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Abstract 
Penetrative Bénard-Maranagoni convection in micropolar ferromagnetic fluid 
layer in the presence of a uniform vertical magnetic field has been investigated 
via internal heating model. The lower boundary is considered to be rigid at 
constant temperature, while the upper boundary free open to the atmosphere 
is flat and subject to a convective surface boundary condition. The resulting 
eigenvalue problem is solved numerically by Galerkin method. The stability of 
the system is found to be dependent on the dimensionless internal heat source 
strength Ns, magnetic parameter M1, the non-linearity of magnetization pa-
rameter M3, coupling parameter N1, spin diffusion parameter N3 and micro-
polar heat conduction parameter N5. The results show that the onset of ferro-
convection is delayed with an increase in N1 and N5 but hastens the onset of 
ferroconvection with an increase in M1, M3, N3 and Ns. The dimension of fer-
roconvection cells increases when there is an increase in M3, N1, N5 and Ns 
and decrease in M1 and N3. 
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1. Introduction 

Ferrofluids are colloidal suspensions of magnetic nanoparticles, as suggested by 
Rosensweig [1] in his monograph, it is pertinent to consider the effect of mi-
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cro-rotation of the particles in the study. Based on this fact, studies have been 
undertaken by treating ferrofluids as micropolar fluids and the theory of micro-
polar fluid proposed by Eringen [2] has been used in investigating the problems. 
Micropolar fluids have been receiving a great deal of interest and research focus 
due to their applications like solidification of liquid crystals, the extrusion of po-
lymer fluids, cooling of a metallic plate in a bath colloidal suspension solutions 
and exotic lubricants. In the uniform magnetic field, the magnetization charac-
teristic depends on particle spin but does not on fluid velocity: Hence micropo-
lar ferrofluid stability studies have become an important field of research these 
days. Although convective instability problems in a micropolar fluid layer sub-
ject to various effects have been studied extensively, the works pertaining to mi-
cropolar ferrofluids are in much-to-be desired state. Many researchers (Lebon and 
Perez [3], Payne and Straughan [4], Siddheshwar and Pranesh [5], Idris et al. [6], 
Mahmud et al. [7], Sharma and Kumar [8]) have been rigorously investigated 
the Rayleigh-Bénard situation in Eringen’s micropolar non-magnetic fluids. 
From all these studies, they mainly found that stationary convection is the pre-
ferred mode for heating from below. Zahn and Greer [9] have considered inter-
esting possibilities in a planar micropolar ferromagnetic fluid flow with an AC 
magnetic field. Abraham [10] has investigated the problem of Rayleigh-Bénard 
convection in a micropolar ferromagnetic fluid layer permeated by a uniform 
magnetic field for stress-free boundaries. Thermal instability problem in a ro-
tating micropolar ferrofluid has also been considered by Sunil et al. [11]. Nan-
jundappa et al. [12] have investigated the onset of ferromagnetic convection in a 
micropolar ferromagnetic fluid layer heated from below in the presence of a 
uniform applied vertical magnetic field.  

The practical problems cited above require a mechanism to control thermo-
magnetic convection. One of the mechanisms to control (suppress or augment) 
convection is by maintaining a non-uniform temperature gradient across the 
layer of ferrofluid. Such a temperature gradient may arise due to 1) uniform dis-
tribution of heat sources 2) transient heating or cooling at a boundary, 3) tem-
perature modulation at the boundaries and so on. Works have been carried out 
in this direction but it is still in much-to-be desired state. Rudraiah and Sekhar 
[13] have investigated convection in a ferrofluid layer in the presence of uniform 
internal heat source. The effect of non-uniform basic temperature gradients on 
the onset of ferroconvection has been analyzed (Shivakumara et al. [14], and 
Shivakumara and Nanjundappa [15] [16]). Singh and Bajaj [17] have studied 
thermal convection of ferrofluids with boundary temperatures modulated sinu-
soidally about some reference value. Nanjundappa et al. [18] have studied the 
effect of internal heat generation on the criterion for the onset of convection in a 
horizontal ferrofluid saturated porous layer Nanjundappa et al. [19] have ex-
plored a model for penetrative ferroconvection via internal heat generation in a 
ferrofluid saturated porous layer. Nanjundappa et al. [20] have investigated the 
onset of penetrative Bénard-Marangoni convection in a horizontal ferromagnetic 
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fluid layer in the presence of a uniform vertical magnetic field via an internal 
heating model. Ram and Kumar [21] has carried out to examine the effects of 
temperature dependent variable viscosity on the three dimensional steady 
axi-symmetric Ferrohydrodynamic (FHD) boundary layer flow of an incom-
pressible electrically non conducting magnetic fluid in the presence of a rotating 
disk. Ram and Kumar [22] have analyzed the analysis of three dimensional rota-
tionally symmetric boundary layer flow of field dependent viscous ferrofluid sa-
turating porous medium. Ram et al. [23] have been made to describe the effects 
of geothermal viscosity with viscous dissipation on the three dimensional time 
dependent boundary layer flow of magnetic nanofluids due to a stretchable ro-
tating plate in the presence of a porous medium. Ram et al. [24] have investi-
gated numerically on the convective heat transfer behaviour of time-dependent 
three-dimensional boundary layer flow of nano-suspension over a radially stret-
chable surface. Kumar et al. [25] have studied the Bodewadt flow of a magnetic 
nanofluid in the presence of geothermal viscosity. Very recently, Ram et al. [26] 
have studied the rheological effects due to oscillating field on time dependent 
boundary layer flow of magnetic nanofluid over a rotating disk.  

