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Abstract

Since 1947 a foundation of Quantum Mechanics (QM) on functional analysis
was suggested by Segal. By defining the C*-algebra of the observables, then the
Gelfand-Naimark-Segal theorem faithfully represents this algebra into Hilbert
space. In the 70’s Emch has reiterated this formulation and improved it. Re-
cently Strocchi improved it even more. First, he suggested an axiomatization
of the paradigmatic Dirac-von Neumann’s formulation of QM to which he
addresses two basic criticisms, i.e. a weak linkage with the experimental basis
of theoretical physics and the obscurity about the separation mark between
classical mechanics and QM. Afterwards, through an analysis of the experi-
mental basis of a physical theory he suggests an explanation of Segal’s restric-
tion of the operators to be bounded. Eventually, he represents this algebra into
Hilbert space and at last, by means of Weyl algebra he obtains the symmetries
of the dynamics of a particle theory. In fact, several characteristic features of
this formulation correspond to those determined by the two choices which are
the alternative ones to the choices of the dominant formulation. It is a prob-
lem-based theory, since it starts rather from than axioms a problem (i.e. the
indeterminacy); then, it argues through both doubly negated propositions and
an ad absurdum proof. Moreover, its theoretical development is similar to
that of an alternative classical theory since it put, before the geometry, the al-
gebra; the bounded operators are represented by a polynomial algebra; which
pertains to constructive mathematics. Eventually, he obtains the symmetries
of the theory. The problems to be overcome in order to accurately
re-construct his formulation according to the two alternative choices which
are listed. It is concluded that rather an alternative role, it plays a comple-
mentary role to the paradigmatic formulation.
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Dichotomies, Constructive Mathematics, Non-Classical Logic

1. Introduction

In previous papers I have characterized the foundations of Theoretical physics as
constituted by two dichotomies; one concerns the two kinds of infinity—either
the actual infinity (AI), or the potential infinity (PI)—, or, in formal terms, the
two kinds of Mathematics—either the classical Mathematics making use of the
idealistic axioms (e.g. Zermelo’s), or the constructive Mathematics—; the other
dichotomy concerns the two kinds of organization of a theory—either the axi-
omatic-deductive one (AO) or the problem-based organization aimed at solving
a basic problem through the invention of a new scientific method (PO)—; or, in
formal terms, the two kinds of Logic—either the classical Logic or the intuition-
ist one (Drago, 1996).

I have characterized the basic choices of each of the main classical theories,
both the dominant ones and those based on the alternative choices. Through the
basic choices intended as interpretative categories, I have characterized 1) the
birth of Quantum Mechanics (QM) through Albert Einstein’s paper on quanta
(Drago, 2013), 2) the entire history of the theory (Drago, 2002), 3) and its kind
of logic (Drago & Venezia, 2002).

The dominant formulation of QM, the Dirac-von Neumann’s one (DvNQM)
is clearly based on the choices Al (since the Hilbert space of all square summable
functions pertains to classical Mathematics) and AO (since its mathematical
framework is applied to the reality as an a priori structure).

In the aim at discovering an alternative formulation, i.e. a formulation of QM
which is based on the choices PI&PO, in a first time I have studied Weyl’s for-
mulation of QM, because this author wanted to base it upon an elementary ma-
thematics and moreover he formulated it through the symmetries (which con-
stitute the characteristic mathematical tool of the classical theory of Lazare Car-
not’s mechanics, whose choices are the alternative ones, PI & POj; Drago, 2004).
Yet, in order to obtain as most as possible results, Weyl has changed its starting
Mathematics in the classical one (AI), when he has taken the limit to continuous
groups; and moreover he has assumed Schroedinger’s equation as an a priori
hypothesis (AO) (Drago, 2000).

I then have classed all the formulations of QM (24) according to rough evalu-
ations of their basic choices (Drago, 2014). Three formulations appeared as
based on the choices PI&PO. Yet, under a further, detailed analysis they resulted
either incomplete (e.g., Heisenberg’s) or inadequate. I have then followed the
program of reiterating through the alternative formulations of the classical theo-
ries the historical process which led to the birth of QM, in such a way to generate
it according to the alternative choices. It resulted in a too difficult task (Drago,
2016).
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Then, I have focused the attention on those formulations which, although not
based by the author on the choices PI&PO, may be easily reformulated according
to them. The most appealing one resulted Franco Strocchi’s formulation (SQM)
(Strocchi, 2008), which pertains to a theoretical tradition started by the seminal
paper (Segal, 1947), suggesting as basic a particular algebra (C*-algebra) in place
to Hilbert space. Given the ancient tradition of the algebraic approach—to be
based on the choice PO (problems instead of axioms) and PI (finitist, or at most
constructive methods, Monna, 1973: pp. 147-148)—, this approach is the most
promising for discovering an alternative formulation of QM. In addition, Stroc-
chi suggests to the original approach many improvements which are useful for
formulating an alternative QM. However, some unresolved questions are recog-
nized and listed. It is concluded that at present time rather an alternative role,

this formulation plays a complementary role to the paradigmatic formulation.

2. Segal’s Seminal Paper on C*-Algebra in Quantum
Mechanics

Let us come back to the historical origin of this algebraic approach which ex-
ploits functional analysis. Roughly speaking, functional analysis applies the usual
notions of calculus employed inside the space of real numbers points, to the
space of functions on real or complex numbers. Imagine the space of all the
functions representing the possible evolutions of a physical system. An operator
transforming one function in another or evenly a function of such functions is a
functional. A physical magnitude is represented as a functional, i.e. as an opera-
tor on each of these functions giving the value of the physical system at a given
state.

In 1947 Irving E. Segal has assumed as mathematical basis of QM a particular
polynomial algebra of operators,' a C*-algebra.” The point is very important. Af-
ter having met the problem to know an entirely new world, as it is the micro-
scopic world, wisely physicists have analyzed the structure which is under their
control, i.e. all the macroscopic instruments which can be applied to measure
observables; or better, the mathematical structure of them in order to exploit all
its potentialities.

