1) 

where T is the stress tensor, p is the pressure, 1 2, ,µ α α  are material constants 
with 1 0α ≤ , and 1A  and 2A  are defined as; 

( ) ( )T
1 ,A gradv gradv= +                       (2) 
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( )T
2 1 1 1

d .
d

A A A gradv gradv A
t

= + ⋅ + ⋅                  (3) 

Coleman and Noll [17] showed that the model (1) exhibits normal-stress 
differences in shear flow and is an approximation to a simple fluid in the sense 
of retardation. 

We consider a steady two-dimensional free convective boundary layer flow of 
an electrically conducting viscoelastic fluid of variable viscosity and thermal 
conductivity. Keeping the origin fixed, the sheet is then stretched with a velocity 

( )wu x , varying linearly with the distance from the slit. The flow is assumed to 
flow in x-direction which is along vertical surface and y-axis is normal to it. 
Fluid suction/injection is imposed at the plate surface. The temperature and 
concentration of the surface wT  and wC  is held uniform at which is higher 
than the ambient temperature T∞  and concentration C∞  i.e. ( )wT T∞>  and 
( )wC C∞> . The uniform magnetic field of magnitude oB  is applied normal to 
the plate. Also the magnetic Reynolds number is assumed to be small so that the 
induced magnetic field is negligible in comparison to the applied magnetic field. 
Under the foregoing assumptions with the Boussinesq approximation, the 
governing equations of the MHD free convection flow are: 

Continuity Equation 

0,u v
x y
∂ ∂

+ =
∂ ∂

                          (4) 

Momentum Equation 

( )

( ) ( )

2 2 3

2 2 3

2
*

1

,

o

o

u u u u u vu v T k u v
x y y y x yy y y

B u g T T g C C

µ
ρ

σ β β
ρ ∞ ∞

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂     

− + − + −

   (5) 

Energy Equation 

( )

( ) ( )

1

,exp

p

ay
w

p

T T Tu v T
x y C y y

a A T T B T T
C

ϑ

κ
ρ

κ
ϑ

ρ
−

∞ ∞

 ∂ ∂ ∂ ∂
+ =  ∂ ∂ ∂ ∂ 

 
+ − + − 

 

      (6) 

Concentration Equation 

( )
2

2
n

T n
C C Cu v D V C k C
x y yy

∂ ∂ ∂ ∂
+ = − −

∂ ∂ ∂∂
             (7) 

Subject to boundary conditions 

( ) ( ), , , , at 0,w w w wu u x ax v v x T T C C y= = = = = =        (8) 

0, , , as ,u T T C C y∞ ∞→ → → →∞                (9) 

In order to justify the variation in the thermo-physical property of the 
viscoelastic fluid as it flows past a vertical heated surface, classical Boussinesq’s 
approximation is adopted such that the temperature at the surface is greater than 
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temperature of the fluid at the free stream. It is valid to consider the 
mathematical model of temperature dependent viscosity model which was 
developed using the experimental data of Batchelor [18] together with the 
mathematical model of temperature dependent thermal conductivity model of 
Charraudeau [19] as; 

( ) ( ) ( ) ( )* *1 and 1wT b T T T T Tµ µ κ κ δ ∞ = + − = + −           (10) 

*µ  and *κ  are the constant value of the coefficient of viscosity and thermal 
conductivity at the free stream respectively. The thermophoretic velocity TV  in 
Equation (7) can be written in the form [20] as; 

1 ,T
ref ref

T TV
T T y

κϑ κϑ
∇ ∂

= − = −
∂

                   (11) 

where kϑ  represents the thermophoretic diffusivity, and κ  is the 
thermophoretic coefficient which ranges in value from 0.2 to 1.2 as indicated by 
Batchelor and Shen [21] and is defined from the theory of Talbot et al. [20] 
which is given by; 

( ) ( )
( )( )

3
1 22 1 exp

1 3 1 2 2

C Kn
s g p t

m g p t

C C Kn Kn C C

C Kn C Kn

λ λ
κ

λ λ

− + + + =
+ + +

         (12) 

Here, 1 2 3, , , , ,m s tC C C C C C  are constants, λ  and pλ  are the thermal 
conductivities of the fluid and diffused particles, respectively and Kn  is the 
Knudsen number. A thermophoretic parameter τ  can be defined (see Mills et 
al. [22] and Tsai [23]) as; 