The purpose of this paper is to study the penetrative Bénard-Marangoni con-
vection in a micropolar ferromagnetic fluid layer via internal heat generation. 
Such a study helps in understanding control of convection due to a non-uniform 
temperature gradient arising due to an internal heat source, which is important 
in the applications of ferrofluid technology. The linear stability problem is 
solved numerically using the Galerkin method, and the results are presented 
graphically. Moreover, the stability of the system when heated from below and 
also in the absence of thermal buoyancy is discussed in detail. 

2. Mathematical Formulation  

We consider an initially quiescent horizontal incompressible micropolar ferrof-
luid layer of characteristic thickness d in the presence of an applied uniform 
magnetic field H0 in the vertical direction with the angular momentum ω . Let 

( )0 0T z =  and ( )1 0T T z d< =  be the temperatures of the lower and upper rigid 
boundaries, respectively with ( )0 1T T T∆ = −  being the temperature difference. 
A uniformly distributed overall internal heat source is present within the mi-
cropolar ferrofluid layer. The Cartesian co-ordinate system ( ), ,x y z  is used 
with the origin at the bottom of the layer and z-axis is directed vertically upward. 
Gravity acts in the negative z-direction, ˆgk= −g  where k̂  is the unit vector in 
the z-direction.  

The upper free boundary is assumed to be flat and subjected to linearly tem-
perature dependent surface tension σ is ( )0 0T T Tσ σ σ= − − , Tσ  is the rate of 
thermal surface tension. 

The governing equations for the flow of an incompressible micropolar ferro-
magnetic fluid are: 

0∇ ⋅ =q                              (1) 
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( ) ( ) ( ) ( )2
0 2r rp

t
ρ ρ η ξ ξ

∂ + ⋅∇ = −∇ + + ⋅∇ + + ∇ + ∇× ∂ 

q q q g B H q ω    (2) 

( ) ( ) ( ) ( ) ( )2
0 0 2 2rI

t
ρ µ η ξ

∂  ′+ ⋅∇ = × +∇ ∇ ⋅ + ∇ + ∇× −   ∂ 
q M H qω

ω ω ω ω  (3) 

( )2
1

0 0 , 0
, ,

V H
V H V H

k T T Q

D DTT C
T Dt T Dt

δ

µ ρ µ

′′∇ + ∇× ⋅∇ +

 ∂ ∂   = + ⋅ + − ⋅    ∂ ∂     

M H MH

ω

        (4) 

( )0 01 T Tρ ρ α = − −                       (5) 

0∇ ⋅ =B , 0∇× =H  or φ= ∇H                  (6) 

( )0µ= +B M H                        (7) 

( ),M H T
H

=
HM                        (8) 

( ) ( )0 0 0M M H H K T Tχ= + − − −                (9) 

The basic state is assumed to be quiescent and is given by  

[ ] ( ) ( ) ( ) ( ), , , , , 0,0, , , ,b b b b b bT z T z z zρ ρ=   q H M H Mω      (10) 

Using Equation (10) in Equation (2) and (4) respectively yield  

( )0 0 0
d dˆ1
d d

b b
t b b

p HT T gk M
z z

ρ α µ = − − − +            (11) 

2

2
1

d
d

bT Q
kz

= −                         (12) 

Solving Equation (12) subject to the boundary conditions 0bT T=  at 0z =  
and 0bT T T= − ∆  at z d= , we obtain 

( )
2

0
1 12 2b

Qz QdzT z z T
k k

β= − + − +                 (13) 

Substituting Equation (6) after using Equations (9) and (13), the basic state 
magnetic field intensity ( )b zH  and magnetization ( )b zM  are found to be 
(see Finlayson [4]) 

( )
2

0
1 1

ˆ
1 2 2b

K Qz Qdzz H z k
k k

β
χ

  
= − − +  +   

H            (14) 

( )
2

1 1
0

ˆ
1 2 2b

K Qz Qdzz M z k
k k

β
χ

  
= + − +  +   

M           (15) 

where 0 0 0
extM H H+ = . 

Using Equations (13) and (14) in Equation (11) and integrating, we obtain  

( )

( )

3 2 2 2
0 0

0 0 0
1 1 1 1

2 2 4 3 2 2 2 2
20

2 2 2 2
1 11 1 1

6 4 2 1 2 2

2 28 2 41

b
M KQz Qdz z Qz Qdzp z p gz g z

k k k k

K Q z z Q Q d z Q d Q d
k kk k k

µβ
ρ ρ α β

α

µ β β
β

α

   
= − − − + − − +   +   

    
− + − + + −    

+      

 (16) 
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The pressure distribution is of no consequence here as we are eliminating the 
same. It may be noted that ( )bT z , ( )b zH  and ( )b zM  are distributed para-
bolically with the porous layer height due to the presence of internal heat gener-
ation. However, when 0Q =  (i.e., in the absence of internal heat generation), 
the basic state temperature distribution is linear in z. Thus the presence of in-
ternal heat generation plays a significant role on the stability of the system.  