This approach opposes to Hilbert’s one, which has dominated past studies on
QM. In reaction to the novelty of the microscopic world, as first step Hilbert has

put the space of all the (candidate) useful functions for representing all possible

"The set of polynomial functions may be compared with the set of the analytical functions, which
represent almost all the functions of theoretical physics. Each of the latter ones, being spanned in an
infinite series of powers of the variables, is unboundedly approximated by polynomials. In particu-
lar, a constructive function may be considered as a sequence of approximating polynomials
(Pour-El, 1975).

’I recall that a norm is essentially a bound; more precisely, it is a function which assigns a strictly
positive length or size to each vector in a vector space. may be basically viewed as the application of
linear algebra to spaces of functions. A Banach algebra is a linear associative algebra over the field C
of the complex numbers with a norm | |. A C*-algebra is a Banach algebra on a complex field, to-
gether an involution * with the property |A * A| = |A?].
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mathematical results of measurement apparatuses (the Hilbert space), in order
to a priori assure to the physicists the full capability of the mathematical calcula-
tions (even at the cost, as both Segal (1947: p. 930) and Strocchi (2012, p. 3) re-
mark, of having ill-defined states and operators); that means that the more po-
werful as possible mathematics is put as the basis of conceiving reality—that is
the same prejudice of the Mathematical physics with respect to the entire physi-
cal world. In such a way Hilbert has skipped the first step of a natural develop-
ment of a theory, which put first the basic notions and the physical principles;
among the latter ones, the principle about the relationship between mathematics
and physics; not before this step, the theory starts the formally mathematical
development. It is not a chance that this approach was suggested by a mathema-
tician, Hilbert, who was the founder of the formalist school and moreover a hard
advocate of the classical mathematics against the suggestions of less idealistic
kinds of mathematics by both Brouwer and Weyl (as a fact, Hilbert space does
not directly deal with the discrete mathematics of quanta).

In the following, I quote the main points of Segal’s presentation of his alterna-
tive approach: The first one is the most important and it will be maintained by

his followers.

We present in this paper a set of postulates for a physical system and de-
duce from these the main general features of the quantum theory of statio-
nary states. [In opposition to the BYNQM)] Our theory is strictly opera-
tional in the sense that only the observables of the physical system are in-
volved in the postulates. [Indeed,] The collection of all bounded
self-adjoint’ operators on a Hilbert space,* which has previously been used
[by me] as a mathematical model for the observables in quantum mechan-
ics, satisfy the [previously stated] postulates, as do a variety of considerably

more general mathematical structures (Segal, 1947: p. 930).
Then, he illustrates this novelty with respect to the paradigmatic approach:

Inasmuch as Hilbert space plays no role in our theory, our proofs are nec-
essarily of a different character from the proofs of these results for the case
of the system of all bounded self-adjoint operators. Actually, Hilbert space
appears to be somewhat inadequate as a state space even for the latter sys-
tem, in that there exist pure states of the system which cannot be
represented in the usual way by rays of the Hilbert space.

The [above] postulates are partly algebraic and partly metric. The algebraic
postulates require essentially that an observable can be multiplied by real
numbers and rose to integral powers, and that any two observables can be
added. It is assumed that the usual algebraic laws are satisfied so that 1) the

observables can be treated like the elements of a linear space, and 2) the

*An operator A is adjoint if there is A* such that (Ax, y) = (x, A * y), where * is the involution. It is
self-adjoint if A = A*. It is Hermtian or symmetric if (Ax, y) = (x, Ay).

“A Hilbert space is a real or complex inner product space that is also a complete metric space with
respect to the distance function induced by the inner product.
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usual rules for dealing with polynomials in one variable with real coeffi-
cients remain valid when the variable is replaced by an observable. It is not
assumed that two observables have a product.” The metric postulates re-
quire that for each observable there be defined a kind of maximum numer-
ical value, which plays the part of a norm, and has various properties in ac-
cord with its physical significance. While this norm is quite essential to the
development of the theory, an interesting consequence of the theory is that
the norm can be (uniquely) defined in a purely algebraic fashion. This
shows that the objective features of a physical system,—the spectral values
and probability distributions of the observables, and the pure states,—are
completely determined by the algebra of observables, i.e., by the rules for
addition, scalar multiplication, and powers, of observables (Segal, 1947: p.
930).

Segal’s mathematics may seem less powerful than the usual one, allowing
whatsoever mathematical functions. However, more general functions may be

obtained, so that he recovers Hilbert space.

On the other hand, it is interesting to note that if our algebraic postulates
are strengthened sufficiently, then it can be shown that the collection of ob-
servables is isomorphic, (algebraically and metrically) with all self-adjoint
operators in an algebra of bounded operators on Hilbert space (the norm

corresponding to the operator bound) (p. 931).
Indeed, he improves a previous result:

Our result is formally similar to a result of Gelfand-Neumark [sic]. Giving a
representation for a certain kind of complex Banach algebra.... our proof is
concerned with showing that, in the present case, such quotient algebras are

actually isomorphic to the real field (p. 394).

This result constitutes the so-called Gelfand-Naimark-Segal theorem (GNS).

