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Abstract

In this paper, we mainly deal with a class of higher-order coupled Kir-
chhoff-type equations. At first, we take advantage of Hadamard’s graph to get
the equivalent form of the original equations. Then, the inertial manifolds are
proved by using spectral gap condition. The main result we gained is that the
inertial manifolds are established under the proper assumptions of M (s)

and g, (u,v),i=12.
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1. Introduction

This paper mainly deals with existence of inertial manifolds for a class of high-
er-order coupled Kirchhoff-type equations:

, + M (|Vulf + [V ) (-2)" e B(-A) ", + g (wv) = £ (), (LD)
v, +M( |Vu|| +||Vv|| ) A v+ﬂ(—A)m v, +g, (u,v) =/, (x) s (1.2)

u(x,0) = u, (x)u, (%,0) =1, (x),x €, (1.3)

()C, ): (x)’ t('x 0) vl(x),er, (1.4)
o'u )
Z/I|‘7Q:0’_ 9920,1:1’2735'“5”1_1) (1.5)
o'v )
v BQ=09_'|5Q=051=1:293n"'9m_1) (16)
o'

DOI: 10.4236/jamp.2018.65091 May 30, 2018 1055 Journal of Applied Mathematics and Physics


http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2018.65091
http://www.scirp.org
https://doi.org/10.4236/jamp.2018.65091
http://creativecommons.org/licenses/by/4.0/

G. G. Lin, S. M. Yang

where m>1 is an integer constant, {1 is a bounded domain of R" with a
smooth Dirichlet boundary 0Q, u,(x),u,(x),v,(x),v,(x) are the initial value.
4, and v, are the unit outward normal on 9Q, M (s) isa nonnegative C'
function, (—A)m u, and (—A)m v, are strongly damping, g (u,v) and
g,(u,v) are nonlinear source terms, f,(x) and f,(x) are given forcing
functions.

It is significant to establish inertial manifolds for the study of the long-time
behavior of infinite dimensional dynamical systems, because it is an important
bridge between infinite-dimensional dynamic system and finite-dimensional
dynamical system.

To better carry out our work, let’s recall some results regarding wave equa-
tions.

Jingzhu Wu and Guoguang Lin [1] studied the following two-dimensional

strong damping Boussinesq equation while o >2:

u, —ohu, — Au+u*" = f(x,y),(x,y)eQ, (1.7)
u(x,y,O)zu0 (x,y),(x,y)eQ, (1.8)
u(x,y,t)=u(x+my,t)=u(x,y+mt)=0,(x,y)eQ, (1.9)

where Q=(0,7)x(0,m) = RxR,t>0. They obtained result that is existence of
inertial manifolds.

Guigui Xu, Libo Wang and Guoguang Lin [2] investigated the strongly
damped wave equation:

u, —ohu+ A —yhu, + g (u) = f(x,t),(x,t) e Qx R", (1.10)
u(x,O)=u0(x),ut(x,0)=ul(x),er, (1.11)
Ul =0,Aul =0,(x,t)66QxR+. (1.12)

They gave some assumptions for the nonlinearity term g(u) to satisfy the

following inequalities:

(A1) mnmfG“)zase&G@)=ﬁg00W-

‘S*)w 52
(A2) There is positive constant C,; such that
-CG
hmnﬁﬁiﬂ—TLiﬂzaseR.
§|—>00 S
According to the above assumptions, they proved the inertial manifolds by
using the Hadamard’s graph transformation method.
Ruijin Lou, Penhui Lv, Guoguang Lin [3] considered a class of generalized

nonlinear Kirchhoff-Sine-Gordon equation:

u, — PAu, +au, —¢(||Vu||2)Au +g(sinu)= f(x), (1.13)
u(x,t)=0,er,t20, (1.14)
u()c,O):uO(x),ut(x,O)zu1 (x),er. (1.15)