To study the stability of the system, we perturb all the variables in the form 

[ ]
( ) ( ) ( ) ( )

, , , , , ,

, , , , , ,b b b b b

p T

q z p z p T z T z

ρ

ω ρ ρ′ ′ ′ ′ ′ ′ ′= + + + + +  

q H M

H H M M

ω
    (17) 

where , , , , ,q p Tω ρ′ ′ ′ ′ ′ ′H  and ′M  are the perturbed quantities and are as-
sumed to be very small. Substituting Equation (17) into Equation (6) and using 
Equations (8) and (9) and assuming ( ) 01K d Hβ χ≈ +  and  

( )2
02 1KQd Hκ χ≈ +  as propounded by Finlayson [4], we obtain (after drop-

ping primes)  

( )
( )
( )

0 0

0 0

1 ,

1 ,

1

x x x

y y y

z z z

H M M H H

H M M H H

H M H KTχ

+ = +

+ = +

+ = + −

                   (18) 

where, ( ), ,x y zH H H  and ( ), ,x y zM M M  are the ( ), ,x y z  components of the 
magnetic field and magnetization respectively. Thus the analysis is restricted to 
physical situation in which the magnetization induced by the variations in tem-
perature gradient and internal heating is small compared that induced by exter-
nal magnetic field. 

Substituting Equation (17) into Equation (2), linearizing, eliminating the 
pressure term by operating curl twice and using Equations (18) the z-component 
of the resulting equation can be obtained as (after dropping the primes)  

( ) 2 2
0

2
2 2 2 20

3 0 1 0 1 1
1 1

2
1 2

r

r

w
t

K Qz Qdg T K T
z k k

ρ η ξ

µφ
ξ ρ α µ β

χ

∂ − + ∇ ∇ ∂ 
   ∂ = ∇ Ω ∇ ∇ − ∇ − +    ∂ +    

    (19) 

Substituting Equation (17) into Equation (3) we obtain (after dropping 
primes)  

2 23
0 3 32 2rI w

t
ρ ξ η

∂Ω    ′= − ∇ + Ω + ∇ Ω   ∂ 
              (20) 

As before, substituting Equation (17) into Equation (4) and linearizing, we 
obtain (after dropping primes) 

2
2 0 0

0 0 1 0 0
1 1

0 0 3
1 1

1 2

2

T K Qz QdC k T C w
t k k

Qz QdT K
t z k k

µ
ρ ρ β

χ

φ
µ β δ

   ∂ − ∇ = − − +    ∂ +    
 ∂ ∂ + − − + Ω  ∂ ∂   

      (21) 

 

DOI: 10.4236/jemaa.2018.105007 92 Journal of Electromagnetic Analysis and Applications 
 

https://doi.org/10.4236/jemaa.2018.105007


H. Nagarathnamma et al. 
 

where 0 0 0 , 0 0V HC C H Kρ ρ µ= + .  
Finally Equation (6), after using Equation (17) and (18), yield (after dropping 

primes) 

( )
2

20
2

0

1 1 0h
M TK
H zz

φ
χ φ

 ∂ ∂
+ + + ∇ − = 

∂∂  
                (22) 

Since the principle of exchange of stability is valid, the normal mode expan-
sion of the dependent variables takes the form  

{ } ( ) ( ) ( ) ( ){ } ( )3 3, , , , , , expw T W z z z z i lx myφ Ω = Θ Φ Ω +         (23) 

On non-dimensionalizing the variables by setting 

( )

( )

* * * *

* *
2

3
*

3 3 2

, , , , , ,

1
, ,

1, .

x y z dx y z W W
d d d

d K d

d I I
d

ν

χ κκ
βν βν

ν
∗

 = =    
+ Θ = Θ Φ = Φ 


Ω = Ω =


               (24) 

Equation (23) is substituted into Equations (19)-(22) and then Equation (24) 
is used to obtain the stability equations in the following form  

( )( )
( ) ( ) ( )

22 2
1

2 2 2 2
1 3

1

2 1 2 1t m s

N D a W

a R N D a a R N z D

+ −

= Θ − − Ω − + − Φ −Θ  
     (25) 

( ) ( )2 2 2 2
1 3 3 32 2 0N D a W N D a − + Ω − − Ω =             (26) 

( ) ( ) ( )2 2
2 5 32 1 1 1 0sD a N z M W N− Θ + − + − − Ω =               (27) 

2 2
3 0D a M DΦ − Φ − Θ =                      (28) 

The typical value of M2 for magnetic fluids with different carrier liquids turns 
out to be of the order of 10−6 and hence its effect is neglected when compared to 
unity.  

The above equations are to be solved subject to the rigid-paramagnetic boun-
dary conditions: 

3

2 2
3

0 at 0

0 at 1

0 at 1

W DW z

W D W a Ma D z

D Bi D z

= = Ω = Θ = Φ = = 
= + Θ = Ω = = 


Θ+ Θ = Φ = = 

             (29) 

3. Numerical Solution 

Equations (25)-(28) together with boundary conditions (29) constitute an ei-
genvalue problem with thermal Rayleigh number Rt being an eigenvalue. Accor-
dingly, , ,W Θ Φ  and 3Ω  are written as  
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( ) ( ) ( )

( ) ( ) ( ) ( )

3 3
1 1

1 1

,

,

N N

i i i i
i i
N N

i i i i
i i

W z AW z B z

z C z z D z

= =

= =

= Ω = Ω 

Θ = Θ Φ = Φ


∑ ∑

∑ ∑
               (30) 

where , ,i i iA B C  and iD  are the unknown constants to be determined. The ba-
sis functions ( )iW z , ( )i zΘ , ( )i zΦ  and ( )3i zΩ  are generally chosen such 
that they satisfy the corresponding boundary conditions but not the differential 
equations. Substituting Equation (30) into Equations (25)-(28) and multiplying 
the resulting momentum Equation (25) by ( )jW z , angular momentum Equa-
tion (26) by ( )3 j zΩ , energy Equation (27) by ( )j zΘ  and magnetic potential 
Equation (28) by ( )j zΦ , performing integration by parts with respect to z be-
tween 0z =  and 1z =  and using the boundary conditions (29) we obtain the 
following system of linear homogeneous algebraic equations: 

