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Abstract 

To better understand interlimb coordination during the double stance phase 
at fast walking speeds, we analyzed ground reaction forces generated by the 
leading and trailing limbs during the double stance phase at multiple speeds. 
Ground reaction forces were recorded during the double stance phase at slow, 
self-selected, and fast walking speeds in eleven healthy volunteers. We calcu-
lated the instantaneous phase of the ground reaction forces for the vertical 
and anterior-posterior components, and then calculated the relative phase 
between the leading and trailing limbs for each component. For the vertical 
component, the relative phase showed a significantly lower value in the fast 
condition than in the other two conditions in the early-double stance phase 
(fast vs. self-selected, p < 0.01; fast vs. slow, p < 0.001). For the ante-
rior-posterior component, the relative phases in the early- and late-double 
stance phases in all speed conditions were significantly smaller than those in 
the mid-double stance phase. These findings suggest that interlimb coordina-
tion of the forces exerted by the leading and trailing limbs in the early-double 
stance phase would be an important factor for walking at fast speed. 
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1. Introduction 

During a double stance phase in human walking, the center of mass (COM) has 
a transition from the trailing limb to the leading limb, and the direction of the 
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COM changes from downward to upward. The COM transitions consume most 
of energy expended during the entire gait cycle (Donelan et al., 2002; Kuo, 2007; 
Umberger, 2010). Furthermore, COM redirections require energy (Adamczyk & 
Kuo, 2009). Thus, energy losses due to ineffective coordination between the 
leading and trailing limbs during the double stance phase should directly affect 
the energy efficiency of walking. 

Interlimb coordination during the double stance phase has been observed 
spatially (Soo & Donelan, 2010; Soo & Donelan, 2012; Sousa et al., 2013) and 
temporally (Kuo, 2002; Sousa et al., 2012; Sato & Yamada, 2017). From the spa-
tial point of view, when muscle activity for absorbing an impact on the leading 
limb decreases, that for the forward propulsion of the trailing limb can increase 
(Sousa et al., 2013). Additionally, it was reported that a decrease in the push-off 
forces of the trailing limb increases the collision forces of the leading limb (Soo 
& Donelan, 2012). 

In the temporal aspects, Sato and Yamada (2017) calculated the relative phases 
of each component of the ground reaction forces (GRFs) between the leading 
and trailing limbs. This was achieved by calculating the instantaneous phase of 
each component in the leading and trailing limbs during the double stance phase 
at self-selected speed. They found that the relative phases of vertical component 
showed an anti-phase for smooth transitions from the trailing limb to the lead-
ing limb, and that anterior-posterior (AP) component showed a lag during en-
tire double stance phase. These findings suggested that the forces generated by 
the leading and trailing limbs temporally coordinate to translate the COM as 
smoothly as possible. 

Mechanical works performed on the COM during walking depend upon 
walking speed (Willems, Cavagna, & Heglund, 1995). The COM works for 
walking are minimal at the self-selected speed, and increase as walking speed in-
creases (Cavagna et al., 1976; Cavagna & Kaneko, 1977). The muscle activities of 
lower limbs during walking also depend on walking speed (Hof et al., 2002). 
Muscle activities for body support and forward propulsion during the double 
stance phase increase as walking speed increases (Sousa & Taveras, 2012). In 
clinical situations, it was considered that subjects with conditions such as he-
miplegia cannot walk faster owing to the lack of these muscle activities (Olney & 
Richards, 1996; Sousa & Taveras, 2015). However, questions remain regarding 
why some post-stroke subjects cannot walk faster (Sousa et al., 2013). 

Although we hypothesized that impaired interlimb coordination during the 
double stance phase might explain why some individuals cannot walk faster, to 
our knowledge, no study has examined how changes in walking speed affect 
coordination, even with healthy subjects as a reference. Hence, the purpose of 
the present study is to elucidate how different walking speeds affect the relative 
phases of the GRFs between the leading and trailing limbs in healthy subjects, in 
order to clarify interlimb coordination at fast walking speeds. The findings from 
this study will be useful for assessing gait ability in clinical situations. 
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2. Methods 

2.1. Participants 

Eleven healthy males participated in this study. The mean (± one standard devi-
ation [SD]) age of the subjects was 24.3 ± 3.7 years; the average height and mass 
of the subjects were 1.76 ± 0.06 m and 74.1 ± 12.1 kg, respectively. Inclusion cri-
teria were that volunteers were healthy and had exhibited no clinical gait ab-
normalities during the past year, and that the dominant leg was on the right side. 
Before the experiments began, the volunteers read a description of the basic 
procedures of the experiments and provided informed consent. The experimen-
tal procedures of this study were approved by the ethics committee of Hokkaido 
University in Sapporo, and were carried out in accordance with the principles 
outlines in the Declaration of Helsinki for experiments involving humans. 

