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Abstract 
In this article we derive a general differential equation that describes 
long-term economic growth in terms of cyclical and trend components. Equa-
tion is based on the model of non-linear accelerator of induced investment. A 
scheme is proposed for obtaining approximate solutions of nonlinear diffe-
rential equation by splitting solution into the rapidly oscillating business 
cycles and slowly varying trend using Krylov-Bogoliubov-Mitropolsky aver-
aging. Simplest modes of the economic system are described. Characteristics 
of the bifurcation point are found and bifurcation phenomenon is interpreted 
as loss of stability making the economic system available to structural change 
and accepting innovations. System being in a nonequilibrium state has a dy-
namics with self-sustained undamped oscillations. The model is verified with 
economic development of the US during the fifth Kondratieff cycle 
(1982-2010). Model adequately describes real process of economic growth in 
both quantitative and qualitative aspects. It is one of major results that the 
model gives a rough estimation of critical points of system stability loss and 
falling into a crisis recession. The model is used to forecast the macroeco-
nomic dynamics of the US during the sixth Kondratieff cycle (2018-2050). For 
this forecast we use fixed production capital functional dependence on a 
long-term Kondratieff cycle and medium-term Juglar and Kuznets cycles. 
More accurate estimations of the time of crisis and recession are based on the 
model of accelerating log-periodic oscillations. The explosive growth of the 
prices of highly liquid commodities such as gold and oil is taken as real pre-
dictors of the global financial crisis. The second wave of crisis is expected to 
come in June 2011. 
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1. Introduction 

Economy usually fluctuates around its trend path. These fluctuations are cyclical, 
but irregular. Trend is the result of the factors responsible for long-term growth 
of the economy, such as capital inflows, manpower increase, scientific and tech-
nical progress. Business cycles represent deviations of the real aggregate output 
from its long-term trend caused by distributed in time random supply shocks. In 
1950s there were developed some elegant mathematical models of the theory of 
cycles based on the mechanism of interaction between the multiplier and acce-
lerator [1], as well as neoclassical growth theories using the production functions 
[2]. They became the starting point for all subsequent research in these two cen-
tral issues of macroeconomic dynamics. The main drawback of these models was 
an isolated consideration of growth and cyclical fluctuations, whereas the 
Schumpeterian theory of economic development [3] [4] states that cyclical fluc-
tuations are an integral part of sustainable economic growth. Therefore, the 
theory of real business cycles (RBC) must necessarily include the interaction of 
the mechanisms of growth and cyclical fluctuations. The tenets of the discrete 
RBC theory were laid in the 1980s by Nobel laureates F. Kydland and E. Prescott 
[5]. They developed an RBC model based on stochastic dynamic model of gen-
eral equilibrium. Their model included a stochastic version of the neoclassical 
Solow’s growth model [2]. Kydland’s and Prescott’s discrete RBC model became 
the basic one in macroeconomic computer simulation. 

2. Derivation of the Macroeconomic Dynamics Equation 
Describing the Interaction of Long-Term Growth and 
Business Cycles 

Our first attempt to create a continuous RBC model was described in [6]. This is 
a general differential equation of macroeconomic dynamics based on the inte-
raction of the mechanisms of growth and cyclical fluctuations. Let us start de-
riving this equation following the most fruitful scheme formerly chosen by Phil-
lips [1]. In this scheme it is assumed that the planned values for consumption 
and investment are achieved. We also take this starting point. Hence consump-
tion and investment plans (with a certain lag) turn into actual costs, which give a 
total output. If you select the expenditures (independent from revenue) A on 
capital investment and consumption, the basic equilibrium condition is written 
as 

Y C I A= + + ,                         (1) 

where C is consumption; I is actual induced investment.  
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Since I represents the actual induced investment at time t caused by changes 
in yield and the lag in the form of an exponential function, I satisfies the delay 
differential equation: 

( ) ( )d æ
d
I I t J t
t
= − −  

                     
(2) 

where J(t) is potential capital investment; æ is lag reaction rate, while time lag 
constant is T = 1/æ. The volume of investments J(t) and the current rate of yield  

change are connected in general via nonlinear accelerator ( ) d
d
YJ t
t

ψ ν =  
 

 [1],  

where v is power of the accelerator (v > 0). Goodwin has shown [1] that the most 
appropriate function for the nonlinear accelerator is the logistic function. Con-
sequently, we have 

( )
31 d 1 d 1 d .

2 2 d 2 2 d 3 2 d
kv Y kv Y kv YJ t th

t t t
    = ≅ −    

                 
(3) 

Here we have taken first two terms of power series, which is a good approxi-

mation within the condition d π
2 d 2
kv Y

t
<  that is always true for real values of v 

and 
d
d
Y
t

. Since for small values of d
d
Y
t

 there occurs the simplest or linear ac-

celerator ( ) d
d
YJ t v
t

= , then (3) directly implies that k = 4. Thus we use the fol-

lowing approximation for the nonlinear accelerator according to Goodwin: 

( )
24 d d1

3 d d
Y YJ t v v
t t

  ≅ −  
                       

(4) 

We return to the basic equilibrium condition (1). Since demand lags are ab-
sent, and planned consumption is ( )1C сY s Y= = − , where c and s are the coef-
ficients of consumption and savings, aggregate demand will be equal to 

( )1 .Z s Y I A= − + +                        (5) 