0ji i ji i ji i ji iC A D B E C F D+ + + =                   (31) 

0ji i ji iG A H D+ =                         (32) 

0ji i ji i ji iI A J B T D+ + =                       (33) 

0ji i ji iK B L C+ =                         (34) 

where the co-efficient jiC - jiL  involve the inner product of the basis functions 
and are given by  

( ) 2 2 4 2
11 2ji j i j i j iC N D W D W a W W a DW DW = + + +   

( ) ( ) ( )2 2 2
1 2 1 1 1 1ji t s j i t j i j iD a R M N z W a R W a MaDW= − − + Θ − Θ + Θ    

( )2
1 2 1 1ji t s j iE a R M N z W D= − + Φ    

2
1 3 32ji j i j iF N DW D a W = − Ω + Ω   

2
1 3 32ji j i j iG N D DW a W = Ω + Ω   

2
1 3 3 3 3 3 3 3 34ji j i j i j iH N N D D N a = − Ω Ω + Ω Ω + Ω Ω   

( ) ( )21 2 1 1ji s j iI M N z W= − − + Θ    

2 4ji j i j iJ D D a Bi = − Θ Θ + Θ Θ +   

( )5 32 1 1ji s j iT N N z= − − + Θ Ω    

ji j iK D= Φ Θ  

( ) ( ) ( ) ( )
2

3

1 1 0 0ji j i j i

j i j i

L a

D D a M

 = Φ Φ +Φ Φ 

+ Φ Φ + Φ Φ
 

where the inner product is defined as ....< > ( )
1

0

... ... dz= ∫ . The set of  

homogeneous algebraic equations can have non-trivial solutions if and only if 
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0 0
0

0
0 0

ji ji ji ji

ji ji

ji ji ji

ji ji

C D E F
G H
I J T

K L

=                     (35) 

The eigenvalue has to be extracted from the above characteristic equation. In 
Galerkin method, we choose the weighting function as the trial functions, thus: 

( ) ( )
( ) ( )

22 1 1

1 1
3

1 , 1 2 ,

1 2 , 1 2

i i
i i

i i
i i

W z z z z z z

z z z z z z

− −

− −

= − Θ = − 


Ω = − Φ = − 
            (36) 

The velocity ( iW ), temperature ( iΘ ), vorticity ( 3iΩ ) and magnetic potential 
( iΦ ) trail functions satisfy all the boundary condition while the temperature 
( iΘ ) does not satisfy the boundary condition 0D BiΘ+ Θ =  at 1z = . There-
fore, following, the boundary residual technique is used for these functions. The 
velocity, vorticity and the magnetic equations are made orthogonal to each of 
the corresponding trail functions. For the temperature trial the boundary resi-
duals are added and their combined inner product is set to zero to obtain  

( ) ( )2 1 1j i j i j iD D a BiΘ Θ + Θ Θ + Θ Θ . Besides, the residual from this condi-
tion is included as residual from the differential Equation (36) leads to a relation 
involving in the form  

( )1 3 1 3 5, , , , , , , , , 0t m sf R R Ma N M M N N N a = . 

The critical values of Rt (i.e., Rc) or Rm (i.e., Rmc) or Ma (i.e., Mac) is deter-
mined numerically with respect to a for different values of Ns, M1, M3, N1, N3 
and N5. 

4. Result and Discussion  

The classical linear stability analysis has been carried out to investigate the effect 
of internal heat source strength on the onset of Bénard-Marangoni ferroconvec-
tion in a horizontal micropolar ferrofluid layer heated from below in the pres-
ence of a transverse uniform vertical magnetic field. The both the boundaries is 
considered to be rigid-ferromagnetic. The critical thermal Rayleigh number 
(Rtc), critical magnetic Rayleigh number (Rmc) and critical Marangoni number 
(Mac) and the corresponding critical wave number (ac) are used to characterize 
the stability of the system. The critical stability parameters computed numeri-
cally by Galerkin technique as explained above, are found to converge by consi-
dering nine terms in the Galerkin expansion.  

To validate the solution computed numerically for various values of Rt and Bi 
in the absence of micropolar effects and internal heat source strength (i.e. 

1 3 5 0N N N Ns= = = = ) are compared in Table 1 with the previously published 
results of Davis [27]. In addition, the present method are compared with the 
previously published results of Char and Chiang [28] when 1 3 5 0N N N= = =  
and 1 0m tR R M= =  (classical Rayleigh-Bénard problem) for various values of 
Ns (see Table 2). From the Tables, it is observed that our results are identical  
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Table 1. Comparison of Mac for diff values of Rt and Bi in the absence of micropolar fer-
rofluid. 

 
0Bi =   10Bi =  

Davis [27] Present Study  Davis [27] Present Study 

tR  cMa  cMa  tR  cMa  cMa  

0.0 79.61 79.59 0.0 413.4 413.29 

100.0 68.43 68.47 100.0 378.7 378.62 

200.0 57.12 57.10 300.0 305.0 304.91 

300.0 45.49 45.48 500.0 225.1 225.08 

400.0 33.59 33.58 700.0 138.6 138.62 

500.0 21.39 21.38 900.0 44.73 44.729 

 
Table 2. Comparison of Rtc for diff values of Ns and Bi in the absence of micropolar fer-
rofluid. 