2.2. Procedures 

We instructed each subject to walk on a 5-m walkway at three different speeds: 
self-selected, fast, and slow. The subjects walked at their preferred speed at first, 
and then randomly walked at slow speed or fast speed. Under preferred speed 
condition, we instructed them to walk at their preferred speed. Under slow or 
fast conditions, we instructed them to walk slower or faster, respectively, than 
their preferred speed. 

Each subject performed at least three trials under each condition. The GRFs of 
each subject were measured using two separate force platforms (OR6-5, AMTI, 
MA, USA; FP4060, Bertec Co. OH, USA) that were ground-embedded in a series 
near the midpoint of the 5-m walkway. All subjects could see the two platforms. 
The first force platform was touched by the left foot and the second one by the 
right foot. The measured GRFs were simultaneously digitized into two force di-
mension components (Fz: vertical; Fx: AP) using an analog-digital converter (16 
bits; National Instrument, TX, USA) at 1000 Hz. The positive values of the ver-
tical component corresponded to the upward direction, and the positive values 
of the AP component corresponded to the forward direction. A trial was rejected 
if each foot did not clearly touch each force platform. We saved and analyzed the 
data for three acceptable trials for each subject. Data for each subject was ob-
tained by averaging data from the three trials. 

2.3. Data Analysis 

The GRFs were smoothed using a zero-lag low-pass filter at 25 Hz (Bryant et al., 
1984; Soo & Donelan, 2010). We defined a double stance phase as the time be-
tween ground contact of the right foot (leading limb) and the foot-off of the left 
foot (trailing limb). 

To calculate the instantaneous phase of the vertical component in each limb, 
we deconstructed the vertical component of each limb (PGLV and PGTV) into real 
and imaginary parts by using the Hilbert transform (Boashash, 1992a; Boashash, 
1992b), formulated as Equation (1): 
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                 (1) 

where subscripts L and T represent the leading and trailing limbs, respectively, 
and subscript V represents the vertical component of the GRF. Moreover, i 
represents the imaginary unit, and GHLV and GHTV represent the values of the 
vertical component in the leading and trailing limbs, respectively, transformed 
by the Hilbert transform. The instantaneous phase of the AP component of the 
GRF in each limb was calculated in a similar manner as the vertical component. 
The relative phases of the vertical component ( v∆Φ ) and AP component 
( AP∆Φ ) were calculated using the real and imaginary parts of each component, 
formulated as Equations (2) and (3), respectively (Palut & Zanone, 2005; Lames, 
2006; Okumura et al., 2012): 
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G G GH GH

− ⋅ − ⋅
∆Φ =

⋅ + ⋅
                (2) 

1tan LAP TAP TAP LAP
AP
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− ⋅ − ⋅
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⋅ + ⋅
              (3) 

where GHLAP and GHTAP represent the values of the AP component in the lead-
ing and trailing limbs, respectively, transformed by the Hilbert transform. 

The double stance phase in each trial was divided into 10 sections (Sato & 
Yamada, 2017). Walking speeds differed among the three conditions. Moreover, 
because the speeds also differed among subjects, we could not distinguish when 
the relative phases differed among the conditions during the double stance 
phase. The mean of values in each section was used as the representative value 
for that section. All computations were performed in MATLAB (MathWorks 
Inc., MA, USA). 

2.4. Statistical Analysis 

The durations of the double stance phase under self-selected, fast, and slow con-
ditions were examined using the repeated-measures one-way analysis of variance 
(ANOVA). The effect size of ANOVA, η2, was calculated. Repeated-measures 
two-way ANOVAs were performed as factors of the walking speed and the sec-
tions to examine the relative phases of the vertical and AP components of the 
GRF. A Tukey’s honest significance difference (HSD) was performed as a 
post-hoc test. All statistical analyses were performed using SPSS version 20.0 
(IBM Corporation, Armonk, NY, USA). The statistical significance level was set 
as 0.05. 

