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Abstract 
 
Image signals are always disturbed by noise during their transmission, such as in mobile or network commu-
nication. The received image quality is significantly influenced by noise. Thus, image signal denoising is an 
indispensable step during image processing. As we all know, most commonly used methods of image de-
noising is Bayesian wavelet transform estimators. The Performance of various estimators, such as maximum 
a posteriori (MAP), or minimum mean square error (MMSE) is strongly dependent on correctness of the 
proposed model for original data distribution. Therefore, the selection of a proper model for distribution of 
wavelet coefficients is important in wavelet-based image denoising. This paper presents a new image de-
noising algorithm based on the modeling of wavelet coefficients in each subband with multivariate Radial 
Exponential probability density function (PDF) with local variances. Generally these multivariate extensions 
do not result in a closed form expression, and the solution requires numerical solutions. However, we drive a 
closed form MMSE shrinkage functions for a Radial Exponential random vectors in additive white Gaussian 
noise (AWGN). The estimator is motivated and tested on the problem of wavelet-based image denoising. In 
the last, proposed, the same idea is applied to the dual-tree complex wavelet transform (DT-CWT), This 
Transform is an over-complete wavelet transform. 
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1. Introduction 
 
The denoising of a natural image corrupted by Gaussian 
noise is a classic problem in signal processing. The distor-
tion of images by noise is common during its, acquisition, 
processing, compression, mobile and network transmis-
sion. Traditional algorithms perform image denoising 
based on threshold function methods, such as soft-thresh-
old and hard-threshold [1]. If the wavelet transform and 
MMSE estimator are used for this problem, the solution 
requires a priori knowledge about wavelet coefficients. 
Therefore, two problems arise: 1) what kinds of distribu-
tions represent the wavelet coefficients? 2) What is the 
corresponding estimator (shrinkage function)? 

Figure 1 illustrates the histogram of photographic 
image and PDF plots. The PDF plots illustrate the mar-
ginal Radial Exponential PDF and Gaussian PDF. The 
histogram in Figure 1 is very symmetric with zero mean 
and the histogram of wavelet coefficients are more like 

marginal Radial Exponential PDF, it is more peaked and 
the tails are heavier, than the Gaussian distribution. 

It is known that the amplitude of wavelet coefficients 
tend to propagate across scales. This parent-child relation 
is also underlined by the empirical joint histogram be-
tween parent and child coefficients as shown in [2]. In [3], 
they developed a multivariate spherically contoured 
Laplacian density that is similar to the Radial Exponential 
random vectors in its function form, but the marginal of 
Laplacian random vectors are not Radial Exponential den-
sity. Indeed, Radial Exponential random vectors specialize 
to Laplacian random vectors in the scalar case  1d  . In 

this paper we focus on Radial Exponential random vectors 
with local variances to model these locality and persis-
tence properties of wavelet coefficients. The rest of this 
paper is organized as follows. In Section 2, the basic idea 
of Bayesian denoising will be briefly described. Subsec-
tion 2.1 describes wavelet coefficients model, these mod-
ls try to capture the dependencies between a coeffi- e   



P. KITTISUWAN  ET  AL. 

Copyright © 2009 SciRes.                                                                                 WSN 

285
  

-15 -10 -5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

Wavelet Coefficients

P
ro

ba
bi

lit
y

Lena Image

Histogram of HH1

Radial-Exponential PDF 
Gaussian PDF

 

Figure 1. Histogram of wavelet coefficients in HH1 subband of 512 512  pixel Lena image. 
 