Ns 

Char and  
Chiang [28] 

Present study 
Char and  

Chiang [28] 
Present study 

Free, isothermal Free, isothermal Free, insulated Free, insulated 

( Bi →∞ ) ( Bi →∞ ) ( 0Bi = ) ( 0Bi = ) 

 tcR  ca  tcR  ca  tcR  ca  tcR  ca  

0 1100.684 2.682 1100.671 2.682 669.013 2.086 669.003 2.085 

0.5 1055.612 2.679 1055.574 2.679 608.758 2.070 608.764 2.070 

1 1011.471 2.680 1011.434 2.679 557.618 2.060 557.640 2.059 

5 725.639 2.773 725.897 2.732 328.590 2.035 328.678 2.034 

10 518.346 2.803 518.346 2.802 215.415 2.033 215.508 2.032 

15 398.695 2.849 399.216 2.847 159.957 2.034 160.040 2.033 

20 323.111 2.880 323.617 2.877 127.144 2.036 127.217 2.034 

30 233.637 2.916 234.077 2.914 90.116 2.038 90.174 2.036 

40 182.746 2.937 183.125 2.935 69.778 2.039 69.825 2.038 

70 110.369 2.967 110.627 2.965 41.598 2.042 41.628 2.040 

100 79.020 2.980 79.2141 2.978 29.629 2.043 29.651 2.041 

 
with those obtained by Davis [27] as well as Char and Chiang [28] using differ-
ent approaches.  

The presence of internal heating makes the basic temperature, magnetic field 
and magnetization distributions to deviate from linear to parabolic with respect 
to micropolar ferrofluid layer height which in turn have significant influence on 
the stability of the system. To assess the impact of internal heat source strength 
Ns on the criterion for the onset of ferroconvection, the distributions of dimen-
sionless basic temperature, ( )b zT , magnetic field intensity, ( )b zH  and mag-
netization, ( )b zM  are exhibited graphically in Figure 1 for various values of 
Ns. From the figure it is observed that increase in Ns amounts to large deviations 
in these distributions which in turn enhance the disturbances in the horizontal  
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Figure 1. Basic state temperature, magnetic intensity and magnetization 
distributions for different Ns. 

 
porous layer and thus reinforce instability on the system. 

Figures 2-4 depict the critical Mac at the onset of ferroconvection as the func-
tion of “a”. It is noted that, as “a” decreases the Marangoni number decreases, 
attains a minimum at some critical wave number, and increases again. The 
curves reported in figures have the shape is upward concave to that of 
Bénard-Marangoni-ferroconvection. For increasing Rm, Ns, N3, Rt, and decreas-
ing N1 is shifted to the neutral curves are slanted towards the higher wave num-
ber region.  

Figure 5 represents the variation of critical Marangoni number Mac as a func-
tion of N1 for different values of Rm and N5 for 3 2N = , 3 5M =  and 2Ns = . It 
is seen that Mac decreases with an increase in Rm and hence its effect is to hasten 
the onset of ferroconvection due to an increase in the destabilizing magnetic 
force and the curve for 0mR =  corresponds to non-magnetic micropolar fluid 
case. In other words, heat is transported more efficiently in magnetic fluids as 
compared to ordinary micropolar fluids. Also observed that Mac increases with 
increasing N1. This is because, as N1 increases the concentration of microele-
ments also increases and as a result a greater part of the energy of the system is 
consumed by these elements in developing gravitational velocities in the fluid 
which ultimately leads to delay in the onset of ferromagnetic convection. More-
over, the system is found to be more stable if the micropolar heat conduction of 
the parameter with 5 0.5N =  as compared to the case of 5 0N = . 

In Figure 6 Mac is plotted as a function of N1 for different values of spin diffu-
sion (couple stress) parameter N3 and Rm when 3 5M = , 5 0.5N =  and 

2Ns = . Here, it is observed that Mac curves for different N3 coalesce when 

1 0N = . The impact of N3 on the stability characteristics of the system is noticea-
ble clearly with increasing N1 and then it is seen that the critical Marangoni  
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Figure 2. Neutral curves for different values of mR  and 5N  with 

1 30.5, 50, 5, 2tN R M Ns= = = = . 
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Figure 3. Neutral curves for different values of tR  and 1N  for 

3 5 32, 0.5, 50, 5mN N R M= = = =  and 2Ns = . 

 
number decreases with increasing N3 indicating the spin diffusion (couple stress) 
parameter N3 has a destabilizing effect on the system. This may be attributed to 
the fact that as N3 increases, the couple stress of the fluid increases, which leads 
to a decrease in micro-rotation and hence the system becomes more unstable.  

Figure 7 shows the variation of critical Marangoni number Mac and as a func-
tion of N1 for various values of dimensionless internal heat source strength Ns 
when 3 5M = , 3 2N =  and 5 0.5N = . Figure 7 clearly indicates that Mac de-
creases monotonically with Ns indicating the influence of increasing internal 
heating is to decrease the value of Mac and thus destabilize the system. This is 
because increasing Ns amounts to increase in energy supply to the system.  
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Figure 4. Neutral curves for different values of 3N  and Ns  with 

1 50.2, 0.5, 50, 50m tN N R R= = = =  and 3 5M = . 
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Figure 5. Variation of cMa  verses 1N  for different mR  for 

3 32, 5, 2Ns M N= = = . 