3. Results 

The double stance phase durations were, on an average (SDs) of all subjects, as 
follows: 113.7 (18.6) ms, 158.1 (21.9) ms, and 195.4 (20.8) ms under fast, 
self-selected, and slow conditions, respectively (Figure 1). The main effect of the 
walking speeds was significant (F (2.30) = 43.65, p < 0.001), and there were  
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Figure 1. Mean of the duration of the double stance phase under each 
condition for all subjects (n = 11). The error bars show one standard 
deviation. *: p < 0.001. 

 
significantly differences between the walking speed conditions (p < 0.001). The 
effect size of ANOVA was 0.744. 

The vertical component of the GRF during the double stance phase showed a 
crossed pattern for the leading and trailing limbs under all walking speeds 
(Figure 2(a)). 

The increase in the force generated by the leading limb showed more nonli-
nearity in the fast condition than in the other conditions (around 30 ms in Fig-
ure 2(a)). For the AP component, the positive (i.e., push-off) force generated by 
the trailing limb decreased; the force generated by the leading limb showed a 
positive force at the early-double stance phase and then a negative (i.e., impact) 
force (Figure 2(b)). 

Table 1 shows the relative phases of the vertical component of the GRF in 
each section. The interaction of the walking speed and the section was signifi-
cant (F (18,300) = 2.95, p < 0.001). The main effect of the walking speed was sig-
nificant (F (2,300) = 11.49, p < 0.001). Its relative phase under the fast condition 
was significantly different from the other two conditions (fast vs. self-selected, p 
< 0.01; fast vs. slow, p < 0.001). The main effect of the section was also signifi-
cant (F (9,300) = 13.61, p < 0.001). The Tukey’s HSD test showed that its relative 
phases in DS2 and DS3 were significantly lower than in the other sections (p < 
0.001). 

For the AP component of the GRF (Table 2), the main effect of only the sec-
tion was significant (F (9,300) = 3.17, p < 0.01). The relative phase was lower in 
DS1 than in DS4 and DS5 (p < 0.05), and the relative phase in DS10 was lower 
than that in DS4 (p < 0.05). 
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(a)                                                          (b) 

Figure 2. (a) Typical time course for the vertical component of GRF during the double stance phase under each condition; (b) 
Typical time course for the AP component of GRF during the double stance phase under each condition. Each line shows the val-
ue averaged across the three trials of each subject. Solid and dashed lines represent the leading and the trailing limbs, respectively, 
under each condition. Blue lines show the slow condition. Green lines represent the self-selected condition. Red lines represent the 
fast condition. 

 
Table 1. Relative phase for the vertical component of each section in each condition (n = 11˚). 

  
DS1 DS2† DS3† DS4 DS5 DS6 DS7 DS8 DS9 DS10 

Slow MEAN 168.5 154.5 162.3 166.7 166.7 171.4 170.6 170.9 172.9 175.2 

 
SE 1.2 2.9 3.8 3.3 3.7 1.8 1.1 1.1 1.1 1.1 

Self MEAN 168.3 149.0 161.7 162.3 165.4 170.1 170.7 167.9 168.7 172.9 

 
SE 1.3 4.1 4.8 6.0 6.2 4.1 1.9 1.8 1.8 1.3 

Fast* MEAN 172.0 153.9 142.1 162.6 164.8 163.0 167.2 167.3 167.7 170.6 

 
SE 0.5 2.1 5.4 4.0 4.1 4.5 3.3 2.0 1.9 1.5 

*: significant difference compared to Slow and Self conditions (p < 0.001). †: significant difference compared to the other eight conditions (vs. Slow, p < 
0.001; vs. Self-selected, p < 0.01). 

 
Table 2. Relative phase for the AP component of each section in each condition (n = 11˚). 

  
DS1* DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10† 

Slow MEAN 27.2 36.6 47.5 61.9 55.3 57.6 55.7 46.2 36.9 30.9 

 
SE 8.0 8.2 8.9 12.2 12.9 11.0 10.6 10.5 9.0 7.1 

Self MEAN 33.2 43.3 46.0 49.9 53.9 48.4 49.4 46.6 42.2 35.3 

 
SE 6.8 7.8 13.5 13.2 12.2 10.9 10.9 11.1 10.0 8.0 

Fast MEAN 33.0 47.5 52.0 46.5 44.7 40.9 42.6 44.5 37.6 27.3 

 
SE 4.8 9.4 12.1 8.0 8.5 8.2 8.7 7.7 6.9 4.9 

*: significant difference compared to DS4 and DS5 (p < 0.05). †: significant difference compared to DS4 (p < 0.05). 
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4. Discussion 

The present study analyzed how varying walking speeds affect the relative phase 
between the leading and trailing limbs during the double stance phase. The ver-
tical component of the GRF showed that the relative phase under the fast condi-
tion differs from that under the self-selected and slow conditions; in particular, 
the relative phase during the early to mid-double stance phase (DS3) under fast 
conditions was low (significant interaction). In contrast, the AP component 
showed no difference in the relative phase among the speed conditions. 