cients and its group of parent in detail. In Section 3, we 
derive a closed form of MMSE estimator using multi-
variate Radial Exponential distribution with local vari-
ance, Radial-Shrink. Section 4 describes the approxi-
mated MAP (maximum a posteriori) estimation for lo-
cal variances using Rayleigh density priori with Gaus-
sian distribution (the local variances estimation of 
wavelet coefficients is the key to get better performance 
for image denoising). In Section 5, we use our model 
for wavelet based denoising of several images cor-
rupted with additive Gaussian noise in various noise 
levels. The simulation results in comparison with 
MMSE_TriShrink _Laplace. In this paper, we not 
compare with BLS-GSM [4] because this method use a 
lot of time for denoising image. In the last simulation 
results, the performance of a subband dependent will be 
demonstrated on the dual-tree complex wavelet trans-
form. The dual-tree complex wavelet transform 
(DT-CWT) [5,6] is an over-complete wavelet transform. 
The discrete wavelet transform (DWT) used in image 
denoising can be of many types, such as orthogo-
nal/bi-orthogonal, real/ complex valued, separa-
ble/non-separable, or decimated/non-decimated. Due to 
the shift- invariance property, the over-complete 
trans-form improves the image denoising performance 
in PSNR by 1 dB as compared to that of the decimated 
representation [7]. Finally the concluding remarks are 
given in Section 6. 

2. Bayesian Denoising 
 
In this paper, we are interested in the problem of esti- 
mating d-component Radial Exponential random vectors, 

 in additive white Gaussian noise (AWGN),  The x n

 y x n                    (1) 

marginal models are weak models for wavelet coefficients 
of natural images because they ignore the dependencies 
between coefficients, although a coefficient and its parent 
are uncorrelated but are not independent. It is well known 
those wavelet coefficients are statistically dependent due 
to two properties of the wavelet transform 1) If a wavelet 
coefficient is large/small, the adjacent coefficients are 
likely to be large/small, and 2) large/small coefficients 
tend to propagate across the scales. Here, we can update 
the MMSE estimation problem as to take into account the 
statistical dependency between a coefficient and its group 
of parent. Let 2 3, , , dx x x  represent the group of parent 

of 1x  ( 2 3, , , dx x x  is the wavelet coefficient at the 

same spatial position as x1, but at the next coarser scale). If 
we observe a noisy wavelet coefficient,  and  is 

additive Gaussian noise zero mean with variance , 

MMSE estimator can be rewritten as: 

y n

 2
n

     1 1

1
ˆ

( ) dR

x x f f d
f

  x n
y

y x y x x
y

      (2) 
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Figure 2. The marginal distribution of the d-component radial exponential PDF (3) for  and 

, 
1d 

9d  2 4  , where  the distribution is Laplacian PDF. 1d 
 
2.1. Wavelet Coefficients Distribution 
 

In [3], and [8] a multivariate Laplacian distribution and 
bivariate Cauchy distribution are proposed to model wave-
let coefficient and group of parent joint PDF. Figure 2 
shows the marginal distribution of d-dimension Radial 
Exponential random vectors where  and 1d  9d  . 
In case,  (scalar) marginal distribution of Radial 
Expo-nential random vectors is Laplacian PDF. For 

 the marginal distribution of Radial Exponential is 
less kurtosis than the Laplacian distribution. As 
d-dimension increases, the marginal distribution be-
comes more Gaussian. Indeed, the multivariate sphere-
cally contoured of Radial Exponential distribution zero 
means with variance 

1d 

1d 

2  has the density 

  1 1
exp , d

d

d
f C R


 

   
 

x x x x       (3) 

C  is normalization constant parameter. 

 
3. MMSE Estimators with Radial  

Exponential Random Vectors 
 
3.1. Generalized Incomplete Gamma Function 
 
In 1994, Chaudhry and Zubair introduced the generalize 

incomplete gamma function [3], defined as 

   1, ; exp /
x

x b t t b t d


    t         (4) 

For Ζ+1 2  , Z  are set of integer number, there is a 

closed from expression for the generalized incomplete 
gamma function, for 1 2   and 1 2  

la 

, for ex-

ample, there is the formu

     1 2, ; 0.5 exp expx b x     b x  

     / exp /erfcx x b x b x erfcx x b x      
, 

     1 2, ; 0.5 / exp expx b b x       b x

     / exp /erfcx x b x b x erfcx x b x      
 

Here, numerical issues sometimes arise if some care is 
not taken. For example, computing the product of the 
first term in bracket of above equation can lead to nu-
merical inaccuracies. However, note that  exp /b x  

     / exp 2 /erfcx x b x x b erfc x b x     .