( )w

ref

T T
T

κ
τ ∞−
=                        (13) 

where u and v are components of velocity in x and y directions respectively, 
( )wu x  is the wall shrinking or stretching velocity, ( 0a > ) for stretching, ( 0a < ) 

for shrinking and ( 0a = ) for static wall, ( )wv x  is the wall mass flux velocity, ρ 
is the fluid density, ( )µ ϑρ=  is the dynamic viscosity, ϑ  is the kinematic 
viscosity, σ is the electrical conductivity, T is the fluid temperature in the 
boundary layer, T∞  is the free stream temperature, β is the thermal expansion  

coefficient, 
pC

κ
α

ρ
=  is the thermal diffusivity, ok  is the non-Newtonian  

visco-elastic parameter, β is the volumetric coefficient of thermal expansion, *β  
is the volumetric concentration coefficient, A and B are the coefficient of 
exponentially decaying space and temperature dependent heat source/sink, 
respectively, D is the mass diffusivity and nk  is the chemical reaction 
parameter. 

The continuity Equation (1) is satisfied by introducing a stream function ψ  
such that 

, .u v
y x
ψ ψ∂ ∂

= = −
∂ ∂

                     (14) 
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Then, Equations (5), (6), (7), (8) and (9) becomes; 

( )

2 2 3

2 2 3

1

o

y x y x y y

T
y y y

k
x y y y y x x yy y y

ψ ψ ψ ψ

ψ
µ

ρ

ψ ψ ψ ψ ψ ψ

∂ ∂ ∂ ∂ ∂ ∂
−

∂ ∂ ∂ ∂ ∂ ∂

  ∂ ∂ ∂
=   ∂ ∂ ∂  

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂   

 

( ) ( )
2

* ,oB g T T g C C
y

σ ψ
β β

ρ ∞ ∞
∂

− + − + −
∂

              (15) 

( ) ( ) ( )1 ,exp
ay

w
p p

T T
y y x y

T aT A T T B T T
C y y C

ϑ

ψ ψ

κ
κ

ρ ρ ϑ
−

∞ ∞

∂ ∂ ∂ ∂
−

∂ ∂ ∂ ∂

 ∂ ∂  
= + − + −   ∂ ∂   

    (16) 

( )
2

2
n

T n
C C CD V C k C

y x x y yy
ψ ψ∂ ∂ ∂ ∂ ∂ ∂

− = − −
∂ ∂ ∂ ∂ ∂∂

            (17) 

subject to 

( ) ( ), , , , at 0,w w w wu x ax v x T T C C y
y x
ψ ψ∂ ∂

= = − = = = =
∂ ∂

     (18) 

0, , , as ,T T C C y
y
ψ

∞ ∞
∂

→ → → →∞
∂

             (19) 

The momentum, energy, and concentration equations can be transformed 
into the corresponding ordinary differential equations by the following 
transformation 

( ) ( ) ( ) ( ) ( )
1 2

1 2, , , ,
w w

T T C Cay x y x a f
T T C C

η ψ ϑ η θ η φ η
ϑ

∞ ∞

∞ ∞

− − = = = =  − − 
 (20) 

where η  is the independent dimensionless similarity variable. Thus u and v are 
given by ( )u axf η′= , ( )v a fϑ η= − , substituting variables (20) into 
Equations (15)-(19), we obtain the following ordinary differential equations: 

[ ]
23 2 2

3 2 2

23 2 4

3 2 4

d d d d d1
d dd d d

d d d d d2 0
d dd d dc r c

f f f ff

f f f f fR f M G G

θ
ξ θξ ξ

η ηη η η

θ φ
η ηη η η

 
+ − − + − 

 
  
 − − − − + + = 
   

        (21) 

[ ] ( )
22

2

d d d d d1 e 0
d d d dd r t r r

f fP S P P f A Bηθ θ θ
θε θ ε θ

η η η ηη
− 

+ − − + + + + = 
 

   (22) 

2 2

2 2

d d d d d 0
d d dd d

n
c c cS f S Sφ φ θ φ θ

τ φ γφ
η η ηη η

 
+ − + − = 

 
           (23) 

The corresponding boundary conditions take the form; 
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( ) ( ) ( ) ( )0 , 0 1, 0 1, 0 1 at 0,f s f θ φ η′= = = = =            (24) 

( ) ( ) ( )0, 0, 0 as .f η θ η φ η η′ → → → →∞             (25) 

In the above equations, primes denote differentiation with respect to η . The 
dimensionless velocity, temperature and concentration are represented as ( )f η ,  

( )θ η  and ( )φ η  respectively, rP ϑ
α

=  is the Prandtl number, 
2
oBM
a

σ
ρ

=  is 

the magnetic parameter, 
( )

2
w

r

g T T
G

a x
β ∞−

=  is the Modified Thermal Grashof 

number, 
( )*

2
w

c

g C C
G

a x
β ∞−

=  is the Modified Solutal Grashof number, 

o
c

k aR
ϑ

=  is the viscoelastic parameter, nk
a

γ =  is the chemical reaction 

parameter, cS
D
ϑ

=  is the Schimdt number. 