3. Emch’s Presentation of the C*-Algebraic Approach to QM

In order to motivate the introduction of a C*-algebra Gerard G. Emch (1984)
stated:

As the years, however, quantum statistical mechanics and relativistic quan-
tum field theory were grudgingly recognized to lie somewhere beyond the
reach of this formalism [of Hilbert space]. Moreover, the somewhat ad Aoc,
or a priori, introduction of a Hilbert space on which to build the theory was
leaving room for a conceptually tighter approach..... [; indeed,] a closer
adherence to empirically verifiable structural relations between the funda-

mental objects of the theory—the observables and the states—suggests that

*The multiplications of the operators are avoided by Segal because it concerns their commutativity.
In p. 391 he offers an interesting comparison between his approach to the algebraic interpretation
of QM and previous von Neumann’s (von Neumann, 1936).
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the observables should be constructed from [solely] the self-adjoint ele-
ments of a C*-algebra, characteristic of the system considered, and that the
states should be identified as the elements of [a specific] convex set:
[Then,] The Gelfand-Naimark-Segal theorem [GNS] allows.-- to reconstruct
a Hilbert space representation appropriate to each given physical situation,
i.e. to a class of compatible preparations of the system-- having thus estab-
lished known things on firmer foundations, the main point is that the alge-
braic formulation is genuinely more general, and precisely so where more
generality is needed. Drastically different (in technical terms “disjoint”) re-
presentations [i.e. commutative vs. non-commutative] do occur in cases of
interest both to microphysics (leading to renewed hopes that one might
handle elementary particle interactions in a mathematically consistent

manner) and to macrophysics (Emch, 1984: pp. 361-362).
Afterwards, Emch suggests its basic assumption:

The C*-Axiomatic Postulate: A physical system is characterized by a triple
{8 A, <.; .>} where: A, the set of its observables (or measurable attributes),
is the collection of all the self-adjoint elements A of a C*-algebra B with
identity I satisfying | I'| = 1, S, the set of its states (or modes of prepara-
tion), is the collection of all real-valued, positive linear functional @ on A,
normalized by the condition <®; I> = 1; and the prediction rule <. , >
which attributes, to every pair {®, A} € § *x A, the value < &; A > of @ at
A, interpreted as the expectation of the observable A when the system is in
the state @ (Emch, 1984: p. 362).

In such a way

. a truly fundamental postulate... cover[s] simultaneously the situations
encountered in quantum mechanics, in classical mechanics, and in the in-

termediate case of a theory with superselection rules® (Emch, 1984: p. 369).
From that he draws the following remarks:

Firstly, there should be no [negative] argument on the fact that the post-
ulate is both concise and mathematically legible. Secondly, it is obtained by
induction from the von Neumann synthesis of the quantum theories of
Heisenberg, Schroedinger and Born... which the C*-algebraic postulate
therefore encompasses. Thirdly, the universe of discourse of the C*-algebraic
postulate is genuinely more general than allowed by the framework deli-
neated by the von Neumann postulate: the algebras of observables which we
can now consider are more general than B (H); and the states which natu-
rally appear in the theory are more general than the density-matrices of or-
dinary quantum mechanics. Moreover, the objects described by the

The superselection rules are caused by the operators, as electric charge, which commute with all
observables. Owing to theme not all projections are observables and it is impossible to measure co-
herent superpositions of states belonging to superselections sectors.
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C*-algebraic postulate appear in all the physical situations so far encoun-
tered not only in ordinary quantum mechanics, but also in the quantum
theories with superselection rules--- and even in classical mechanics. This is
a synthesis which, therefore, goes beyond that achieved by the von Neu-
mann postulate. Fourthly, the GNS construction allows to bring back into
the formalism the technical powers of Hilbert space representations, on
which depended many of the successes of the quantum mechanics de-
scribed by the von Neumann postulate. Hence the generality added to the
von Neumann framework-- is not crippling; quite to the contrary, in fact,
since the Hilbert space representations, with which we are now prepared to
work, correspond precisely to the physical situation in which one takes into
account the modes of preparation of the systems considered.-- [ Fifthly,] Our
fifth point has to do with the epistemological question of the empirical
foundations of the C*-algebraic postulate--- [; a] similarly remote role [to
von Neumann’ assumption of Hilbert space although lacking of a clear em-
pirical basis] is played, in the C*-algebraic postulate, by the C’-algebra B of
which only the self-adjoint elements are identified as observables. It is,
therefore, a legitimate question to ask whether one can decide empirically
when “the observables of a physical system can be identified with the
self-adjoint part of a C”-algebra. This is a hard question-- (Emch, 1984: pp.
378-379).

To which he devotes a long analysis, obtaining “a chain of operational [neces-

sary] axioms”; which however are not “compelling”. Indeed, he concludes:

The formal presentation there is intrinsic and explicit enough so that one
empirically decides whether each of the axioms is a reasonable [sic!] idea-

lized description of a given physical system (Emch, 1984: p. 383).

Moreover, he supposes that the boundedness of the operators of a C*-algebra
represents a mere first stage of historical development of these algebras, whose

further stages will include the unbounded operators (Emch, 1984: p. 383).

4. Strocchi’s Axiomatic of the Dominant Formulation of QM

Before illustrating the basic point of his formulation, a last paper by Strocchi
(2012) addresses some radical criticisms to DVNQM. He points out the lack of a
priori physical motivation, as acknowledged by Dirac himself (“The justification
of the whole scheme depends on the agreement of the formal results with the
experiments”). He adds that “.- in most textbooks:- no attempt is made of im-
proving the presentation of the axioms from the experimental/operational point
of view” (ivi, p. 1). He then wants to make apparent the theoretical structure of

the dominant DVNQM by offering a five axioms axiomatic.

The basic idea [of DVNQM] is Dirac realization of the linear structure of
the quantum states, the so-called superposition principle. It codifies the dis-

tinctive feature of Schroedinger wave mechanics with respect to standard
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classical [i.e. Hamilton’s] mechanics... in the quantum superposition the
coefficient ¢, of the state gives the probability amplitude for the outcome

corresponding to the state @, i.e. the probability p, for the outcome, i.e. |c,|>.

Hence, “Axiom I States”. The states are represented by rays (or matrices) in a

Hilbert space, H. This axiom

--- formalizes the superposition principle by realizing the underlying struc-
ture of vector space spanned by the states. The physical basis of such a
principle is taken from the analysis of photon polarization experiments,
which however do not provide a clear cut distinction with respect to the
classical wave picture- in Dirac’s words “[the axiom] cannot be explained

in terms of familiar physical concepts” (ivi, p. 1).