Under some reasonable assumptions, they obtained some results that are
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squeezing property of the nonlinear semigroup associated with this equation and
the existence of exponential attractors and inertial manifolds.
Lin Chen, Wei Wang and Guoguang Lin [4] studied higher-order Kir-

chhoff-type equation with nonlinear strong dissipation in n dimensional space:

u, +(—A)m u, +¢(||Vu||z)(—A)m u +g(u) = f(x),x eQ,t>0,m>1, (1.16)

u(x,t):0,%=0,i:1,2,---,m—1,xe@Q,t>O, (1.17)
A
u(x,O)=u0(x),ut(x,0)=ul(x). (1.18)

For the above equation, they made some suitable assumptions about ¢(s)
and g(u) to get existence of exponential attractors and inertial manifolds.

In this article, we first take advantage of Hadamard’s graph to transform equ-
ations (1.1)-(1.2) into an equivalent one-order system of form. Then, we proved

the inertial manifolds by using spectral gap condition.

2. Preliminaries

We denote the some simple symbols, |||| and (,) stand for norm and inner
productof Hand H" =H"(Q), Hy (Q)=H"(Q)NH,(Q),
H(Q)=H™ () HY(Q), H=L(Q), /= ().(i=1.2),

o=Vull +[Vo[' o =V [+ [ (k=1.2,), H=Hz),

¥ 17 (@) (@< E (@) 1), H, = Hiy - (7= 1.2.) e vai-

ous positive constants.

Next, we give some assumptions needed for problem (1.1)-(1.6).
(H1) gi(u,v),(izl,Z),M(s)eCI(R). (2.1)

ﬂz/ul -1

(H2) e<my<M(s)<m = 4

(2.2)

Then, we give the basic concepts below.

Definition 2.1. [6] An inertial manifold y is a finite-dimensional manifold
enjoying the following three properties:

1) pis Lipschitz,

2) pis positively invariant for the semi-group {S (t)}rzo , Le
S(t)puc u,vi=0,

(3) pattracts exponentially all the orbits of the solution.

Definition 2.2. [6] Let A4:X — X be an operator and assume that
FeC,(X,X) satisfies the Lipschitz condition:

|F)-F()|, <tc|u-7],.U.¥ex, (2.3)
where X =H' (Q)x Hy' (Q)x I?(Q)x L*(Q) . The operator A is said to satisfy
the spectral gap condition relative to F, if the point spectrum of the operator A
can be divided into two parts o, and o,,of which o, is finite, and such that,
if

A, :sup{Re/1|/160'l},A2 =sup{Re/1|/?.eo'2}, (2.4)
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and

Xizspan{a)/|jeai},i=1,2. (2.5)

Then
A, — A >4l (2.6)
And the orthogonal decomposition
X=X ®X,, (2.7)
holds with continuous orthogonal projections A:X — X, and A:X —> X,.
Lemma 2.1. [7] Let the eigenvalues A7, >1 be arranged in nondecreasing

order, forall me N, thereis N >m suchthat 4, and A, are consecutive.

3. Inertial Manifold

In this section, we use the Hadamard’s graph transformation method to prove
the existence of inertial manifolds of problem (1.1)-(1.6) when N is sufficiently
large.

Equations (1.1)-(1.2) are equivalent to the following one order evolution equ-

ation:
U +HU=F(U), 3.1
where U =(u,v,p,q),p=u,.q=V,,
0 0 -1 0
0 0 0 -1
e o ey 0 | @7
0 M(v)(=a)" 0 p(-A)
0
roy=| 0, (33)
S(x) =g ()
f2 (%)= g (u,v)
D(H)={(u,v.p.q) e H" x H"" x H" x H" | . (3.4)

In X, we denote the usual graph norm, which is introduced by the scalar

product as the following form
(U.V), =(M(s)-V"w, V"5, )+(M (s)-V"v,V"5,)
+(2:p)+(2:4)
where U =(u,v,p,q).V =(»:2,2,2,)- W»Y1.7,2, denote the conjugation of

» (35)

Vs ¥y,2,,2, respectively, u,v,y,,y, € H" (Q),p,q,zl,z2 eH] (Q) .
For UeD(H), we have
(HUU), =(=M (0)V"p,V"&)+(~M (0)V"q, V")

+(BM () (-A)"u+ B(-A)" p)
(@M (0)(-a)" v+ B(-A)"q)

- plosff + sl =0

(3.6)
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Therefore, the operator H'in (3.2) is monotone, and (HU,U)X is a nonneg-
ative and real number.