 
The complementary effects of both buoyancy and magnetic forces are made 

clear in Figure 8 by displaying the locus of Mac and magnetic Rayleigh number 
Rmc for various values of Bi and N5 when 1 0.2N = , 3 2N =  and 2Ns = . We 
note that Mac is inversely proportional to Rmc due to the destabilizing magnetic 
force. From the figure it is evident that, increasing in Bi is to increase Mac and 
Rmc and thus its effect is to delay the onset of magnetic Bénard-Marangoni fer-
roconvection. This may be attributes to fact that with increasing Bi, the thermal 
disturbances can be easily dissipate in to the ambient surrounding due to a bet-
ter convective heat transfer co-efficient at the top surface and hence higher  
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Figure 6. Variation of cMa  verses 1N  for different 3N  for 

5 30.5, 2, 5N Ns M= = =  and 0tR = . 
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Figure 7. Variation of Ma  verses 1N  for different Ns  for 

5 3 30.5, 2, 5N N M= = =  and 0Bi = . 

 
heating is required at make the system unstable. It is also evident that micropo-
lar ferrofluid saturated porous layer in the presence of vertical magnetic field 
becomes more stable with increasing in Bi. 

The measure of non-linearity of fluid magnetization M3, on the onset of fer-
roconvection is depicted in Figure 9. The curves of Mac versus Rmc shown in 
Figure 9 for various values of M3 when 3 2N = , 5 0.3N = , 2Ns =  and 2Bi =  
demonstrate that increasing M3 has a destabilizing effect on the system. Never-
theless, the destabilization due to increase in M3 is only marginal. This may be  
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Figure 8. Locus of cMa  verses mcR  for different Bi  and 5N  for 

1 3 30.2, 2, 1, 2N Ns M N= = = =  and 50tR = .
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Figure 9. Locus of cMa  verses mcR  for different 3M  for 

1 3 50.2, 2, 25, 2, 0.3tN Ns R N N= = = = =  and 5Bi = .
 

 
attributed to the fact that the application of magnetic field makes the ferrofluid 
to acquire larger magnetization which in turn interacts with the imposed mag-
netic field and releases more energy to drive the flow faster. Hence, the system 
becomes unstable with a smaller temperature gradient as the value of M3 in-
creases. Alternatively, a higher value of M3 would arise either due to a larger py-
romagnetic coefficient or larger temperature gradient. Both these factors are 
conducive for generating a larger gradient in the Kelvin body force field, possi-
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bly promoting the instability. 

5. Conclusions 

The effect of internal heating and heat transfer coefficient on the onset of 
Bénard-Maranagoni-convection in a micropolar ferrofluid layer has been made 
theoretically. The solution of this problem is obtained numerically using Galer-
kin-type of weighted residual technique by developing computer codes for 
MATTHEMAICA-11 software. Tabular and graphical method of appearance of 
the computed results illustrates the details in this paper and their dependence on 
the physical parameters involved in the problem. The significant findings of this 
analysis are: 

1) The system becomes more unstable with an increase in magnetic Rayleigh 
number Rm, nonlinearity of fluid magnetization parameter M3, internal heat 
source strength Ns and spin diffusion (couple stress) parameter N3. 

2) The effect of increasing the value of coupling parameter N1, micropolar 
heat conduction parameter N5, Biot number Bi and is to delay the onset of fer-
romagnetic convection.  

3) The effect of increasing Rm and Ns as well as decrease in N1, M3, N3 and N5 
is to increase the critical wave number ac and hence there is to reduce the con-
vection cells.  

4) The magnetic and buoyancy forces are complementary with each other and 
the system is more stabilizing when the magnetic forces alone are present.  

Acknowledgements 

The authors gratefully acknowledged the financial support received in the form 
of a “Research Fund for Talented Teacher” scheme from Vision Group of 
Science & Technology, Government of Karnataka, Bengaluru (No. KSTEPS/ 
VGST/06/2015-16). 

References 
[1] Rosensweig, R.E. (1985) Ferrohydrodynamics. Cambridge University Press, Lon-

don. 

[2] Eringen, A.C. (1964) Simple Microfluids. International Journal of Engineering 
Science, 2, 205-217. https://doi.org/10.1016/0020-7225(64)90005-9 

[3] Lebon, G. and Perez-Garcia, C. (1981) Convective Instability of a Micropolar Fluid 
Layer by the Method of Energy. International Journal of Engineering Science, 19, 
1321-1329. https://doi.org/10.1016/0020-7225(81)90015-X 

[4] Payne, L.E. and Straughan, B. (1989) Critical Rayleigh Numbers for Oscillatory and 
Non-Linear Convection in an Isotropic Thermomicropolar. International Journal of 
Engineering Sciences, 27, 827-836. https://doi.org/10.1016/0020-7225(89)90048-7 

[5] Siddheshwar, P.G. and Pranesh, S. (1998) Effect of a Non-Uniform Basic Tempera-
ture Gradient on Rayleigh-Bénard Convection in a Micropolar Fluid. International 
Journal of Engineering Science, 36, 1183-1196.  
https://doi.org/10.1016/S0020-7225(98)00015-9 

[6] Idris, R., Othman, H. and Hashim, I. (2009) On Effect of Non-Uniform Basic Tem-
 

DOI: 10.4236/jemaa.2018.105007 102 Journal of Electromagnetic Analysis and Applications 
 

https://doi.org/10.4236/jemaa.2018.105007
https://doi.org/10.1016/0020-7225(64)90005-9
https://doi.org/10.1016/0020-7225(81)90015-X
https://doi.org/10.1016/0020-7225(89)90048-7
https://doi.org/10.1016/S0020-7225(98)00015-9