Supply is also taken with a continuously distributed lag of the exponential 
form and the reaction rate λ: 

( )d .
d
Y Y Z
t

λ= − −
                       

(6) 

Equations ((2), (5) and (6)) are the model equations for a real economic sys-
tem. In order to obtain a differential equation for the yield of Y it is necessary to 
eliminate Z and I from the model equations. For this purpose we first substitute 
(5) for (6), noting that in (5) we have potential or expected ( ),e eY I  variable 
values, i.e. ( )1 e e eZ s Y I A= − + + . However, eA A=  as independent invest-
ment, while eI I=  accords to the accepted premise of the model. Hence we 
have  

( )d 1 .
d

eY Y s Y I A
t

λ  = − − − − −   
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Solving the last equation for I and differentiating the resulting expression we 
obtain, respectively: 

( )1 d 1 ;
d

eYI Y s Y A
tλ

= + − − −  

( )
2

2

d 1 d d d d1 .
d d d dd

eI Y Y Y YAs
t t t ttλ
= + − − −  

Substituting these expressions into Equation (2) we obtain the following dif-
ferential equation for the yield Y: 

( )
22

2

d 4 d d dæ æ 1 1
3 d d dd

eY Y Y Yv v s
t t tt

λ λ χ λ
    + + − − − −   

     
 

( ) dæ æ 1
d

e AY s Y
t

λ λ λ+ − − = æ Aλ+                 (7) 

Here constant χ takes only two values, 0 or 1. At 0χ =  we have the classic 
Phillips model with a linear accelerator, and if 1χ =  we have the Phillips-Goodwin 
model with nonlinear accelerator [1]. 

If in Equation (7) we assume eY Y= , which is a very rough approximation, 
since yield Y is an unplanned value, and if we set 0χ =  and constА =  as well, 
then we come to the well-known equation of Phillips [1]: 

( )
2

2

d dæ æ æ æ .
dd

Y Ys v sY A
tt

λ λ λ λ+ + − + =  

Unlike Phillips and Goodwin, we will include into (7) an expression for the 
potential (expected) value of yield eY  defined by the basic factors of produc-
tion, i.e. capital (K) and labor (L). As it is well known [2], the connection of yield 
with factors of production is determined by the production function of the form 

( ),Y F K L= , which represents the trajectory of long-term economic growth. 
Since the production functions possess the homogeneity property, they satisfy 
Euler’s equation [7]: 

,Y YaK bL hY
K L
∂ ∂

+ =
∂ ∂

 

where a, b and h are constant coefficients. This implies the desired approximate 
expression for the expected value of eY  yield: 

.e a Y b YY Y K L
h K h L

∂ ∂
≅ = +

∂ ∂                     
(8) 

It is obvious that this approximation is more accurate than the very rough 
Phillips’s assumption eY Y= . But the main advantage of this approach is that it 
provides an opportunity to introduce production factors into the basic equation. 
Differentiating (8) on time and performing the necessary simplification, we ob-
tain:  

d d d .
d d d

eY Y K Y L
t K t L t

∂ ∂
≅ +
∂ ∂                      

(9) 
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It is necessary to exclude d
d
L
t

 from here. For this we use the Okun’s law [8] 

establishing the relationship between change in unemployment rate ( и и∗− ) and 
change in yield ( FY Y− ):  

( )F

F

Y Y u u
Y

γ ∗−
= − .                      (10) 

Here γ is Okun’s parameter ( 2 3γ = ÷ ); ( )FY L∗  is the national income at full 
employment, ( )Y L  is the actual yield in the presence of market unemployment; 
L* is the number of workers at full employment; L is the actual number of work-
ers employed in production; u* is the natural rate of unemployment corres-
ponding to full employment L*; u is the actual level of unemployment. As  

L Lи и
L

∗
∗

∗

−
− = , then from (10) it follows that ( )FY Y L Lγ ∗ ∗− = − , where 

FY
L

γ γ∗
∗= . Differentiating both sides of this relation, we obtain the required ex-

pression: 

d 1 d
d d
L Y
t tγ ∗= .                        (11) 

As is known, the average labor productivity *
KY

L
 
 
 

 is associated with extreme 

(marginal) labor productivity Y
L

 ∂
 ∂ 

 as follows [9]: *
FYY

L L
β∂

≅
∂

. Therefore,  

* Y
L

γ
γ

β
∂

=
∂

.                         (12) 

Substituting (11) and (12) into the initial expression (9), we obtain: 

d d d
d d d

eY Y K Y
t K t t

β
γ

∂
= +
∂

.                    (13) 

Now it remains to substitute eY  (8) and d
d

eY
t

 (13) into Equation (7). As a 

result, we obtain the desired total differential equation of macroeconomic dy-
namics: 

( )
2

2

d æ æ 1
d

Y v s
t

βλ λ λ
γ


+ + − − − +


24 d dæ
3 d d

Y Yv v
t t

χ λ
 
 

  
 

( ) ( ) dæ æ 1 1
d

Y KY s Y s
K t

λ λ λ ∂
+ − − − − =

∂
d æ
d
A A
t

λ  + 
          

(14) 

Under suitable initial and boundary conditions the Equation (14) allows find-
ing the flow of yield. This equation takes into account the law of capital accu-
mulation, as well as the Okun law establishing a connection between the fluctua-
tions in unemployment and yield fluctuations. Some of coefficients may be ran-
dom variables. The right side of the equation usually contains a random com-
ponent. Therefore in general Equation (14) we find a stochastic differential equ-
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ation, combining deterministic and stochastic approaches of the study of real busi-
ness cycles. In this equation, we are dealing with two variables that characterize the 
yield: the rapidly changing variable Y(t), which contains the cyclical fluctuations 
y Y Y= − , and slowly varying ( )Y t , representing the trend curve. This circums-

tance makes it possible to separate them using Krylov-Bogoliubov-Mitropolsky av-
eraging [10]. Indeed, we can first average the rapidly changing variable y(t) and 
get a simplified description of the system dynamics—long-term trend described 
by ( )Y t . This approach makes it relatively easy to find both dependences. 