The following Strocchi’s suggestion for an axiom of the DVNQM departs from

the standard presentation of the observables because it imposes (as Segal and

Emch do) their boundedness (on this subject we will come back in the follow-

ing):

Axiom II. Observables. The observables of a quantum mechanical systems,
i.e. the quantities which can be measured, are described by the set of

bounded self-adjoined operators in a Hilbert space H.
Some remarks follow:

In Dirac formulation the operators describing observables are not required
to be bounded and no distinction was made between hermiticity and
self-adjointness. However, for an unbounded operator hermiticity is not
enough for defining its spectrum’ and continuous functions of it; hence, its
physical interpretation is not well-defined. Moreover, the sum of two un-
bounded self-adjoint operators does not define a self-adjoint operator...
and therefore without the condition of boundedness the whole linear
structure of the observables is in question (ivi, p. 2). In Dirac presentation
the physical motivations for the description of the observables by
self-adjoint operators look rather weak. Dirac arguments in support of
axiom II are somewhat interlaced with implicit assumption about the spec-
trum of observables and its relation with the outcomes of measurements.

In the standard presentation of the principles of QM such an axiom appears
as a distinctive feature of QM with respect to classical mechanics... [yet,] no

a priori physical motivation is given (ivi, p. 2).
He continues the presentation of DVNQM by adding:

As a consequence of Axioms I and II, the states-- define positive linear
functionals on the algebra of observables--- The following axiom relates such

functionals to the experimental expectations---

"The spectrum of an operator A, o(A) may be defined, inside a C*-algebra also in an algebraic way;
it is the set of all complex numbers A such that |A — AI| does not have a (two-sided) inverse in A.
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Axiom III. Expectations [of an experiment applying an operator to a state
w] are given by the Hilbert space matrix element <A > = (¥, A ¥,) (ivi, p.
2).

Strocchi remarks that:

The assertion that the experimental expectations have a Hilbert space reali-
zation may look a very strong assumption with no classical counterpart.
Then, a crucial axiom is introduced.

Axiom IV. Dirac canonical quantization. The operators which describe the
canonical coordinates g;and moment p, 7/ = 1, -+, s of a quantum system of
2s degrees of freedom obey the canonical commutation relations.

|:qi7q_j] =0= |:pi’pj:|'|:pi’q_j] = ih/zné‘ij - (LD

This axiom reflects the commutation relations of the infinite matrices for
the position and momentum proposed by Heisenberg... and later related to
the uncertainty principle. The attempts to justify such an axiom by Heisen-
berg and Dirac [are questionable. Moreover, the above] Equations imply
that the canonical variables cannot be described by bounded operators [an
explanation will be presented later] and therefore are not observables ac-
cording to Axiom II.

The following axiom provides the bridge between Heisenberg and Schroe-
dinger formulations of QM, a deep open problem at the birth of QM. The
compatibility of the two descriptions has been the subject of philosophical
debates; the recognition that a quantum particle has multiple properties
which look contradictory and mutually exclusive has led Bohr... to the for-
mulation of his complementarity principle as the basic feature of quantum
physics. Bohr’s statement is not mathematically precise and it is not sharp
enough to lead to a unique interpretation... This is probably the origin of
the still lasting philosophical debates on its meaning.

The following axiom provides the mathematical formulation of the coexis-
tence of the particle and the wave picture and, together with axiom IV, may
be regarded as the substitute of Bohr principle.

Axiom V. Schroedinger representation. The commutation relations (1.1)
are represented by the following operators in the Hilbert space H = L*(R’,
dx):

g (x)=xw (x);pw (x)=ih/2ny [x,(x) (ivi, p. 3)

Strocchi’s general motivation for a new formulation with respect to DVNQM

i

»

given by the following criticism he addresses to it:

The Dirac-von Neumann axioms provide a neat mathematical foundation
of quantum mechanics, but their a priori justification is not very compel-
ling, their main support, as stressed by Dirac, being the a posteriori success
of the theory they lead to. The dramatic departure from the general philos-
ophy and ideas of classical physics may explain the many attempts of ob-

taining quantum mechanics by a deformation of classical mechanics or by
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the so-called geometric quantization. Thus, a more argued motivation on

the basis of physical considerations is desirable (ivi, p. 3).

And this is the purpose of a specific section. Then, Strocchi declares in the

following terms his strategy for constructing a new theory:

The discussion of the principles of QM gets greatly simplified, from a con-
ceptual point of view, if one first clarifies what are the [physical] objects of

the [subsequent] mathematical formulation (ivi, p. 3).

These objects are essentially the physical apparatuses, which both Segal and
later Emch ignored. Hence, as a first step, Strocchi wants to make a clear distinc-
tion between the physical content and the mathematical framework in order to
suggest a clearly operative support to Segal’s alternative approach.

After the previous presentation of the Axiom II, he had stated:

A trivial consequence of the Axiom II is that, through their linear combina-
tions and products the operators generate an algebra A over the complex
numbers:-- which coincides with the whole set B(H) of the bounded opera-
tors of H* (ivi, p. 2).

He adds

In this section we argue that the structure of C*-algebra of observables and
states is the suitable language for the mathematical description of a physical
system in general (including the atomic systems), with no reference to clas-

sical mechanics and its standard paradigms (Strocchi, 2010: p. 16).

In this aim, he tries to justify this algebra through an accurate analysis of the
experimental basis of physics. He next constructs the C*-algebra such that it is
“experimentally motivated”, because it originates from the previous basic con-
siderations on the observables.

However, it presents some difficulties. At the end of his analysis Strocchi ho-
nestly admits that his work for operationally justifying the wanted C*-algebra is
only partially successful. Hence the boundedness of all operators, although qual-
ified by Strocchi as “natural”, has to be considered as an assumption.

As an important consequence, the ambiguity about hermiticity and self-adjointness
of the operators in DVNQM is cancelled because for bounded operators hermi-

ticity implies self-adjointness.