If

 It 

can be determined which of the two expressions is the 

more accurate using following rule.  2x b , then 
the first term in bracket


 is 
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  exp / / .b x erfcx x b x    Other cases, the first 

term in the bracket is  exp 2x b  /erfc x b x  . 

Indeed, the generalized incomplete gamma function sat-
isfies a recurrence relation for computing its values for 
other order,   from [9,10] 

  1
( 1, ; ) 1, ; , ; x b x b

b
         x b



 

exp / .x x b x                   (5) 

3.2. MMSE Estimator with Multivariate Radial 
Exponential Distribution 

Multivariate spherically contoured of Radial Exponential 
density  can be generated by x

zx s , 

where  is d-component zero mean iid Gaussian ran-

dom vectors with variance 

s
2  

 
 

2

2 22

1
exp

22
d

f


 
 
 
 

s

s
s  

and  is a gamma PDF . 

The two distribution are iid. Setting 

z ( ) 4 exp( 2 )zf z z z  , 0z 

a z
 

, then 

. Changing the random variable of asx  , ,z as x . 

Using Jacobian transform  2 1 dJ a a , then the PDF 

of random vectors  is given by x

   2

0
zf J f a f da

a

    
 x s

x
x  

 2

0

1
2 zd

a f a f
aa

        
    s

x
da          (6) 

From MMSE estimator (2), we would like to find 

( )fy y  and    
dR

A f f d  x nx y x x . If the noise sig-

nal  is independent additive white Gaussian noise 

(AWGN) with variance 

n
2
n , 

 
 

2

2 22

1
exp

22
d

nn

f


 
 
 
 

n

n
n  

First, the PDF of  is given by the multivariate 

convolution. The multivariate convolution defines as: 

y

( ) ( ) ( )
dR

f f f d y x ny x y x x          (7) 

Using (6) gives 

     2

0

1
2

d
zd

R

f a f a f da f
aa

         
    

 y s

x
y y dn x x  

   2

0

1
2

d
z d

R

af a f f d da
aa

          
     

  s n

x
y x x  

Using Gaussian convolution formula [3] 

 1

d
d

R

f f d
aa

    
  s n

x
y x x  

     
2

2 2 2 2 22 2 2

1 1
exp

22
d d

nn
aa    

  
   

y
 

Therefore, 

   
   

2
2 22 2 2

0

1 1
2

2
z d d

n

f af a
a  

 
  

y y  

 
2

2 2 2
exp

2 n

da
a  

   
  

y
 

   

 

3

22 2 2 2
0

2

2

2 2 2

8

2

exp 2
2

dd

n

n

a

a

a d
a

  

 






 
   
  


y

a

 

Changing the variable of integration, using 
2 2 22 2 , 4nt a dt ada    ,  

gives 

 
 
 

2 2

22

exp 2 n

d
f

 


y y  

 
2

2

22 2

2 2

2

2
exp

n

n

d

t
t d

t t



 



  
  
 
 


y

t  

Using the generalized incomplete gamma function in 
(4), we get 

  22 2 2

2 2 2 2

exp 2 2
( ) 2 , ;

2( )

n n
d

d
f

  
  

  
    

   
y

y
y  

22 2

2 2

2 2
1 , ;

2
n nd 

 

 
   
 
 

y
2

         (8) 
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Second, from MMSE estimator (2), we would like to 
find 

( ) ( )
d

i

R

A x f f d  x nx y x x  

Using (6) gives 

A   2

0

1
2 (

d
i zd

R

)x a f a f da f d
aa

         
    

  s n

x
y x x  

 2

0

1
2 (

d
z i d

R

af a x f f d da
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          
     

  s n

x
y x x)  

Using Gaussian convolution formula [3] 

 1

d
i d

R

x f f d
aa

    
  s n

x
y x x  
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Therefore, 

      
2 2

2
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 
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Changing the variable of integration  a t

 
 

2 2

22

4exp 2 n i

d

y
A
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
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2
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Using the generalized incomplete gamma function in 
(4), we get 

  22 2 2

2 2 2 2

exp 2 2
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n i n
d

y d
A

  
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2
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y y


 

(9) 
Solving (2) using (8) and (9) gives the MMSE estima-

tor, 

22

2 2

2
ˆ 2 , ;

2
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d
x y
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Setting 3d  and using th ce relation of gen-
er comp

e recurren
alized in lete gamma function (5), we get 
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(10) 

We called this method Radial-Shrink. 
 