For further analysis of Equation (14) it is important to distinguish the trend 
component in its right side, which is determined by the investments indepen-
dent from income. This includes the investment of public and private organiza-
tions into the development of public infrastructure, and investment caused by 
scientific and technological progress, inventions and technological innovations 
that not only define the long-term growth, but also affect the short-term fluctua-
tions, since they are irregular. It also includes independent expenditures on 
household consumption. Thus, the independent investment ( )A t  can always 
be represented as ( ) ( ) ( )А t A t tϕ= + , where ( )A t  is trend component (e.g., 
( ) 0e

gtA t A= ); ( )tϕ  is quasi-periodic function oscillating around the trend 
component. Thus, the right side of the equation becomes: 

d d dæ æ æ
d d d
A AA A
t t t

ϕ ϕ
   + = + + +   

  
.               (15) 

The second term on the right side of this expression has a direct influence on 
cyclical fluctuations. 

First of all, we distinguish in the basic Equation (14) the cyclical fluctuations 

described by the variable y Y Y= − . For this, first, the nonlinear term 
2d

d
Y
t

ν 
 
 

 

will replace with approximation 
2d

d
y
t

ν 
 
 

 to use the principle of superposition, 

because Y  is a slowly varying function in comparison with Y or y. Moreover, 
this nonlinear term is retained only with ( )1y χ =  and lacks with ( )0Y χ = . 
Substituting Y y Y= +  into the Equation (14) we obtain: 

( )
2 2

2 2
2 2

d d d d d1
d d dd d

d dæ æ .
d d

y y Y Y Y Ky Y s
t t K tt t

A A
t t

σ ω σ ω λ

ϕ
λ λ ϕ

∂
+ + + + + − −

∂
   = + + +   

          

(16) 

Here  

( )æ 1 s βσ λ λ
γ

= + − −
24 dæ 1 ;

3 d
yv v
t

λ
  − −  

   
 2 æ;ω λ=        (17) 

2 æ ;sω λ=  ( )æ æ 1 .v s βσ λ λ λ
γ

= + − − −  

As Y
L

∂
∂

 and Y
K
∂
∂

 are both slowly varying functions they can be replaced by  
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the expressions obtained from profit maximization within the model of perfect 
competition [7]: 

; ,FYY Yi w
K L L

β ∗

∂ ∂
= = ≅

∂ ∂
 

where the i is rate of interest; w is real wages; β reflects the elasticity of output to 
labor in the Cobb-Douglas production function. We have already used earlier 
the second of these relations. Therefore Equation (16) has the form: 

( )

2 2
2 2

2 2

d d d d
d dd d

d d dæ æ 1 .
d d d

y y Y Yy Y
t tt t

A KA s i
t t t

δ ω δ ω

ϕ
λ λ ϕ λ

+ + + + +

   = + + + + −   
              

(18) 

At the next step we use averaging on (18) for rapidly changing variables y and 
φ and get a simplified differential equation that describes only its trend trajecto-
ry: 

( ) ( )
2

2
12

d d d dæA 1
d d dd

Y Y A KY s i F t
t t tt

σ ω λ λ
 

+ + = + + − = 
 

.      (19) 

Initial conditions are as follows: 

0
0

0 0
d; .
dt T

t T

YY Y x
t=

=
= =

                    
(20) 

The principle of averaging leads to the equation  
2

2
2

d d d æ
d dd

y y y
t tt

ϕ
σ ω λ ϕ + + = + 

 
 

describing the cyclical fluctuations. In this  

equation we must take into account the nonlinearity of the accelerator com-
prised in the coefficient σ (17). Therefore, we will analyze the solution of the 
nonlinear differential equation in the form: 

( )
22

3 2
0 22

d 4 d dæ ,
3 d dd

y y yv y F t
t tt

σ λ ω
  − − + =  

               
(21) 

where ( )0 æ æ 1v s βσ λ λ λ
γ

 
= − + − − − 

 
; 2 æω λ= ; 

h a
b

β = − . 

The resulting equation is widely known as the Rayleigh equation, which is of 
great importance in the theory of oscillations. 

Equation (21) includes a non-linear accelerator investment equal to 
34 d

3 d
yk v
t

λ  
 
 

, which provides maintenance of the persistent cyclical fluctuations  

in economic system. Economic system with nonlinear accelerator is a classic 
self-oscillating system in which the role of positive feedback mechanism is 
played by non-linear accelerator, and the power of the accelerator ν is the gain. If 
the gain is large enough ( 1.05ν > ), self-sustaining oscillations appear in the sys-
tem, whose characteristics are determined by internal (structural) system para-
meters [11]. Thus, at 1.05ν =  there is a bifurcation of the cycle in the system. 
In deriving Equation (21) the cyclical unemployment was also taken into ac-
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count, which occurs in periods of recession, allowing us to consider the real 
economy with underemployment. It is known that fluctuations in unemploy-
ment are associated with fluctuations in actual yield according to Okun law [8]. 