H. Nagarathnamma et al. 
 

perature Gradient on Bénard-Marangoni Convection in Micropolar Fluid. Interna-
tional Communications in Heat and Mass Transfer, 36, 255-258.  
https://doi.org/10.1016/j.icheatmasstransfer.2008.11.009 

[7] Mahmud, M.N., Mustafa, Z. and Hashim, I. (2010) Effects of Control on the Onset 
of Bénard-Marangoni Convection in a Micropolar Fluid. International Communi-
cations in Heat and Mass Transfer, 37, 1335-1339.  
https://doi.org/10.1016/j.icheatmasstransfer.2010.08.013 

[8] Sharma, R.C. and Kumar, P. (1995) On Micropolar Fluids Heated from Below in 
Hydromagnetics. Journal of Non-Equilibrium Thermodynamics, 20, 150-159.    

[9] Zahn, M. and Greer, D.R. (1995) Ferrohydrodynamics Pumping in Spatially Uni-
form Sinusoidally Time Varying Magnetic Fields. Journal of Magnetism and Mag-
netic Materials, 149, 165-173. https://doi.org/10.1016/0304-8853(95)00363-0 

[10] Abraham, A. (2002) Rayleigh-Bénard Convection in a Micropolar Magnetic Fluids. 
International Journal of Engineering Science, 40, 449-460.  
https://doi.org/10.1016/S0020-7225(01)00046-5 

[11] Sunil, Chand, P., Bharti, P.K. and Mahajan, A. (2008) Thermal Convection a Mi-
cropolar Ferrofluid in the Presence of Rotation. Journal of Magnetism and Magnetic 
Materials, 320, 316-324. https://doi.org/10.1016/j.jmmm.2007.06.006 

[12] Nanjundappa, C.E., Shivakumara, I.S. and Srikumar, K. (2013) The Onset of Fer-
romagnetic Convection in a Micropolar Ferromagnetic Fluid Layer Heated from 
Below. Journal of Electromagnetic Analysis and Applications, 5, 120-133.  
https://doi.org/10.4236/jemaa.2013.53020 

[13] Rudraiah, N. and Sekhar, G.N. (1991) Convection in Magnetic Fluids with Internal 
Heat Generation. ASME Journal of Heat Transfer, 113, 122-127.  
https://doi.org/10.1115/1.2910514 

[14] Shivakumara, I.S., Rudraiah, N. and Nanjundappa, C.E. (2002) Effect of Non-Uniform 
Basic Temperature Gradient on Rayleigh-Bénard-Marangoni Convection in Ferrof-
luids. Journal of Magnetism and Magnetic Materials, 248, 379-395.  
https://doi.org/10.1016/S0304-8853(02)00151-8 

[15] Shivakumara, I.S. and Nanjundappa, C.E. (2006) Marangoni Ferroconvection with 
Different Initial Temperature Gradients. International Journal of Heat and Mass 
Transfer, 28, 45-60. 

[16] Shivakumara, I.S. and Nanjundappa, C.E. (2006) Effects of Coriolis Force and Dif-
ferent Basic Temperature Gradients on Marangoni Ferroconvection. Acta Mecha-
nica, 182, 113-124. https://doi.org/10.1007/s00707-005-0296-1 

[17] Singh, J. and Bajaj, R. (2011) Convective Instability in a Ferrofluid Layer with Tem-
perature-Modulated Rigid Boundaries Fluid. Dynamic Resolution, 43, Article ID: 
025502. 

[18] Nanjundappa, C.E., Shivakumara, I.S., Lee, J. and Ravisha, M. (2011) Effect of In-
ternal Heat Generation on the Onset of Br Inkman-Bénard Convection in a Ferrof-
luid Saturated Porous Layer. International Journal of Thermal Sciences, 50, 
160-168. https://doi.org/10.1016/j.ijthermalsci.2010.10.003 

[19] Nanjundappa, C.E., Shivakumara, I.S. and Prakash, H.N. (2012) Penetrative Ferro-
convection via Internal Heating in a Saturated Porous Layer with Constant Heat 
Flux at the Lower Boundary. Journal of Magnetism and Magnetic Materials, 324, 
1670-1678. https://doi.org/10.1016/j.jmmm.2011.11.057 

[20] Nanjundappa, C.E., Shivakumara, I.S. and Srikumara, K. (2013) On the Penetrative 
Bénard-Marangoni Convection in a Ferromagnetic Fluid Layer. Aerospace Science 
and Technology, 27, 57-66. https://doi.org/10.1016/j.ast.2012.06.007 

 

DOI: 10.4236/jemaa.2018.105007 103 Journal of Electromagnetic Analysis and Applications 
 

https://doi.org/10.4236/jemaa.2018.105007
https://doi.org/10.1016/j.icheatmasstransfer.2008.11.009
https://doi.org/10.1016/j.icheatmasstransfer.2010.08.013
https://doi.org/10.1016/0304-8853(95)00363-0
https://doi.org/10.1016/S0020-7225(01)00046-5
https://doi.org/10.1016/j.jmmm.2007.06.006
https://doi.org/10.4236/jemaa.2013.53020
https://doi.org/10.1115/1.2910514
https://doi.org/10.1016/S0304-8853(02)00151-8
https://doi.org/10.1007/s00707-005-0296-1
https://doi.org/10.1016/j.ijthermalsci.2010.10.003
https://doi.org/10.1016/j.jmmm.2011.11.057
https://doi.org/10.1016/j.ast.2012.06.007


H. Nagarathnamma et al. 
 

[21] Ram, P. and Kumar, V. (2014) Heat Transfer in FHD Boundary Layer Flow with 
Temperature Dependent Viscosity over a Rotating Disk. Fluid Dynamic and Mate-
rial Processing, 10, 179-196.  