It is worth mentioning here that the chemical reaction parameter γ  is a real 
number ( 0γ <  indicates the generative chemical reaction, 0γ >  denotes the 
destructive chemical reaction, and 0γ =  for the non-reactive species).  

The physical quantities of interest are the skin friction coefficient fC , the 
local Nusselt number xNu  and the local Sherwood number Sh are defined as; 

( )2 , .
2

w w
f x

w

xqC Nu
T TU

τ
κρ ∞

= =
−

                  (26) 

where the shear stress at the all surface is expressed as τ  
2

0

or
2w w f

y

u UC
y

ρ
τ µ τ

=

 ∂
= = ∂ 

                   (27) 

( )
0

0aax f
x

η

τ µ
=

 
′′=  

  
                       (28) 

2.1. Optimal Homotopy Analysis Solutions 

In many cases, by means of analyzing the physical background and the 
initial/boundary conditions of the nonlinear differential problem, we might 
know what kinds of base functions are proper to represent the solution, even 
without solving the given nonlinear problem. In view of the boundary 
conditions (24) and (25), ( )f η , ( )p η  and ( )θ η  can be expressed by the set 
of base functions in the form 

( )exp | 0, 0j nj j nη − ≥ ≥                   (29) 

The solutions ( )f η , ( )p η  and ( )θ η  can be represented in a series form 
as 

( ) ( )0
0,0 ,

0 0
expk k

n k
n k

f a a njη η
∞ ∞

= =

= + −∑∑               (30) 
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( ) ( ),
0 0

expk k
n k

n k
b njθ η η

∞ ∞

= =

= −∑∑                  (31) 

( ) ( ),
0 0

expk k
n k

n k
c njφ η η

∞ ∞

= =

= −∑∑                  (32) 

In which ,
k
n ka , ,

k
n kb  and ,

k
n kc  are the coefficients. As long as such a set of 

base functions are determined, the auxiliary function ( )H η , the initial 
approximation ( )of η , ( )oθ η  and ( )oφ η , and the auxiliary linear operator 

fL , Lθ  and Lφ  must be chosen properly in such a way that all solutions of 
the corresponding high-order deformation of Equations (52)-(54) exist and can 
be expressed by this set of base functions. Invoking the rule of solution 
expressions above for ( ) ( ),f η θ η  and ( )φ η  on (21)-(23) together with 
boundary conditions (24) and (25), the initial guesses ( )of η , ( )oθ η  and 

( )oφ η  which satisfies both the initial and the boundary conditions (24) and (25) 
are; 

( ) ( ) ( ) ( ) ( ) ( )1 exp , exp , expo o of Sη η θ η η φ η η= + − − = − = −     (33) 

Linear operators fL , pL  and Lθ  are 

( ) ( ) ( )3

3

; ;
;f

f q f q
L f q

η η
η

ηη
∂ ∂

= −   ∂∂
                 (34) 

( ) ( ) ( )
2

2

;
; ;

q
L q qθ

θ η
θ η θ η

η
∂

= −   ∂
                  (35) 

( ) ( ) ( )
2

2

;
; ;

q
L q qφ

φ η
φ η φ η

η
∂

= −   ∂
                  (36) 

The operators fL , Lθ  and Lφ  have the following properties 

( ) ( )
( )
( )

1 2 3

4 5

6 7

exp exp 0,

exp 0,

exp 0

fL C C C

L C C

L C C
θ

φ

η η

η

η

+ − + − =  
− + =  
− + =  

               (37) 

In which 1 2 3 4 5 6, , , , ,C C C C C C  and 7C  are constants. 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 ; ; , ; , ;f o f fq L f q f q H N f q q qη η η η θ η φ η− − =         (38) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 ; ; , ; , ;oq L q q H N f q q qθ θ θθ η θ η η η θ η φ η− − =          (39) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 ; ; , ; , ;oq L q q H N f q q qφ θ θφ η φ η η η θ η φ η− − =          (40) 