We have already noted that the power of the accelerator is a control parameter 
and has a decisive influence on the dynamics of the economic system, the forma-
tion of long-term growth trajectory. Since the power of the accelerator is pro-
portional to the business activity, while the latter is determined by economic 
conditions in the first approximation, we can assume that it is changing slowly, a 
sinusoidal, in sync with large Kondratieff cycle, i.e.: 

1
0 sin , 0

2
tυ

υ υ ψ υ= − ≥
                    

(22) 

As the duration of the fifth Kondratieff cycle is 35 years [12], we can take 
2

11
ψ =  ( 11π 34.5T = ≈  years). The range of practical changes in the accelerator 

power is 0 2υ< <  [11], so it is expedient that 0 1.0υ ≥ . In further calculations 
we take 0 1.1υ = . 

Examples of modeling modes of economic system development 
Linear differential Equation (19) with constant coefficients can be integrated 

in analytical form. For a nonlinear differential Equation (21), in the case of weak 
nonlinearity, the accelerator (for small power of accelerator) can also obtain an 
approximate solution in explicit analytical form using the averaging method by 
Krylov-Bogolyubov-Mitropolsky. These cases are considered in detail in [13]. 
We give three specific examples. 

The first example illustrates the natural oscillations of the economic system. 
External influence is absent, i.e. 0ϕ∗ = . Assume that the trajectory of the trend 
is exponential. Then, solving Equation (21) by averaging, we obtain cyclical 
fluctuations ( )0 cosстy y tω ϑ= + . Then, by superposition of the trend and cyc-
lical fluctuations of the trajectory, we obtain very simple approximate formula 
for describing the steady-state issue: 

( ) 0
0 0

1

e cos , ,pt
стY y t y σ

ω ϑ
σ

= + + =
              

(23) 

where 3 2
1 æσ λν ω= ; p is trend growth rate. The graph of the corresponding 

trajectory of economic development is presented in Figure 1. 
The second example shows the effect of external periodic perturbations. As-

sume that sinq tϕ ν∗ = . In this case, the superposition of solutions of Equations 
((19) and (21)) has the form: 

( )3 2 2e cos sinpt
ст

qY t tσ ω ϑ ν
ω ν

= + + +
−

,             (24) 

where ( )2
0 2

3 2
2

4 6
3

Uσ σ ν
σ

σ ω
−

= ; 3
2

4 æ
3

σ λν= ; 2 2

qU
ω ν

=
−

. 

Trajectory of the issue (24) is shown in Figure 2. 
The third example illustrates the effect on the autonomous system of the sta-
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tionary “white noise” ( )tξσ ξ , where ( )tξ  is Gaussian white noise; ξσ  is the 
standard deviation. One of the many stochastic trajectories of output is shown in 
Figure 3. 

Qualitative analysis of oscillations’ influencing economic growth 
In [11] a qualitative analysis is given of solutions of differential Equations ((19)  

 

 
Figure 1. Natural oscillations of the economic system. 

 

 
Figure 2. Forced oscillations of the economic system. 
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Figure 3. The impact of the stationary “white noise” on the economic system with σ = 
0.05 (am = 0.084, σa = 0.046, σθ = 0.213). 

 
and (21)) describing the cyclical fluctuations in business activity and economic 
growth, the stability of the system is viewed, the bifurcation point is calculated 
( 1 1.05ν = ) where the system loses stability and becomes receptive to structural 
change and innovation. It is shown that the consequence of a bifurcation is the 
emergence of a self-sustaining system of undamped oscillations. It is in condi-
tions of disequilibrium that a change of level of balance occurs, causing increas-
ing economic growth. Also the mechanism of influence of cyclical fluctuations 
on the formation of the trajectory of long-term economic growth has been in-
vestigated.  

1) Sustainable long-term economic growth in the dynamic model (19)-(21) is 

guaranteed within the accelerator power range 
æ0

æ
λ

ν
λ
+

< < , ( )0 1.25ν< < . 

Moreover, at values ( )1 æ 1
æ

Bsν λ λ
λ γ

 
< + − − 

 
, ( )1.05ν < , any external 

shock effects are smoothed out by the system and, the system, being withdrawn 
from the equilibrium state, asymptotically tends to a stable initial trend of eco-
nomic growth.  

In the range of values ( )1 æ 1
æ

s βλ λ ν
λ γ

 
+ − − < < 

 

æ
æ

λ
λ
+

, the equilibrium  

state is unstable; a bifurcation occurs in the system and a stable undamped oscil-
latory regime is produced. This regime is good because it favors structural 
changes necessary for processing and mastering of innovations. The economic 
system itself passes to a new equilibrium state, which is fixed by the au-
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to-oscillation that has arisen in the system, i.e. the trend of long-term growth 
shifts in most cases to a higher level, providing an increase in growth rates. 
Consequently, the regime of self-oscillations in the economic system is extreme-
ly useful, as it facilitates the structural transformations required to perceive in-
novation, and also provides stability to development and a change in equili-
brium levels, which in turn determines the stepped trajectory of long-term eco-
nomic growth.  