5. Strocchi’s Formulation of Quantum Mechanics: I1. The
C*-Algebra and His Axiom A

We thus skip to his Axiom

#Owing to the superselection rules [caused by the operators, as electric charge, which commute

with all observables].... not all projections are observables and it is impossible to measure coherent
superpositions of states belonging to superselections sectors. Hence, [for this case] Axiom II must
become: The observables of a quantum mechanical system are described by real vectors space gen-
erated by a set of bounded self-adjoint operators on A’ (ivi, p. 2).
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--- the following Axiom-- partly goes beyond the implications of the opera-
tional analysis discussed so far; however, in our opinion, it represents a
more physically motivated alternative to Dirac-von Neumann axiom II. All
the preceding discussions and arguments are meant to provide [no more
than] a physical justification of such an axiom and are completely summa-
rized and superseded by it. An indirect justification of it as a property of the
description of a general physical systems is that it is satisfied by both CM
and QM

Hence his operative suggestions are not enough to obtain the final “Axiom A”,

which supersedes them. Of his elaboration, he:

Axiom A. The observables generate a [polynomial] C*-algebra A, with
identity---; the states which by eq. (2.1) define positive linear functionals on
the Algebras A, KA, for any observable A, separate such algebras in the

sense of eq. (2.6) and extend to positive linear functional on A (ivi, p. 6)."

In conclusion, from the above considerations it follows that the right language
for the mathematical description of quantum systems is the theory of
(non-abelian) C*-algebras and as such the mathematical structure of quantum

mechanics can be viewed as a chapter of that theory (Strocchi, 2010: p. 42).

6. Strocchi’s Formulation of Quantum Mechanics: III.
Relationship of C*-Algebra with Hilbert Space

Then Strocchi exploits some mathematical advancements obtained by GNS for
recovering the Hilbert space and hence all the mathematical description of a

physical system.

It is important to mention that quite generally, by the Gelfand-Naimark re-
presentation theorem, an (abstract) abelian C*-algebra A (with identity) is
isometrically isomorphic to the algebra of complex continuous functions
C(X) on a compact Hausdorff topological space X, where X is intrinsically
defined as the Gelfand spectrum of A (Strocchi, 2010: p 15).

As a very important consequence; its theoretical approach is independent

Notice the similar conclusion written in his book: “The arguments discussed in this section do not
pretend to prove as a mathematical theorem that the general physical requirements on the set of
observables necessarily lead to a C*-algebraic structure, but they should provide sufficient motiva-
tions in favor of it. In any case, the above mathematical structure is by far more general than the
concrete structure discussed in Sect. 2 [classical Hamiltonian systems] for classical systems” (Stroc-
chi, 2010: p. 24).

“Notice the similar words in his book: “For these reasons we adopt the following mathematical
framework: 1. A physical system is defined by its C*-algebra A of observables (with identity). 2. The
states of the given physical system are identified by the measurements of the observables, i.e. a state
is a normalized positive linear functional on A. The set S of physical states separates the obser-
vables, technically one says that S is full, and conversely the observables separate the states” (Stroc-
chi, 2010: p. 24).

"In a Hausdorff space any singleton set {x} € X is equal to the intersection of all closed neighbor-
hoods of x.
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from the space-time variables or any other geometrical representation, as instead

a Hilbert space is.

From the point of view of general philosophy, the picture emerging from
the Gelfand theory of abelian C*-algebras has far reaching consequences
and it leads to a rather drastic change of perspective [in theoretical physics].
In the standard description of a physical system the geometry comes first:
one first specifies the coordinate space (more generally a manifold or a
Hausdorff topological space), which yields the geometrical description of
the system, and then one considers the abelian algebra of continuous func-
tions on that space. By the Gelfand theory [instead] the relation can be
completely reversed: one may start from [an algebra, i.e. [the abstract ab-
elian C*-algebra, which in the physical applications may be the abstract
characterization of the observables, in the sense that it encodes the relations
between the physical quantities of the system, and then one reconstructs the
Hausdorff space such that the given C*-algebra [with identity] can be seen
as the C*-algebra of continuous functions on it. In this perspective, one may
say that the algebra comes first, the geometry comes later-- (Strocchi, 2010:
p- 15).

He adds:

The recognition of the--- mathematical structure at the basis of the standard
description of the classical systems suggests an abstract characterization of a
classical (Hamiltonian) system with no a priori reference to the explicit rea-
lization in terms of canonical variables, phase space, continuous functions
in the phase space, etc. In this perspective since a physical system is de-
scribed in terms of measurements of its observables, one may take the point
of view that a classical system is defined by [only] its physical properties, i.e.
by the algebraic structure of the set of its measurable quantities or obser-
vables, which [can be translated in mathematical terms in order to] gener-
ate an abstract abelian C*-algebra A with identity. The states of the system
being fully characterized by the expectations of the observables are de-
scribed by normalized positive linear functionals on A--- (Strocchi, 2010: p.
15).

The GNS construction is very important from a general mathematical [and
also theoretical physics’] point of view, since it reduces the existence of Hilbert
space representations of a C*-algebra to the existence of states, which is guaran-
teed by Proposition 1.6.4 of Appendix C--- Thus, the basis of the mathematical
description of quantum mechanical systems [i.e. Hilbert space] need not to be
postulated, as in the Dirac-Von Neumann axiomatic setting of quantum me-
chanics, but it is merely a consequence of the C*-algebra structure of the obser-
vables argued in Sect. 1.3 and of the fact that, by its operational definition, a state

defines a positive linear functional on them-- (Strocchi, 2010: p. 45).
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7. Strocchi’s Formulation of Quantum Mechanics: IV. The
Principle of Indeterminacy and Its Representation

So far, Strocchi did not mention quantum systems as being different from clas-
sical ones. An important clarification is his sharp answer to the following ques-
tion: What characterize QM with respect to classical theories? At the beginning

of the above-mentioned paper he had remarked:

The lack of a clear distinction between the role of the two sets of axioms, I,
I, III and IV, V, is at the origin of the widespread point of view, adopted by
many textbooks, by which all of them are characteristic of quantum sys-
tems. The distinction between classical and quantum systems is [read:
ought to be] rather given by the mathematical structure of A and it will
have different realizations depending on the particular [either classical or

not] class of systems (Strocchi, 2012: p. 3).