Subject to boundary conditions 

( ) ( ) ( ) ( )0;
0; , 1, 0; 1, 0; 1

f q
f q s q q

η
η θ η φ η

η
∂ =

= = = = = = =
∂

  (41) 

( ) ( ) ( );
0, 0, ; 0

f q
q

η
θ η φ η

η
∂ →∞

→ →∞ → →∞ =
∂

       (42) 

where q is embedding parameters and the nonlinear operators are defined as 
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( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3

3

2 2

2 2

3 2 2

3 2 2

4

4

; ; ;
1 ;

; ; ;
;

; ; ; ;
2

; ( ; ); ; ;r c

f q f q f q
q

f q q f q
f q

f q f q f q f q
Rc

f q f qf q M G q G q

η η η
ξ θ η ξ

η ηη
η θ η η

η ξ
ηη η

η η η η
η η η η

η η
η θ η φ η

ηη

∂ ∂ ∂
+ − −

∂ ∂∂

∂ ∂ ∂
+ −

∂∂ ∂

 ∂ ∂ ∂ ∂
− − ∂ ∂ ∂ ∂

∂ ∂
− − + + ∂∂ 

       (43) 

( )( ) ( ) ( ) ( )

( ) ( ) ( )( )

2

2

; ;
1 ; ;

; ;
e ; 0

r
q q

q P f q

q q
A B qη

θ η θ η
θ η ε η

ηη
θ η θ η

ε θ η
η η

−

∂ ∂
+ +

∂∂

∂ ∂
+ + + =

∂ ∂

            (44) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

2

2

; ;
;

; ; ;
; ; 0n

c c

q q
Scf q

q q q
S q S q

φ η φ η
η

ηη

θ η φ η θ η
τ φ η γφ η

η η

∂ ∂
+

∂∂

 ∂ ∂ ∂
− + − =  ∂ ∂ ∂ 

     (45) 

Obviously, when 0q =  and 1q = , zero order of deformation equations (38) 
to (40) leads to With the property 

( ) ( ) ( ) ( );0 , ;1o of f f fη η η η= =                   (46) 

( ) ( ) ( ) ( );0 , ;1o oθ η θ η θ η θ η= =                   (47) 

( ) ( ) ( ) ( );0 , ;1o oφ η φ η φ η φ η= =                   (48) 

Expanding ( );f qη , ( );qθ η  and ( );qφ η  in Taylor series with respect to 
the embedding parameter q, 

( ) ( ) ( ) ( ) ( )
1 0

;1; where
!

m
m

o m m m
m q

f q
f q f f q f

m q
η

η η η η
∞

= =

∂
= + =

∂∑     (49) 

( ) ( ) ( ) ( ) ( )
1 0

;1; where
!

m
m

o m m m
m q

q
q q

m
θ η

θ η θ η θ η θ η
η

∞

= =

∂
= + =

∂∑     (50) 

( ) ( ) ( ) ( ) ( )
1 0

;1; where
!

m
m

o m m m
m q

q
q q

m
φ η

φ η φ η φ η φ η
η

∞

= =

∂
= + =

∂∑      (51) 

The auxiliary parameters are so properly chosen that the series (38)-(40) 
converge at 1q = . Hence, 

( ) ( ) ( )
1

; m
o m

m
f q f f qη η η

∞

=

= +∑                   (52) 

( ) ( ) ( )
1

; m
o m

m
q qθ η θ η θ η

∞

=

= +∑                   (53) 

( ) ( ) ( )
1

; m
o m

m
q qφ η φ η θ η

∞

=

= +∑                   (54) 
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For the mth order deformation, differentiate (38) to (40) m times with respect 
to q, divide by !m  and set 0q = , then we have; 

( ) ( ) ( ) ( )1
f

f m m m f f mL f f H Rη χ η η η−− =                 (55) 

( ) ( ) ( ) ( )1m m m mL H Rθ
θ θ θθ η χ θ η η η−− =                 (56) 

( ) ( ) ( ) ( )1m m m mL H Rφ
φ θ φφ η χ φ η η η−− =                  (57) 