To obtain the eigenvalues of H, we consider the following eigenvalue equa-

tion:
HU =2U,U =(u,v,p,q) € X , (3.7)
That is
-p =Au,
—q =Av,
(3.8)

M(U)(—A)m u +,B(—A)m p=Ap.
M (v)(-A)" v+ B(-A)" g =Aq.
The first two equations in (3.8) are brought into the last two equations in (3.8)

respectively, we get

m

Au+M (U)(—A)m u —ﬁxl(—A) u=0,

ﬂ,zv-i-M(U)(—A)m v—ﬂﬂ,(—A)m v=0,

ai

u|aQ=0,—u_ 0 =0,i=1,2,3,,m—1, (3.9)
ou'
ai

V|s= 0’_‘) BQZO’i=1,2,3,“',m—1,

vl
Let u, and v, replace uand vin (3.9) respectively. And then taking u,
and v, inner product respectively, we obtain

22|+ (0|97 | - 2", =0, (3.10)

A+ () [V - gy =o. (3.11)

Summing up (3.10) and (3.11), we get

Zal (s g R g P gt B (e L S R
(3.12)

When (3.12) is considered an a yuan quadratic equation on A, we can get

. By i\/ﬁzﬂf ~4uM (%)
ﬂ«]; = >
2
where g, is the eigenvalue of (—A)m in HX, then u, =chk" . if
Bu, >4M ('"1/ 4, ), thatis B’u, >4m,, the eigenvalues of H are all positive and

real numbers, the corresponding eigenfunction have the form

(3.13)

m

U; = (uk,vk,—ﬁ,fuk,—/l,ka ) For (3.13) and future reference, we observe that for
all k>1,

A R Y Y S Y (S e
k

Lemma 3.1 g,:H;'xH; — H;'xH;',i=1,2 is uniformly bounded and glo-
bally Lipschitz continuous.
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Proof. Vu,,u,,v,,v, € Hy'(Q), we get
8 (53"1 )"OO "”1 —U,

g

g (“2’77)"00 v ‘V2||H5" ’
(3.15)

||gi (ulavl)_gi (”23"2) HY' +|

HE <ty

where & =0u, +(1-60)u,,n=06v, +(1-0)v,,0< 0 <1. According to (H1), we can
obtain

"gi(ul’vl)_gi (uzsvz)

H{'xH{'

(3.16)

7 )

Theorem 3.1 If S’z >4m, holds, //2 is maximum Lipschitz constant of
g (u,v),(i=1,2), and if N, eN is sufficiently large such that when N2>N,
the following inequality holds:

(# —ﬂN)(g—%\/ﬁzuk —4mlj2ﬂ:‘¢+l, (3.17)

My —4m,

l
<Gy —u, "H(;” +Cyfvi -, wp S 5("“1 U "Hg,ﬂ + [ v,

Then the operator H satisfies the spectral gap condition of (2.6).
Proof. When p°u, >4m,, all the eigenvalues of H are real and positive, and

we can easily know that both sequences {ﬂ/; }k>l and {/1,: }M are increasing.

The whole process of proof is divided into four steps.