2) At high values of accelerator 
æ

æ
λ

ν
λ
+

> , ( )2.05ν >  economic growth can  

become unstable due to the explosive nature of the influence of cyclical fluctua-
tions of the system. However, due to the cyclical nature of ν, and the natural re-
striction of output caused by the drop in entrepreneurial profit, the subsequent 
decline in production before the onset of a new level of equilibrium fixed with a 
decrease in the power of the accelerator, the system will continue a relatively sta-
ble growth, alternating equilibrium levels and staying between them in a none-
quilibrium state, i.e., in a state of dynamic equilibrium.  

3) Self-oscillations are characteristic for developed economies with high en-
trepreneurial activity and innovative susceptibility, therefore the economies of 
developed countries are relatively stable. In countries where entrepreneurial ac-
tivity is low, auto-oscillations in the economy are virtually excluded, there can 
only be forced fluctuations caused by exogenous shocks. Since the amplitude of 
self-oscillations of the system does not depend on the initial conditions and is 
determined only by the internal structural parameters of the system and it is mi-
nimal, and the self-oscillations themselves play a decisive role in accelerating the 
rates of economic growth and giving stability to development, then measures are 
necessary that contribute to the formation and maintenance of short-term au-
to-oscillation which is achieved by encouraging and supporting the innovative 
activity of entrepreneurs.  

All this is well illustrated by the phase portrait shown in Figure 4. 
In general, when the coefficients of differential Equations ((19) and (21)) are 

slow changing variables and the nonlinearity accelerator is high, then, for the 
solution of these equations it is necessary to use numerical methods and com-
puter simulation exercise. In this case the right accelerator’s functional depen-
dence on time is of high priority. 

In [14] there is a description of computer simulation of the economic system 
(19) and (21) with complicated periodical external disturbance and variable 
power accelerator for different values of power close to critical. The results are 
shown in Figure 5. As is evident from considering the graph, for certain values 
of power ( 0 1ν = ; 1 1.05ν = ) a loss of stability occurs in the system and the 
economy gets into crisis, falling into a deep recession. Importantly, the loss of 
stability is associated with breaking the trend of the curve, but not cyclical fluc-
tuations. This corresponds to the assertion of Schumpeter that the equilibrium 
trajectory is steep and cyclical component has a form of wave. GDP dynamics 
presented in Figure 5 shows that the mathematical model quite adequately  
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Figure 4. Phase portrait characterizing the zone of stability of dynamic economic system. 

 
describes the real process of economic development. For a more detailed study 
of economic system behavior it is required to describe a random nature of the 
exogenous impulse that caused crisis and recession. This means to solve stochas-
tic differential Equation (21). Then chaotic dynamics of the economic system 
will be described in terms of attractors. 

3. Verification of the Macroeconomic Dynamics Equation 
and Long-Term Forecasting on the Example of the US 

Below are the results of computer modeling of US macroeconomic dynamics by 
numerical solution of differential equations describing the trend trajectory of 
economic development (19) and cyclic fluctuations (21), followed by a superpo-
sition of the solutions. Verification of mathematical model (19)-(21) is carried 
out on the example of economic development in the US during the fifth Kondra-
tieff cycle from 1983 to 2010. The model is used to forecast the economic devel-
opment of the United States till 2050. 

First, one must identify the right sides of equations (19) and (21) i.e. functions 
( )1F t  и ( )2F t . The latter, as it can be seen from equations (19) and (21), de-

pends on the autonomous investment ( )A t  and the production of capital 
( )K t  and its rates. Therefore functional dependence of the basic movements of 

physical capital ( )K t  is needed. Accumulation of fixed capital is stable enough 
and, as was shown by E. Hansen, its dynamics has a form of S-shaped logistic  
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Figure 5. Simulations of the macroeconomic dynamics equations: trend and cyclical 
components are represented by lines of medium thickness, yield is given by thick lines. 
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curve [15]. Long-term economic growth has the same form within a large Kon-
dratieff cycle, which was clearly demonstrated in the fundamental work of Hi-
rooka [16]. This is not surprising because of the ratio of physical capital to yield 
in the long-term is almost constant. Following up the above considerations it is 
natural to express a capital in the following form: 

( ) ( )
( )

( )
( ) ( )0 1 2

1 1 0 2 0
11 0

1
sin sin .

1 exp

K K t t

K k qq t T t T
qk t T

ϕ

ω ω
θ

∗= +

+  
= + − + −  + − −        

(25) 

Here the first term describes the trend trajectory of productive capital, 
which is expressed by the logistic function, and the second describes the cyc-
lical fluctuations, describing the Kitchin ( )1 1,q ω  and Juglar ( )2 2,q ω  cycles, 

1 2,ω ω —frequencies. 
Knowing ( )K t  we can determine the investments: 

d d d
d d d
K KA K K
t t t

ϕ
µ µ µϕ

∗
∗= + = + + + ,              (26) 

where μ is the rate of disposal of fixed assets. 
Using relationships (25) and (26) we obtain the functional expression for the 

right sides of equations (19) and (21): 

( ) ( )
( )
( )

0
1 0 1

1 0

exp
1

1 exp

t T
F t K k

k t T
θ

λ
θ

 − − = +
 + − − 

( )0æ exp t Tµ θ
  −  


 

( )
( )

( ){ }
( ){ }

2
1 1 01

2
1 0 1 0

exp 1æ 1
;