He underlines that the first three axioms of the above list represent also a clas-
sical system; the quantum characterization enters through the Axiom IV, con-
cerning the non-commutativity of the two conjugate observable defining a
states. As a consequence, Classical mechanics results in a Hilbertian description
which is equivalent to one in terms of an algebra of functions, whereas this kind
of algebra is impossible when the observables do not commute, since two mu-
tually interfering variables cannot be governed by the notion of a function.

This quantum/classical distinction was blurred for a long time because the
status of the principle of indetermination was unclear to most physicians. In
1947 Segal had still to write that he had:

To confute the view that the indeterminacy principle is a reflection of an
unduly complex formulation of Quantum mechanics and to [strength] the
view that the principle is quite intrinsic in physics, or in an empirical

science based on quantitative measurement (Segal, 1947: p. 931).

Strocchi remarks in addition that the usual mathematical relations of
non-commutation are not valid for finitely measurable operators, essentially be-
cause a sharp measurement of one observable (Ap = 0 exacly) ought to have in
correspondence an infinite value of the other observable; yet, this value cannot
be operationally obtained (ivi, p. 8). Hence, he evaluates as insufficient Born’s
and Heisenberg’s experimental justifications of these relations which in the
standard mathematical representation link these relations with Hilbert’s opera-
tors. Rather, he advances reasons of experimental methodology for suggesting a

new mathematical version of them (called by him “complementarity relations”),

A,(A4)+A,(B)=C>0 forallw

where A is the mean square deviation. Notice that this relation is not the mere
logarithm of the previous one because they may differ at the infinity points.
About this result he adds the following comment.

This provides a precise operational and mathematical formulation of
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complementarity with the advantage, w.r.t. the Heisenberg uncertainty
relations, of being meaningful and therefore testable for operationally de-
fined observables, necessarily represented by bounded operators.... (ivi, p.
8).

In particular, he proves that his version is more effective than Heisenberg’s in
the case of the two components s, and s, of momenta of spin % (ivi, p. 9).
In sum, through the technique of the representations of C*-algebras he has

obtained a complete formulation of QM.

8. Strocchi’s Formulation of Quantum Mechanics:
V. Symmetries

After the complementary relations Dirac canonical quantization is re-formulated
according to an algebraic comprehensive approach of Classical mechanics and
QM. By starting from a free C*-algebra'” he nicely obtains two cases of quantiza-
tion, Z = 0 and Z = th/2m, which correspond respectively to classical mechanics
and QM. That moreover proves that no other case is possible.

Axiom V of DvNQM gives the Schroedinger representation inside Hilbert
space. In SQM

In SQM Schroedinger QM follows from the von Neumann uniqueness theo-
rem through the canonical commutators relations. His treatment includes the
symmetries too, as it is shown in the case of the dynamics in a one-parameter
group of *-automorphisms of A. At this aim, in order to take in account the
unboundedness of the operators, he defines the Weyl algebra of the two va-
riables, p and g, defining the state of the particle (rather than the Heisenberg
algebra).

For finite degrees of freedom, the Weyl algebra codifies the experimental
limitations on the measurements of position and momentum (Heisenberg
uncertainty relations) and Schroedinger QM follows from the von Neu-

mann uniqueness theorem (Strocchi, 2008: p. 4th of the cover).

And also the symmetries follow.

At last, he summarizes his formulation through the following features:

In conclusion, the operational definition of states and observables motivates
the physical principle or axiom that, quite generally the observables of a
physical (not necessarily quantum mechanical) system generate a
C*-algebra. The Hilbert space realization of states and observables (Di-
rac-von Neumann Axioms I-III) is then [obtained as] a mathematical re-
sult. The existence of observables which satisfy the operationally defined
complementarity relations implies that the algebra of observables is not Ab-

elian and it marks the difference between CM and QM. Thus, for a quan-

12A free algebra is the noncommutative analogue of a polynomial ring since its elements may be de-
scribed as “polynomials” with non-commuting variables.
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tum mechanical system the Poisson algebra generated by the canonical va-
riables [i.e. the algebraic-differential relationships between the variables]
cannot be represented by commuting operators [owing to the indetermina-
tion relationships] and actually canonical quantization (Axiom IV) follows
from [different,] general geometrical structures. The Schroedinger repre-
sentation (Axiom V) is selected by the general properties of irreducibility
and regularity. The general setting discussed so far may then provide a
more economical and physically motivated alternative to the Dirac-von
Neumann axioms for the foundation of quantum mechanics (Strocchi,
2012: p, 12) (ivi, p. 12)."

9. Strocchi’s Formulation as a PI Theory. The Lacking
Characteristic Features

Hilbert space clearly represents the Al attitude, Segal’s tradition which is based
out from it, according to an algebraic approach, whose tradition relies on con-
structive mathematical tools promises an entirely new foundation of QM.
Moreover SQM introduces as a fundamental mathematical technique the sym-
metries, which are the theoretical techniques of PI & PO theories. As a fact, ac-
cording to Segal QM is formulated. In the literature on the QM that I know, I
have found no one formulation presenting these merits; only Weyl formulation
presents symmetries yet based in an approximative way.

Segal’s tradition assumes the boundedness of each physical variable. This as-
sumption is necessary in order to obtain a C*-algebra of the observables; it assures
both the hermiticity of all operators and moreover the solutions of all relevant,
differential equations (Pour-El & Richards, 1989). Strocchi tries to justify this the-
sis of boundedness through an operational analysis of experimental physics. In

my opinion this thesis remains as questionable on an epistemological basis."