Step 1. Since J; is arranged in nondecreasing order. According to Lemma
2.1, given N such that A, and A, , are consecutive, we separate the eigenva-
lue of Has

o, ={/1;,/1,j

max {47, 4} ﬁﬂ,;,}, (3.18)

oy ={A;. 4

Ay <y <min{A; 274, (3.19)
Step 2. We make decomposition of X

X, :span{U;,U”lj—,l{ eal}. (3.20)
X, =span{U;,U,f|l_;,/I,: 60'2}. (3.21)

In order to make these two subspaces orthogonal and satisfy spectral inequa-
lity (2.6) A, =4,,A, =A,,,, we further decompose
X, =X, ®X,, (3.22)
with

X, =span {U]+

<Ay <At (3.23)
Xg :span{U,§|A;, S/lf}. (3.24)

And let X, =X, ®.X_. Next, we stipulate an eigenvalue scale product of X
such that X, and X, are orthogonal, therefore we need to introduce two
functions:

Let ®: X, >Ry:X,—>R.
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O(U,V)=B(V'u, V"5, )+28(V "2, V"u)+28(V"v,V"5,)
+2B(V7" 20, V") 4 28(V " p.V" R )+ 4(V " p.V 7))
+2B(V7"q. V"5, )+4(V g,V "z, ) - 4M (v)(u.3,)
+(28° = B)(V'E.V"y, ) - 4M (0)(V.3,) +(28° - B)(V"V.V"p,),

(3.25)
w(UV)=(V"u, V"3, )+ (V"0 V"y, ) +2(V "2, V") +2(V "2, V")
(V"2 V7" p)+(V "2,V "q) - 4M (v) (. ;) (3.26)
+287 (V' V" y, )= 4M (0)(V,3,) + 28 (V'V,V"y, ),

where U =(u,v,p,q).V =(%.2.2,2,)- W»Ys,7,2, respectively are the con-
jugation of y,,v,,z,z2,.
Let U =(u,v,p,q) € X, , then
®(U,U)

= B(V"w, V") +28(V " p,V"u)+ B(V"V,VV)+28(V "q, V")
+2B(V " Vi) +4(V 7" PV " p)+28(V . V")
+4(V7"q.V"q)—4M (v)(it.u)+ (28 - B)(V"E.V"u)
—4M (v)(v.v)+(28° - B)(V'V.V"V)
S A s L R N T e e
2y ol Al sl 2fvrdf < E ot oy edf 020
~4M (0)uf} +(28> = B)|V"u| —4p (o) +(28° - B) v
S (R N RO (X
> (B =4 (0)) ([ + 1)
> (8= ) + 1)
Since S, >4m;,my<M(s)<m, holds, we can know ®(U,U)=0 .
Therefore, for all U € X, analogously, for all U € X, we can get
v(U.U)
= (V"’u,vmu) + (vmv,vmv) + 2(v*’" p,V'"u) + 2(v*mq,vmv)
+(V"p.V " p)+(V7"q.V "q)—4M (v) (i)
+28° (V" V"u) = 4M () (v,v) +28° (V"V,V"v)
=Vl [V +2(v o)+ 2(V g )+ [Vl
|Vl - am )l + 28 [Vl - am ) +28° [V
> (284 —4M (0))(Jul] + V) ’

> (28~ 4m) (Juf +M) 20.
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From above, we know that for all U € X, then y (U,U)>0 holds. So, we
define a scale product with ® and yin X.

(U)), =®(PUPY)+y (PU.RY), (3.29)

where P, P, arerespectively the projection: X —» X, , X - X,.
In the inner product of Xin (3.29), X, and X, are orthogonal. In fact, we

need prove that X, and X are orthogonal.
(7u)) =)
= B(V"u,, V", )+ 28(=247V "u, V0 )+ BV, V)
+2B(= AV VY )4 2B(= AV ", VT )+ 4 (=AY e, =AY )
+2B(= AV VLV ) A=AV =AM, ) =4 (3] ) (i)
+(28° = B)(V"it, V" u, )= 4M ([, ) (3,0, )+ (287 = B) (V5,9
= A+ B [ 2685 2 ) |
I e e O

-l - () o) |

—28(4 +/1;)||vj||2 +4/1;/1;(

(3.30)

=28%u,-25(%; +z;)+4z;/1;i—4M(r4;7j)=o.