Subject to 

( ) ( ) ( ) ( )0;0
0;0 0, 0, 0 0, 0 0m m m

f
f

η
η θ η φ η

η
∂ =

= = = = = = =
∂

   (58) 

where 

( ) ( )
3 1

1 1
1 3

0

2 21 1
1 1 1

2 2
0 0

3 4
1 1

13 4
0

1
1 1

d d d
1

d dd
d d d

dd d

d d d d d
1 2

d d dd d
d
d

m
f m m k k

m m
k

m m
m k m m

k
k k

m k k m k k k
c m k

k

m
r m c m

f f fR Xi

f ff

f f f f fR m f

fM G G

η θ
η ηη

θ
ξ

ηη η

η η ηη η

θ φ
η

−
− − −

−
=

− −
− − − −

= =

− − − −
− −

=

−
− −

= + − −

+ +

 
− − − − 

 

− + +

∑

∑ ∑

∑
     (59) 

( ) ( )

( )

2 1
1

1 12
0

1
1

1
0

d d
1

dd
d d

e
d d

0

m
m k

m m r m k
k

m aym k k
m

k

R P f

A B

θ

ϑ

θ θ
η θ ε

ηη

θ θ
ε θ

η η

−
−

− − −
=

−
−− −

−
=

= + +

 
+ + + 

 
=

∑

∑          (60) 

( )
2 1

1
12

0

21
1

1 1
0

d
d

d d d
d d d

m
m k

m c m k
k

m
nm k k k

c m k c m
k

R S f
d

S S

φ φ φ
η

ηη

θ φ θ
τ φ γφ

η η η

−
−

− −
=

−
− −

− − −
=

 
= +  

 
 

− + − 
 

∑

∑
       (61) 

And 

0 when 1m mχ = ≤  

1 when 1m mχ = >  

The general solutions of equations are given by 

( ) ( ) ( )*
1 2 3exp expm mf f C C Cη η η= + + + −  

( ) ( ) ( )*
4 5 6exp expm m C C Cθ η θ η η= + + + −  

( ) ( ) ( ) ( )*
7 8exp expm m C Cφ η φ η η η= + + −  

Here, ( )*
mf η , ( )*

mθ η  and ( )*
mφ η  are the particular solutions of Equations 

(52)-(54). Following the rule of solution expression, the rule of coefficient 
ergodicity and the rule of solution existence as discussed in [24]-[27] we choose 
auxiliary functions as 
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1f pH H Hθ= = =                          (62) 

2.2. Convergence of the Optimal Homotopy Solutions 

It is obvious that the series (64)-(66) consist of the non-zero auxiliary 
parameters f , θ  and φ  which can adjust and control the convergence. 
The interval on -axis for which the -curve becomes parallel to the -axis is 
recognized as the set of admissible values of f , θ  and φ  for which the 
solution series converges. These figures show that the ranges for the acceptable 
values of f , θ  and φ  are 1.7 0.3f− ≤ ≤ − , 1.2 0.38θ− ≤ ≤ −  and 

1.6 0.3φ− ≤ ≤ − . Obviously, from the -curves for this problem, we obtained 
the approximate optimal values of f , θ  and φ  at 10th-order of 
approximation as −1.20967, −0.999414 and −1.46231. 

3. Results and Discussion 

In order to gain an insight into the behavior of the fluid as it flows, analytic 
approximate solution of the dimensionless governing equation described in the 
previous section has been carried out using various values of elastic parameter 

cR , heat source parameter A and B, Prandtl number rP , Magnetic parameter M, 
thermophoresis parameter τ , temperature-dependent variable viscosity and 
thermal conductivity parameters ξ and ε when ( 0r cG G= < ) which physically 
means cooling of the fluid or heating of the surface (opposing flow) and when 
( 0r cG G= > ) means heating of the fluid or cooling of the surface (assisting 
flow). Table 1, Figure 1(a) and Figure 1(b) reveal the influence of temperature 
dependent viscous and thermal conductivity parameters on velocity and 
temperature profiles respectively when ( 0r cG G= < ). It is observed from Figure 
1(a) that as ξ and ε increase from 1.0 to 4.0 the velocity distribution increases 
within the range of 0.5 5.6η≤ ≤ . At exact value of 5.8η =  all profile 
converges quickly towards the freestream, and likewise it is noticed from Figure 
Figure 1(b) that the temperature profile is increased as ξ and ε increases. 

Figure 2(a) and Figure 2(b) present the effect of ξ and ε on velocity and 
temperature profiles when ( 0r cG G= > ). It is noticed that as values of ξ and ε 
increase, there is a slight decrease in the magnitude of the velocity profile within 
the region of 0 1.2η≤ ≤ , making all the curves to merge together and thereafter 
at exact value of 1.3η =  there is a conspicuous increase in the strength of the 
velocity and tends to satisfy the boundary condition. Likewise the temperature 
profile increases with the increase in the values of ξ and ε. Hence, the boundary 
layer thickness increases. 