. Parameter Estimation 

o apply our estimator, we need to know noise variance 

4
 
T

2
n  and the variance of noise-free 2 . To estimate 

e variance from noisy wavelet coef ients, a robust 
median estimator is used from the 1
nois fic

HH  subband [11]. 
2

12 ( )
ˆ

0.6745n

median HH


 
   

 
          (11) 

Under the assumption that marginal variance in wave-
let child coefficient is difference for each data point 
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 y k , an estimated  2 k  can be found using local 

ne borhood  N k . We e a square window igh  us  N k  

centered at  y k . To compute the variance of w  

coefficients, we use the fact that the wavelet coefficients 
and the additive noise are independent, thus we have the 
following relation between their variance: 

  2 2 2( ) y nk k  


      

avelet

        (12) 

where is the variance of no 2
y k  

d 

isy wavelet coeffi-

cient an  max 0,g g . 

Now, assume that a prior marginal distribution

 2

 
 

 2
y

yk
 f k


 for each observed variance   2

AP e

y k  is 

 we obtain an approximated M sti-

y



available. Then

mator for 2 k    as [13] 

2
y k

(13) 

In this paper, we assum  

 
 

  
      2

2

2 2arg max ln |
y

y

y j y k
j N kk

k f y k f



 



 
       

  

e   2|j yf y k , PDF of 

noisy wavelet coefficient, is Gaussian PDF 

  2|j yf y k       2 21/ 2 ey jk k   and 2xp / 2 yy 

   2
y

yk  2f k  2 2 k    
 1 y  22exp 2 , 0k   , 

[14] 

1 1y 

Rayleigh PDF. Using (13) and Cardanos’ method 
gives 

   2 3 3( )y k C k D k            (14) 

where 

   

2

22
3

( )( )

2 4
1 1

2

4 16 216

jj
j N kj N k

yy
M

C k
 



 
 

   


 
6

1

   

2

22
3

( )( )

2 4
1 1

2

4 16 216

jj
j N kj N k

yy
M

D k
6

1  


 
 

   


 

giving that 1  is parameter of Rayleigh PDF and M  

is number of wavelet coefficient in 

he

 N k . 

To select t  parameter 1 , we use the fact that un  

our Rayleigh PDF prior assumptio k

der

n  computed 

over all coefficients should distribute according to Rayleigh 

PD

  2
y ,

F. First, the parameter 1  has calculated from the 

maximum likelihood estimation of 2
y k t is   tha

 2 2
,

(

/y ML j
j N k

k y M



)

              (15) 

 
where [12] 

  
1 2

    

co

2
,

1

2
N

y M
k









          (16)

where is number of wa t 
band. Using (12), we finall  obtain
ance, 

L

N

k

vele
y

 

N efficient in each sub-
 the noise-free vari-

     2 23 3( ) nk C k D k 


          (17) 

 
5. Experimental Results 
 

his section presents imag xamples in 
ie ur new model 

ace limitation, however, we this section 

T e denoising e
ncy of o

 give in 

wavelet domain to show effic
and compare it with other method in literature. Due to 
sp
results concerning two 512 512  grayscale images 
and one 256 256 , namely, Lena, Boat, and Cam-
eraman two types of wavelet representations, namely 
the decimated discrete wavelet transform (DWT) and 
dual-tree complex wavelet transform (DT-CWT). The 
images are obtained from USC-SIPI image database 
[7]. We also tested our algorithm using different ad-
ditive Gaussian noise levels 2 5, 10, 20,30n   and 