«

PFor a similar conclusion: “... the mathematical setting of quantum mechanics can be derived with
a very strict logic solely from the C*-algebraic structure of the observables and the operational in-
formation of non-commutativity codified by the Heisenberg uncertainty relations (Section 2.1). In
this way one has a (in our opinion better motivated) alternative to the Dirac-Von Neumann axi-
omatic setting, which [however] can actually be derived [from the previous framework] through the
GNS theorem 2.2.4 [about the representation of a C*-algebra into Hilbert space], the Gel-
fand-Naimark theorem 2.3.1 [about the faithful representation on Hilbert space in the case of Ab-
elian algebra] and Von Neumann theorem 3.2.2 [about the unitarily equivalence of all regular irre-
ducible representations of Weyl algebras]” (Strocchi, 2008: p. 23).

“Surely, each apparatus is bounded in its result of the measurement processes, but the set of all ap-
paratuses defining an observable may be infinite in number and hence this set may produce a result
beyond a whatsoever bound. This point was debated by Bridgman in his discussion of the operative
dependence of each physical observable on the apparatuses of measurements (Bridgman, 1927, chp. 1).
This point may also be discussed by considering which numbers result from measurements. Each
measurement process gives a number having a finite number of digits, hence a rational number.
Yet, each result of a measurement may be improved beyond whatsoever bound by means of new
apparatuses; hence, it is a privilege of a theoretical physicist to idealize an experimental number as a
real number, with possibly an infinite number of digit, as e.g. m, to which the results of all the
equivalent processes of measurements presumably converge. Hence he overcomes the finitist bound
in the aim at easily operating with real numbers (which however may be constructive or not). Like-
wise, the unboundedness of the physical variables represents an idealization of its range of values.
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However, the same Strocchi admits that his “preliminary basic consideration” is
not enough to conclude his Axiom A (ivi, p. 6), which is the actual point of de-
parture of his formal development. Hence, one can consider SQM as no more
than relying upon the mathematical content of Axiom A, i.e. the polynomial
C*-algebras of the observables, given as an a priori. But, the previous objection
to his thesis challenges not only Strocchi’s criticisms to the dominant formula-
tion, but also the very basis of some theorems (e.g. his result about the indeter-
mination relationships). Hence, the thesis of a bounded experimental basis as
suitable for theoretical physics in general, and in particular for QM rather seems
a reduction of the very mathematical basis of DVNQM.

However, one may suppose that Segal’s tradition represents a unaware and
incomplete attempt by many scholars to achieve a formulation of QM which is
based on constructive mathematics. SQM looks as a good basis for obtaining a
constructive (PI) formulation of QM. In view of improving it as an entirely con-
structive formulation one has to solve the problems of discovering the construc-
tive counter-parts of the following steps of this theory:

1) The mathematical definition of a C*-algebra. There exists, if one accepts the
apartness definition (see Bishop & Bridges, 1985: chp. 7, p. 157; Takamura, 2005:
p- 81).

2) GN theorem. Yes in the case of Abelian algebras; its constructive coun-
ter-part was obtained by (Bridges, 1979: sect. 6.7; Takamura, 2005: p. 289).
Through a slightly different notion of norm instead, in the case of a non-Abelian
algebra, that necessary for QM, to find a solution seems hopeless."”

3) The proof of the ad absurdum proof (AAP) in next sect requires to derive
from a polynomial C*-algebra a C*-algebra of general functions. Open problem.

4) In the case of a finite number of observables the introduction of both
Weyl’s and Heisenberg’ algebras and groups. Open problem.

5) Von Neumann theorem (all regular irreducible representation of Weyl
C-*algebras are unitarily equivalent). Open problem.

The already obtained resolutions of the first problems in the above list are
comfortable; they mean that the above problems are relevant. However, the dif-

ficulties presented by the unsolved ones are formidable.

10. Strocchi’s Formulation as a PO Theory: The Lacking
Characteristic Features

It is not possible to represent the C*-algebra of the complementary relations,
based only on algebraic reasoning, through functions, which of course imply
classical logic through their equality symbols. This fact leads to suspect that
SQM may be a PO theory. An accurate inspection of SQM shows that in fact
Strocchi presents most of his theory according to some characteristic features of
a PO, illustrated by (Drago, 2012).

First, he lucidly bases his theory on a problem. SQM is based on the funda-

*Bridges D.: Personal communication, 20/12/2017.
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mental problem of how our knowledge can overcome the unavoidable uncer-
tainty of the measurements of two conjugate observables. In particular, he put
the problem of which experimental reasons justify the non-commutation rela-

tions.

The main problem is the precise interpretation of the principle [of non
commutativity of conjugate variables] in terms of unambiguous experi-

mental operations and its precise mathematical formulation (ivi, p. 15).

Second. He argues by means of the intuitionist logic inside which the law of
double negation fails. Indeed, he makes use of doubly negated propositions
whose corresponding affirmative propositions lack of evidence or are false
(DNPs). In the following, I will list the DNPs occurring in (Strocchi, 2012):'

1) It is impossible to measure coherent superpositions of states belonging to
different superselection sectors. [#one measures coherent superpositions of
states inside a single sector] (ivi, p. 2).

2) Thus, if two states defined by two apparently different preparation proce-
dures yield the same results of measurements for all observables, i.e. expecta-
tions, from an experimental point of view they cannot be considered as physi-
cally different [# they are the same]-- [to be cont.ed].

3). ... since there is no measurement which distinguishes them [#the results of
all measurements are equal] (ivi, p. 3).

4) Similarly... there is no available operational way to distinguish them [=all
operations give the same result] (ivi, p. 3).

5) ... the in-evitable limitations in the preparation of states and measurements
of A in general preclude the possibility of obtaining sharp values of A, i.e. A (A)
= 0--- [# the freedom of preparations-- gives... sharp values of--] (ivi, p. 8).

6) Experimental principle-- For any given observable A, one can correspon-
dingly prepare states for which a sharp value may be approximated as well as
one likes [Here the nature of DNP is given by the point underlined words; they
are equivalent to “beyond any bound”; # at the infinity] (ivi, p. 8).

7) This means that it is impossible to have a direct [non mediated] experi-
mental check of the uncertainty relations [#one has a mediated experimental
check of the uncertainty relations]--- [to be cont.ed].

8) ---since one only [=not otherwise # surely] measures bounded functions of
the position and the momentum (ivi, p. 8).