The effect of thermophoresis parameter τ  on concentration profiles when 
0γ >  for different orders of chemical reaction are presented in Figures 3(a) 

and Figures 3(b). It can been seen from the plots that for lesser values of 
Schmidth number 0.22cS = , the magnitude of the concentration profiles 
decreases and thus, the concentration layer becomes thinner for both cases of 

1n =  and 2n = . Physically, thermophoresis is best explained as the migration  
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Table 1. Values of ( )0θ ′−  for various values cR  when 0.5M = , 0.5r cG G= = , 0.4A = , 0.3B = , 0.71rP = , 0.22cS = , 0.4τ = ,

0.5γ = , 0.3s = , 0.3ξ = , 0.3ξ = , 0.3s = , 1n = . 

cR  γ  τ  ( )0θ ′−  

0.2 0.5 0.4 0.11524 

0.4 0.5 0.4 0.18834 

0.6 0.5 0.4 0.05082 

0.8 0.5 0.4 0.10097 

 

 
(a)                                                           (b) 

Figure 1. (a) Effect of viscous and thermal conductivity parameters ξ and ε on velocity profile when 0;r cG G= <  (b) Effect of 
viscous and thermal conductivity parameters ξ and ε on temperature profile when 0r cG G= < . 

 

 
(a)                                                           (b) 

Figure 2. (a) Effect of viscous and thermal conductivity parameters ξ and ε on velocity profile when 0;r cG G= >  (b) Effect of 
viscous and thermal conductivity parameters ξ and ε on temperature profile when 0r cG G= < . 

 
of small sized particles in the direction of decreasing thermal gradient and this 
can be traced to the fact that, when there is much heat energy supplied in the 
boundary layer, the small particles suspended in the fluid tends to move to a  
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(a)                                                          (b) 

Figure 3. (a) Effect of thermophoresis parameter τ on concentration profile when 1;n =  (b) Effect of thermophoresis parameter 
τ on concentration profile when 2n = . 

 
region where there is little or low heat energy and thus leading to reduction in 
the concentration of the species. It is further observed that the concentration of 
the species quickly reduces faster towards the freestream and asmpotically 
satisfies the boundary condition at 1n = , compared with when the order of the 
chemical reaction increases to 2n = . 

Figure 4(a) and Figure 4(b) clearly reveal that increasing Prandtl number rP  
causes decrease in velocity, temperature profiles and the associated boundary 
layer thickness. This can be attributed to the fact that, high rP  for fluid implies 
low thermal conductivity and therefore the fluid with high rP  attains lower 
temperature and so the temperature distribution decreases. The effect of space 
dependent and temperature dependent parameters A and B are shown in Figure 
5(a) and Figure 5(b). It is observed that as A and B increase the velocity and 
temperature profiles increase respectively. This effect is significant because when 
A and B have increasing positive values, more heat will be produced within the 
fluid boundary and thus influence the thermal boundary layer (Figure 6, Figure 7). 

4.Conclusions 

The study considers heat and mass transfer of viscoelastic fluid along vertical 
surface with thermophoresis and variable fluid properties. Series solutions for 
velocity, temperature and concentration fields are developed and discussed. We 
have investigated the effects of various governing parameters. Some key 
observations are mentioned below 

1) The thickness of the velocity and thermal boundary layer increases with an 
increase in ξ and ε when ( 0r cG G= < ). 

2) The velocity and temperature distributions are increasing functions of ξ 
and ε when ( 0r cG G= > ). 

3) Concentration boundary layer thickness decreases with an increase in τ 
when 0γ >  for both cases of 1, 2n = . 
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(a)                                                            (b) 

Figure 4. (a) Effect of Prandtl number rP  on velocity profile; (b) Effect of Prandtl number rP  on temperature profile. 

 

 
(a)                                                           (b) 

Figure 5. (a) Effect of heat source parameter A & B on velocity profile; (b) Effect of heat source parameter A & B on temperature 
profile. 

 

 
(a)                                                          (b) 

Figure 6. (a) The -curve of ( )0f ′′  obtained at 10th-order of approximation; (b) The -curve of ( )0θ ′  obtained at 10th-order 

of approximation. 
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Figure 7. The -curve of ( )0φ′  obtained at 10th-order of approximation. 

 
4) The velocity and temperature distribution of the transport phenomenon are 

decreasing properties of the flow. 
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