1 exp 1 exp

k k t Ts i k
k t T k t T

θ θµ θ

θ θ

 − − −+ + −    + + 
 + − −  + − −          

(27) 

( ) ( ) ( ) ( ) ( )2 22
2 1 1 1 0 2 2 0 1 1 0

1

æ cos cos sinqF t q t T t T t T
q

λ µ ω ν ω ω ω ω
  = + − + − − −  
  

 

( )2 2
2 2 0

1

sinq t T
q

ω ω− − + ( ) ( )2
1 0 2 0

1

æ sin sin .qt T t T
q

µ ω ω
 − + −  
      

(28) 

The next step is the calibration of the basic production capital model (25). The 
model contains 6 parameters: 1 1 1 2 2, , , , ,k q qθ ω ω . The initial value of capital (K0) 
corresponds to the actual amount of capital in 1983 (T0), the initial year of the 
fifth Kondratieff cycle (1982-2017), which we have found in the national ac-
counts of the UN [17]. The maximum value of fixed capital corresponding to the 
actual amount of capital in 2008 can be determined at the level of 0.9Km (Km is 
the value of saturation). Hence we obtain ( )2008 0 10.9 1K K k= + . Therefore,  

2008
1

0

1
0.9
Kk

K
= − . Other parameters ( 1 1 2 2, , , ,q qθ ω ω ) are defined as follows. First, 

we find the parameter θ describing the trend component: 

( ) ( )
( )

0 1

1 0

1
1 exp

K k
K t

k t Tθ
+

=
 + − − 

.                 (29) 
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Since both K0 and k1 are known and present in statistics, the parameter θ can 
be easily found by least squares method using all the available sample of the ac-
tual values of Ki in a given period of time (1982-2010). Trend growth of physical 
capital derived from the approximating Formula (29) is shown in Figure 6. As it 
can be seen, the approximation is sufficiently good. 

To determine the oscillation controlling parameters 1 1 2 2, , ,q qω ω  in the 
model for capital (25), one must use the investment Equation (26), which with a 
specific model of capital movements (25) becomes: 

( )
( )

( )
( )

( )

( ) ( ) ( )

1 00 1
1 1 1 0

1 0 1 0

2 2
2 2 0 1 1 0 2 0

1 1

exp1
cos

1 exp 1 exp

cos sin sin .

k t TK k
A q t T

k t T k t T

q qt T q t T t T
q q

θ θ
µ ω ω

θ θ

ω ω µ ω ω

  − −+   = + + −     + − − + − −      
  

+ − + − − −  
  

(30) 

The actual values of autonomous investment A are in the same UN database [17], 
they are shown in Figure 7. The important thing is that in stand-alone investments 
there are more prominent oscillatory deviations from the trend component and 
therefore Equation (30) is the best way to find the parameters 1 1 2 2, , ,q qω ω . 

In Equation (30) the rate of disposal of fixed capital μ increases with time due 
to constant technical progress and it can be approximated by a linear relation-
ship: 

( )0 1 0t Tµ µ µ= + − .                     (31) 

 

 
Figure 6. Approximation and extrapolation of physical capital. 
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Constants 0µ  and 1µ  are easy to find by the least squares method using a 
statistics for the period 1982-2010 [17]. For the US economy, we have found that 

0.033µ ≅  and 4
1 1.1 10µ −≅ ×  i.e. this approximately corresponds to annual 3.3%. 

The parameters of approximating functions (25) and (30) for the main pro-
duction of capital ( )K t  and autonomous investment ( )A t  are defined by 
least squares method using statistics databases: 

*
1 1 1 0

**
2 2 2 0

0 1 0

0.075; 0.66; 9.5 years; 1998;

0.225; 0.28; 22.4 years; 2002;
10.77 trillion dollars; 3.5; 0.09; 1982.

q T T

q T T
K k T

ω

ω
θ

≅ ≅ ≅ ≅

≅ ≅ ≅ ≅

≅ ≅ ≅ ≅        

(32) 

Curve ( )A t , which is calculated in (30) shown in Figure 7. The US economy 
during 1982-2010 was characterized by Juglar cycles with period of 9.5 years, 
and Kuznets cycles with period of 22.4 years, the amplitude of Kuznets cycles is 
3 times as high as the amplitude of Juglar cycles.  

Thus, having the specific values of all parameters, we can calculate the right 
side of (27) and (28). The following pair 1.4λ =  and æ 1.3=  in Equations 
((19) and (21)) provides the best approximation for the US GDP over the period 
from 1982 to 2010. We have also found the average savings rate in this period s = 
0.184. 

Figure 8 shows the results of computer simulation for differential Equations 
((19) and (21)) with given values of parameters (32). The maximum of deviation 
is not more than 7%. Extremely important is the fact that the model captures 
and reflects the crisis recessions of 1990-1991 and 2000-2001, as it is evident  

 

 
Figure 7. Data for A, trend component and the model (the sum of trend and cycles). 
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Figure 8. GDP fit with sum of solutions of differential equations λ = 1.4 and æ = 1.3 
(larger scale) dotted line is the trend, the solid is the sum of solutions. 

 
from Figure 8. Hence a mathematical model that takes into account the effect of 
cyclical fluctuations on the formation of long-term growth trajectories gives 
good results. 