J

2 2 2 2
According to "u/” +||v/.|| =1, "V"’u/” +||V'"v/.

=Hpo

"V""’uj ||2 +||V_"’vj||2 = ,ui and A +4;=pu;, A = M(r{v/,uT) u;> we can get
J

the above results.

Step 3. Next, we estimate the Lipschitz constant /. of £
T
F(U)= (0,0,fl (x)-g (u,v), £, (x)—g, (u,v)) . (3.31)
g H"xH" - H"xH",(i=1,2) are globally Lipschitz continuous with
/
maximum Lipschitz constant 5 of g, from (3.27), (3.28), for arbitrarily

U =(u,v,p,q) € X , we have.

Let B:X — X,P:X — X, are the orthogonal projection.
If U:(u,v,p,q)eX, Ulz(“wvlapla%):P]U’ U2=(u2,v2,p2,q2):PzU
hold, then Ru=u,Bv=v,Pu=u, Pv=v,.

I}, =®(RU,RU)+¥(RU,BU)
> (7w —4M (v, ))(Ilul IF -+ ||2)+(2ﬂ2ﬂ1 —4M (v, ))(||uz i +||Vz||2)
> (8= 4m, ) (el + o)

(3.32)

Let U =(u1,vl,b71,\71),V =(u2’v2,1,72,\_12), then
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lF@)-F ),
= ||g] (”1 ! )_gl (”2"’2 )”H()"xﬁg’ +||g2 (”1 ! )_gz (”z’vz )"H(I)angx

! I
< E("% —u, "H(’)" +||V1 -V, "H(')” )+E("M1 —u, "H{,” +||v1 -V, "H{,” ) (3.33)

lo=,-

(=l +s el ) e
T T )
21
Therefore ! SZL.

\/ﬁ Hy —4m,

Step 4. Now, we need prove the spectral gap condition (2.6) holds.

From the above mentioned A, =4, and A, =41, ,we can get

+1

A=A =2y, — Ay :?(yw —,LIN)+%(\/R(N) —\/R(N+1)), (3.34)

where R(N)=p’u; —4,uNM('"JyN ) .
We determine N, >0 such that forall N=N,, let

B 4m,
R(N)=1- _
() \/ﬂzﬂl—4ml yN(ﬁ2y1—4ml); (3.35)

we can get

\/R(N) _\/R(N"'l) +\/ﬂzru1 —4m, (:UNH _:UN)
= \lﬁzﬂl —4m, (ll'lN+]R] (N + 1) — 1y R (N)) (3.36)

2
According to the previous hypothesis & < m, <M (s)<m, = % , We can
know
tim (VROV) [ ROVH1) 4y 87—, (s — 1)) =0 (3.37)

Then, combining (3.33), (3.34), (3.17) and (3.37), we obtain

1
Ay =4 >(ﬂ/v+1 _ﬂN)(g_E\/ﬂzM _4m1j_1

g 4—@ S (3.38)

B \/ﬁ2ﬂ1_4m1 "

The proof is completed.
Theorem 3.2. [8] Under the condition of Theorem 3.1, the initial boundary

value problem (1.1)-(1.6) admits an inertial manifold xin X of the form
,u:graph(p):{awp(():g’eXl}, (3.39)

where X, X, are as in (3.20), (3.21) and p:X, > X, is a Lipschitz conti-

nuous function.

4. Conclusion

In this paper, we prove the existence of the inertial manifolds for a class of high-
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er-order coupled Kirchhoff-type equations. In the process of research, we take
advantage of Hadamard’s graph to get the equivalent form of the original equa-
tions and then use spectral gap condition. Based on some of the work above, we
prove the existence of the inertial manifolds of the system. For this problem, we

will study the exponential attractors, blow-up, random attractors and so on.
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