40  and compared with MMSE _TriShrink_Laplace 
[3], Figure 3 shows the original cropped image Lena, 

its noisy version 2 20n  , and D ising 

sions provide by two different methods, namely 
MMSE_ TriShrink_Laplace and Radial-Shrink The 
window size 7 7

WT-based deno

ver

  are used. We have also investi-
gated different window sizes. A 9 9  window size 
can also be a good choice. However, using 3 3  
window size resulted in a slight performance loss. In 
this paper, we have not considered different square 
shapes for  N k . Performance analysis is done using 

the PSNR measure. The results can be seen in Table 
1-3. Each PSNR value in these tables is averaged over 
five runs. In t e e tables, the highest PSNR value is 
bolded. 

For practical issue, an image, which is processed by 
our method, has some pixel values that are over the 
range of gray scale in MATLAB [1-256]. In this paper, 
we prese

h s

nt the solution figuring out an average from 
the neighboring pixels and use the average value in-
stead.   
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(a)                                          (b) 

 

           
(a)                                          (b) 

Figure 3. Comparison of the denoising images obtained from Bayesian estimator DWT-based denoising algo-

rithms on Lena with TriShrink_Laplace [3] (PSNR 

 
image over five runs for lena image. 

2 20 n  : (a) Noise-free image, (b) Noisy image, (c) MMSE_

= 30.15), and (d) Radial-Shrink (PSNR = 30.31). 

Table 1. Average PSNR values of denoising 

Noise Standard Deviation 
Denoising Algori

5 10 30 40 
thms 

 20 

Decimated DWT 

MMSE_TriShrink_Laplace [3] 37.45 33.77 30.15 28.16 26.91 

elet Transform 

Radial-Shrink (DT-CWT) 38.17* 35.07* 31.51* 29.30* 28.04* 

Radial-Shrink 37.60 33.95 30.31 28.32 26.98 

Redundant Wav
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Table 2. Average PSNR values of denoising image over five runs for boat image. 

tand ation Noise S ard Devi
Denoisin

40 
g Algorithms 

5 10 20 30 

Decimated DWT 

MMSE_TriShrink_Laplace [3] 35  3  2  2  2  

35.96 32.43 28.89 26.82 25.46 

DT-CWT) 

.94 2.32 8.75 6.73 5.31

Radial-Shrink 

Redundant Wavelet Transform 

Radial-Shrink ( 35.71* 33.08* 29.93* 27.95* 26.38* 

 

e PSNR values of denoising image over five ru eram

Noise Standard Deviation 

Table 3. Averag ns for cam an image. 

Denoising Algo
40 

rithms 
5 10 20 30 

Decimated DWT 

MMSE_TriShrink_Laplace [3] 36  3  2  2  2  

36.88 32.17 27.35 25.07 23.66 

DT-CWT) 

.79 2.18 7.93 5.71 4.25

Radial-Shrink 

Redundant Wavelet Transform 

Radial-Shrink ( 37.09* 32.80* 28.47* 26.03* 24.64* 

 
6. Discussion and Conc
 

 this paper, we present a new image denoising algo-
ndom vectors with 

cal variance for modeling of wavelet coefficients in

Lai, L. Liu, and P. Lv, “An Improved Ap-
shold Function De-noising of Mobile Im-
ulti-wavelet Transform Domain,” IEEE

action Signal Processing, Vol. 

3482-3496. 

celli, “Image denoising using scale mixtures of Gaussian 
wavel n,” IE saction Processing, 

Vol. 12, No. 11, pp. 1338-1351, November 2003. 

 Transaction London A, September 1999. 

wamy, 

d and I. W. Selesnick. 

ons with application,” Journal of Computer 

lusion 

In
rithm based on Radial Exponential ra
lo  

Aug

each subband, namely Radial-Shrink Instead of this den-
sity model other density models can be used. For exam-
ple, instead of using Radial Exponential random vectors 
we can use a mixture model of this distribution. The 
performance of proposed technique is fairly good in 
terms of PSNR. 
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