In conclusion, we use the model to forecast the dynamics of the US economy 
for the period corresponding to the duration of the upcoming sixth Kondratieff 
cycle (2018-2050). The model parameters are quite stable in the long run and 
therefore the numerical values (32) obtained during calibration of the model in 
the period from 1982 to 2010 can be used in the forecasting process. Therefore it 
is sufficient to determine the initial and final values of capital 0K  and 

( )0 11K k+ . In the year of recovery (2018) at the beginning of an upward wave of 
the sixth Kondratieff cycle 0K  will be almost identical with the volume of the 
pre-crisis year, i.e. 2018 2008K K≅ . To determine the final volume of primary 
production capital we will use following considerations arising from the analysis 
of trends in long-term economic development. 

In the long run there is a stable capital-output ratio ( K Y ), which is also ex-
pressed in empirical Kaldor’s law [18]: KK c Y=  ( constKc = ). Friedman shows 
that in the long run, permanent consumption is directly proportional to perma-
nent income [9]: YC c Y= . Consequently, ~K C . This means that if you know 
the expected growth in consumption, it is easy to determine the expected growth 
in basic industrial capital. 

R. Hall argues that if consumer’ expectations are rational then consumption 
follows the trajectory of a random walk [19]. This means that consumption C is 
not likely to be out of the region 3e

CC tσ≤  ( Cσ  is standard deviation of C). 
This follows from the properties of Gaussian random walks called the Wiener 
process [20]. Thus, it can be taken that max 03e

CC T Tσ= − . This formula is va-
lid for ( )0ln 0T T− > , which implies that 0T T e− > . Therefore, we can take 
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( )max 0
3 3e

CC σ= . To estimate growth in consumption during the period of time

0T T−  one can suggest the following simple equation:  

( )
max 0

max 0
3

e

e

C T T
C

−
=

                      

(33) 

Therefore,  

max 0

0 3
K T T
K

−
= .                       (34) 

Substituting 2050T =  and 0 2010T =  in Equation (34) we get: max 03.6K K≅ . 
As ( )max 0 11K K k= +  it implies that 1 2.6k = .  

Trajectory of the US GDP till 2050 calculated with the model (19) and (21) is 
shown in Figure 9. Simulation pretty well describes the changes in economy 
during the long Kondratieff wave including a sharp decrease in 2008-2009 and 
2038-2039 leading to a crisis and recession. These cyclical crises accompanied by 
depressions are seen especially clearly. The depth of the crisis depends on 1ν  
which reflects the speculative activity and 0ν  this is a normal business activity. 
The forecast also shows that by 2050 the volume of US GDP will reach about 36 
trillion dollars in constant 2000 prices, which almost coincides with the predic-
tion obtained by Goldman Sachs analysts [21]. 

The suggested mathematical model of long-term economic growth containing 
two (cyclical and trend) components provides a good description of real ma-
croeconomic dynamics both qualitatively and quantitatively. The model also al-
lows to estimate timings of crises, which can be seen in Figure 9. Still the ques-
tion of special interest is the following: is it possible to more accurately predict 
the crisis time? 

 

 
Figure 9. Forecast of US GDP. 
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4. Burst of the Gold and Oil Bubbles as a Predictor of the 
Global Economic and Financial Crisis 

Didier Sornette, Anders Johansen and their colleagues (e.g., [22]) have demon-
strated that accelerating log-periodic oscillations superimposed over an explo-
sive growth trend that is described with a power-law function with a singularity 
(or quasi-singularity) in a finite moment of time Ct ,  

( ) ( ) ( ) ( )cos lnC C Cx t a в t t c t t t tβ β ω φ = + − + − − +  ,        (34) 

are observed in situations leading to crashes and catastrophes, and can be treated 
as their predictors. In our paper [23] we show that the hyperbolic growth in the 
global prices of highly liquid commodities (such as gold and oil) can be treated 
as a predictor of a deep crisis in the world economy, and we have proposed an 
algorithm for estimating the critical time (the time of the crisis) based on ap-
proximation of current prices dynamics with a function of type (34). Energy is a 
major productive resource. The structure and the level of energy consumption 
describe the state of world and national economies, as well as the level and qual-
ity of life. There is also a close connection between energy consumption and 
economic growth. Currently the dominant energy source is oil, but the era of gas 
is approaching. Marchetti and Nakicenovic were the first who drew attention to 
the cyclic increases of prices of the dominant energy sources with a period of 
Kondratieff cycles [24]. These price increases usually last for about 10 years and 
lead to significant shift in structure of energy consumption. We have shown that 
these increases of prices are predictors of the global crises in the world economic 
and financial system. Indeed when the global economy is in the upswing phase 
of Kondratieff wave, the global market expands and oil prices are stably low and 
are determined by the costs of production and transportation in agreement with 
theory of Kondratieff waves. But as soon as there is a significant world market 
downturn in a downswing phase of Kondratieff wave, capital begins to rapidly 
flow into oil and gold which are commodities with absolute (or almost absolute) 
liquidity. All this causes increase in oil and gold prices, as is shown in Figure 10 
and Figure 11.  