A last proposition of this kind is presented by Strocchi when he introduces a
crucial notion. Consistently with the PO model of a theory, he looks for the ma-
thematical version of these uncertainty relations by proceeding in a heuristic
way. In addition, his main result (the proposition 2.8) is a DNP as it will be
proved in the following. In a first time he suggests the new definition of com-

plementarity through a negative word:

!In the following I will underline the negative words inside a DNP in order to make apparent its
logical nature. Notice that the modal words are equivalent to a DNP (e.g. may: “it not false that it is
the case that...”). They will be point underlined.
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Definition 2.7. Two observable A, B are called complementary if the fol-
lowing bound holds
A(A4)+A(B)>0 (ivi, p. 8).

Then he states the DNP 9:

Proposition 2.8. If the above experimental principle holds, given a repre-
sentation 7 of A, the existence of two observables n(A), 7(B) which are
complementary, implies that the C*-algebra A(A,B) generated by n(A), 7(B)
cannot be commutative [# two observable with A(A) + A(B)= 0 commute]
(Strocchi, 2012: p. 9) (ivi, p. 9)."

The given problem is not considered as solved without showing the relation
between the old and the new notions. First, he relaxes the previous limitation of

the observables to be represented by polynomial functions.

The relation between complementarity and non-commutativity is easily
displayed if one realizes that in each irreducible representation pi(A) of the
algebra of observables one may enlarge the notion of observables by consi-
dering as observables the weak limits of any Abelian C*-subalgebra B X
pi(A). Technically, this amounts to consider the von Neumann algebra B"
generated by B; one may show that the former contains all the spectral pro-
jections of the elements of B. In the Gelfand representation of the Abelian
C*-algebra B by the set of continuous functions on the spectrum of B, such
weak limits correspond to the pointwise limits of the continuous functions.
They are operationally defined by instruments whose outcomes yield the
pointwise limits of the functions defined by the measurements of the ele-
ments of B.

This means that one recognizes as observables not only the polynomial
functions of elements B belongs to B and therefore by norm closure the

continuous functions of B, but also their pointwise limits (ivi, p. 9).

Then the relationship between the two above relations is stated by means of
an AAP, exactly the way of reasoning of a PO theory. The argument can be
summarized in the following way. By calling “complementarity of A,B” Cp and
their “commutativity” Cm, he wants to prove that when Cp holds true then ~Cm
follows. He starts by negating the thesis, = =Cm, which describes a situation
where both n(A) and n(B) (according to a von Neumann’s theorem) can be
written as functions of C, i.e. in this case the C*-algebra is an algebra of func-
tions. Hence, in this algebra the classical logic holds true, and thus -~ ~Cm >
Cm. His arguing obtains that Cm > —Cp, i.e. the negation of the starting hypo-
thesis, an absurd. Hence, it is not possible that Cm > Cp, or, = (Cp > - Cm), i.e.

the new notion Cp surely grasps more content than the old notion Cm."®

"Notice that the second negative proposition is not a mere explanation of the first negative propor-
tion, because they are different, physical the former one and mathematical the latter one.
"Incidentally, in classical logic the proved formula Cp > —Cm is classically equivalent to ~Cp v
-Cm==-Cmv-Cp=Cm->-Cp.
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Yet, the above AAP concerns the relationships of the experimental basis of
QM with DVNQM, not the conclusion of the theoretical development of SQM as
it occurs in the model of a PO theory. However, the previous development of
SQM may be organized anew for fitting the model of a PO theory at the cost to
change some its parts. The following are the moves to be performed:

1) To make use of more DNPs than those used by Strocchi.

2) To invent a chain of new AAPs concerning the resolution of the previous
problem, more specifically the problem of a faithful representation of a C*-algebra
of the operators into Hilbert space; in addition one may include the previous
AAP of SQM, i.e. to find out the correct representation of the C*-algebra of the
operators into the Hilbert space.

3) At last, one has to apply to the conclusion of the final AAP the principle of
sufficient reason for translating this conclusion in an affirmative proposition;
from which one has to obtain the symmetries and the results of the measure-
ments.

In sum, apart the stating the basic problem, the entire development of the

theory has to invented. The tasks are hard, but a priori not impossible.

11. Conclusion

A merit of Strocchi’s work is to have suggested two clever and sharp criticisms to
respectively BYNQM and the usual mathematical representation of the commu-
tation relation. In addition, from both Segal’s and Strocchi’s works we have ob-
tained an at all new look at QM: 1) It sharply characterizes its mathematical
contents. 2) It constructs a C*-algebra of bounded observables; i.e., it before put
the algebra and later the geometry, as Heisenberg’s formulation did. 3) It stresses
the experimental characteristic feature of Heisenberg’s principle, which is
represented according to a new mathematical formula. 4) This principle is rec-
ognized as constituting the sharp separation mark between Classical mechanics
and QM. 5) With respect to the expectations of the measurements his approach
deals with the operators, rather that the states, as Hilbert space does. 6) Its theo-
retical development obtains the symmetries through Weyl’s algebra.

Yet, SQM is not the alternative formulation to DvnQM for the following rea-
sons. 1) Its mathematics is only partially the constructive one; in particular, its
description of the operative basis of theoretical physics is not enough to fully jus-
tify the boundedness of the physical operators, i.e. the postulate of a C*-algebra.
2) Its organization is only partially the problem-based one. 3) In a more specific
way, its theoretical development is aimed to recover Hilbert space through a suita-
ble representation, although this space represents the choices AI&AO. 4) Rather
than the Haniltonian, one could base the theoretical development of QM on the
basic phenomenon of the bodies impact (where moreover the boundedness of all
operators is fully justified), rather than the continuous motions of a particle; more
in general on discrete phenomena, rather than continuous motions; in terms of

formulations, on the physical principle of the Lazare Carnot’s mechanics.
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All in all, although its starting point is an alternative one, the resulting SQM

plays rather an alternative role to BNQM a parallel role to it.
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