[22] Ram, P. and Kumar, V. (2014) Rotationally Symmetric Ferrofluid Flow and Heat 
Transfer in Porous Medium with Variable Viscosity and Viscous Dissipation. Jour-
nal of Applied Fluid Mechanics, 7, 357-366. 

[23] Ram, P., Kumar Joshi, V., Sharma, K., Walia, M. and Yadav, N. (2016) Variable 
Viscosity Effects on Time Dependent Magnetic Nanofluid Flow Past a Stretchable 
Rotating Plate. Open Physics, 14, 651-658. https://doi.org/10.1515/phys-2016-0072 

[24] Ram, P., Kumar Joshi, V. and Makinde, O.D. (2017) Unsteady Convective Flow of 
Hydrocarbon Magnetite Nano-Suspension in the Presence of Stretching Effects. 
Defect and Diffusion Forum, 377, 155-165. 

[25] Kumar Joshi, V., Ram, P., Sharma, R. and Tripathi, K.D. (2017) Porosity Effect on 
the Boundary Layer Bodewadt Flow of a Magnetic Nanofluid in the Presence of 
Geothermal Viscosity. The European Physical Journal, 132, 254.  
https://doi.org/10.1140/epjp/i2017-11511-0 

[26] Ram, P., Kumar Joshi, V., Kumar, V. and Sharma, S. (2018) Rheological Effects Due 
to Oscillating Field on Time Dependent Boundary Layer Flow of Magnetic Nan-
ofluid over a Rotating Disk. The Proceedings of the National Academy of Sciences, 
India, Section A: Physical Sciences, 7, 1-9. 

[27] Davis, S.H. (1969) Buoyancy-Surface Tension Instability by the Method of Energy. 
Journal of Fluid Mechanics, 39, 347-359.  
https://doi.org/10.1017/S0022112069002217 

[28] Char, M.I. and Chiang, K.-T. (1994) Stability Analysis of Bénard-Marangoni Con-
vection in Fluids with Internal Heat Generation. Journal of Physics D: Applied 
Physics, 27, 748-755. https://doi.org/10.1088/0022-3727/27/4/012 

 

DOI: 10.4236/jemaa.2018.105007 104 Journal of Electromagnetic Analysis and Applications 
 

https://doi.org/10.4236/jemaa.2018.105007
https://doi.org/10.1515/phys-2016-0072
https://doi.org/10.1140/epjp/i2017-11511-0
https://doi.org/10.1017/S0022112069002217
https://doi.org/10.1088/0022-3727/27/4/012


H. Nagarathnamma et al. 
 

Nomenclature 

( ), ,u v w=q : Velocity of the fluid  
p : Pressure  
I : Moment of inertia 

1k : Thermal conductivity 
T : Temperature 

,V HC : Specific heat at constant volume and magnetic field  
B : Magnetic induction field 
H : Magnetic field 

0H : Constant magnetic field 
( )

0 0,H TK M T= − ∂ ∂ : Pyromagnetic co-efficient  
M : Magnetization 

( )0 0 0,M M H T= : Constant mean value of magnetization 
Q′′ : Overall uniformly distributed effective volumetric internal heat generation  
H = H   
M = M  

d dD z= : Differential operator 
2 2a m= + : Overall horizontal wave number 

4
tR gdαβ νκ= : Gravity thermal Rayleigh number  

( )2
1 0 01M K gµ β χ ρ α= + : Magnetic number 

( )2
2 0 0 0 01M T K Cµ χ ρ= + : Magnetic parameter 

( ) ( )3 0 01 1M M H χ= + + : Non-linearity of magnetization 

1m tR R M= : Magnetic Rayleigh number 

1 rN ξ η= : Coupling parameter: 
2

3N dη η′= : Spin diffusion parameter  
2

5 0 0N C dδ ρ= : Micropolar heat conduction parameter 

12sN Qd k β= : Dimensionless heat source strength  

rP η κ= : Prandtl number 

Greek Symbols 

ρ : Density 
η : Shear kinematic viscosity co-efficient  

rξ : Vortex (rotational) viscosity 
ω : Angular velocity of colloidal particles along z-axis 

0ρ : Reference density 

0µ : Free space magnetic permeability 
η′ : Shear spin viscosity co-efficient 
α : Thermal expansion co-efficient 
δ : Micropolar heat conduction coefficient 

( )
0 0,H TM Hχ = ∂ ∂ : Magnetic susceptibility 

φ : Magnetic potential 
2 2 2 2 2 2 2x y z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂ : Laplacian operator 

D Dt t= ∂ ∂ + ⋅∇q : Convective derivative 
T dβ = ∆  ( 0T∆ > ): Temperature gradient 

 

DOI: 10.4236/jemaa.2018.105007 105 Journal of Electromagnetic Analysis and Applications 
 

https://doi.org/10.4236/jemaa.2018.105007

	Penetrative Bénard-Marangoni Convection in a Micropolar Ferrofluid Layer via Internal Heating and Submitted to a Robin Thermal Boundary Conditions
	Abstract
	Keywords
	1. Introduction
	2. Mathematical Formulation 
	3. Numerical Solution
	4. Result and Discussion 
	5. Conclusions
	Acknowledgements
	References
	Nomenclature
	Greek Symbols