Figure 10 demonstrates that oil price rose to $ 50 per barrel immediately after 
the oil shock in the early 1970’s and then up to $ 95 per barrel by 1979. That was 
the start of the economic crisis of 1980-1982. Then the oil price declined and sta-
bilized at the level of $25 - 35 per barrel in the mid-1980s. In 2003 a new rise began. 
In 2004-2006 the world economy entered the downswing phase of the fifth Kon-
dratieff wave. This phase is expected to last until 2017-2018 (see, e.g., [25]). In 
2006-2008 oil prices increased dramatically. Within eighteen months they rose 
from $ 60 to $ 145 per barrel. That marked the start of global economic crisis when 
the oil price fell down till $ 30 per barrel. Afterwards the prices returned to a stable 
level of $ 70 - 85 per barrel which was considered comfortable for both producers 
and consumers. However, by March 2011, oil prices rose to $ 110 - 120 per barrel. 
This dynamics of oil prices could not be due to fundamental factors but could be  

https://doi.org/10.4236/am.2018.95037


A. Akaev 
 

 

DOI: 10.4236/am.2018.95037 531 Applied Mathematics 
 

 
Sources: database US Energy Information Administration. URL:  
http://www.eia.doe.gov/dnav/pet/pet_pri_spt_s1_a.htm; World Development Indicators Online (Washing-
ton, DC: World Bank, 2010), URL: http://data.worldbank.org/data-catalog/world-development-indicators 
(US inflation).  

Figure 10. Oil prices at US markets, 1970-2010.  
 

 
Note: yearly London fixing averages. Sources: World Gold Council database. URL:  
https://www.statista.com/statistics/268027/change-in-gold-price-since-1990/ (gold prices for 1970-2009); 
USA Gold Reference Library database. URL: http://www.usagold.com/reference/prices/history.html (aver-
age price for January 4-November 12, 2010); World Development Indicators Online (Washington, DC: 
World Bank, 2010), URL: http://data.worldbank.org/data-catalog/world-development-indicators (data on 
USA inflation).  

Figure 11. Gold prices 1970-2010, US dollars per troy ounce, London price fix. 
 

due to speculative factors. We supposed the level of 2008 ($ 130 - 140 per barrel) 
was critical and may have led to the next wave of the world economic crisis.  
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Actual oil prices can be approximated with the following function:  

( ) ( ) ( ){ }0 1 21 cos lnC Cp t p p t t p t tβ ω φ ≅ + − + − +  .        (35) 

Figure 12 and Figure 13 display actual data for oil and gold prices and their 
approximations with a function of type (35). It is evident that the hyperbolic 
trend and log-periodic oscillations both allows to build accurate estimation of 
crisis recession start. Method of calculation is described in detail in our paper [23]. 

The following parameters of the approximating function (35) were estimated 
with least squares method based on the available statistics: 

1) for oil prices: ( )
0 66.9op = ; ( )

1 22.84op = ; ( )
2 0.0557op = ; ( ) 0.915oβ = ; 

( ) 22.097oω = ; ( ) 0.471oφ = ; ( )o
Ct  = August 31, 2008;  

2) for gold prices: ( )
0 1220.4gp = ; ( )

1 570.35gp = − ; ( )
2 0.036gp = ; 

( ) 0.266gβ = ; ( ) 15.86gω = ; ( ) 34.76gφ = − ; ( )g
Ct  = September 14, 2011.  

The model (35) was to have predicted in 2008 the beginning of the oil price 
collapse for about 80 days in advance if had been applied. 

Let us take a look at gold prices. In early 2011 they were still rising. Market 
players found gold as the most reliable replacement of national currencies and 
companies stocks. Therefore, there was a big increase of investment in gold and 
we treated it like a predictor of the second wave of the crisis. Applying model (35) 
to gold prices gave singularity point in August 2011. We forecasted that the lat-
ter may have precipitated the second crisis wave. The actual events confirmed 
our forecast [26].  

 

 
Figure 12. Log-periodic oscillations in the dynamics of world gold prices, constant 1982 
dollars inflation adjusted. June 11, 2003-December 2, 2010 (gray markers correspond to 
the empirical data, the thick smooth black curve generated by Equation (35)). 
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Figure 13. Log-periodic oscillations in the dynamics of world oil prices in constant 1982 
dollars, inflation adjusted, 2007-2008 (grey markers correspond to the empirical data, the 
thick smooth black curve generated by Equation (35)). 

 
Thus oil and gold prices are predictors of global cyclical crises associated with 

large Kondratieff waves of global market conditions with period of 30 - 40 years. 
Such global cyclical crises include, for example, the global economic crisis of the 
1970s, as well as the current crisis started in 2008. As to the intermediate reces-
sions that happen every 8 - 10 years they are associated with mid-term Juglar 
cycle. Within the Juglar cycle one can observe oscillations of investments into 
fixed capital. In fact this is a tool for predicting local economic crises such as the 
dot.com bubble burst in 2001 in the USA. 

Today the next economic upswing is associated with the broad adoption of 
innovations based on nano- and biotechnologies, genetic engineering and rege-
neration of human organs (see, e.g., [25]). If those technologies are overesti-
mated the next crisis can occur in the decade. Consequently the investments and 
technological innovations are to be attentively monitored during the forthcom-
ing years. The mechanism for falling into the crisis can be suggested as follows: 
investments in new technologies increase much faster than technological 
progress does. In this case efficiency of investment decreases to its minimum 
level and investments do not return. This leads to a crisis. On the other hand, the 
trigger for most of the economic crises of recent decades was burst of one of “fi-
nancial bubbles”. For example, US economy recession that started in 2001 was 
initiated by stock market collapse of late 2000. 
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