The low relative phase during the early-double stance phase in the fast condi-
tion (140˚ - 150˚) may indicate that an interlimb coordination during this phase 
is an important factor for walking faster. Sato and Yamada (2017) reported that 
the relative phase for the vertical component in subjects’ preferred walking speed 
showed a value of approximately 180˚ (i.e., anti-phase). They described that this 
finding indicates smooth transition of the COM from the trailing limb to the 
leading limb. Hence, no anti-phase of the relative phase in the fast condition in 
the present study suggests that the COM cannot translate smoothly as walking 
faster. Non-smooth translations occurring at normal walking speeds may be a 
factor because of which elderly or disabled individuals could not walk at fast 
walking speeds. Further investigation is necessary to clarify this hypothesis. 

Furthermore, non-smooth translation of the COM in the fast condition may 
be associated with the ability to absorb the impact force of a leading limb on the 
floor during an early-double stance phase. In this phase, the leading limb ab-
sorbs the impact force (Perry, 1992; Rose & Gamble, 2006). In smooth transla-
tions of the COM with an absorption of the impact force, the vertical component 
of the GRF, as shown in the slow (blue line) and self-selected conditions (green 
line) of Figure 2(a), can increase linearly. In contrast, as walking speed increas-
es, because the impact forces increase as walking speeds increase (Kim & Park, 
2011; Yoem & Park, 2011), nonlinearity in increases of the vertical component 
becomes considerable (Cavanagh & Lafortune, 1980), as shown in the red line of 
Figure 2(a). This nonlinearity indicates that the COM bounds when the leading 
limb cannot absorb the impact force. Thus, the present finding suggests that, 
even among healthy young adults, the COM bounds with an increase in walking 
speed because the leading limb cannot absorb the impact force. A walking model 
simulation showed a nonlinear increase in the vertical component of the GRF as 
the stiffness of the leading leg was increased (Geyer et al., 2006). Elderly or dis-
abled individuals show high leg stiffness during early-double stance phase (Hor-
tobagyi & DeVita, 2000). Thus, because they have limited ability to absorb im-
pact forces during this phase, they may show a nonlinear GRF increase during 
this phase, even in normal walking velocity. Future research with elderly or dis-
abled individuals would be necessary to verify this observation. 

The present finding may be available for an assessment of gait ability in clini-
cal situations. Factors responsible for the inability of patients, such as 
post-stroke, to perform fast speed walking are still not clear (Sousa et al., 2013). 
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The present finding suggests that the relative phase between the leading and 
trailing limbs at an early-stance phase may explain these factors. The subjects in 
the present study were healthy adults. Although only the fast condition showed a 
significant difference in the relative phase in the present study, patients such as 
post-stroke may exhibit a low relative phase even under self-selected speed. Fu-
ture studies would be needed to examine the relative phase of the vertical com-
ponent in such patients. 

The relative phase of the AP component of the GRF showed no significant 
differences between different walking speeds (Table 2). Because spatial parame-
ters such as step length and muscle activities in lower limbs relating to forward 
propulsion are influenced by the walking speed (Sousa & Tavares, 2012; Sekiya 
et al., 1997; Sekiya & Nagasaki, 1998), we hypothesized that the relative phase 
under the self-selected condition would show characteristic values. However, the 
present study found that the relative phase of the AP component was not influ-
enced by the walking speed. Relative phases cannot reflect the magnitude of the 
measured GRF, but can reflect the relationships of the increase and decrease of 
the force between the leading and trailing limbs. The present finding indicates 
that, even under the fast walking speed, relationships between them do not vary 
in normal subjects. Hence, because the collision and push-off forces increase 
with increases in walking speed (Kim & Park, 2011; Yoem & Park, 2011), this 
finding would indicate that individuals must control these varying forces with-
out changing relative phases. 

In the sections during the double stance phase, the relative phase was lower at 
DS1 than that at DS4 and DS5 (Table 2). As shown in Figure 2(b), forces gen-
erated by both the leading and trailing limbs showed positive values at DS1. The 
lower relative phase of two forces moving in a forward direction indicates that 
those forces contribute to forward propulsion together (Sato & Yamada, 2017). 
Previous studies reported that the AP component of the GRF in the leading limb 
shows only negative impact force at ground contact (Donelan et al., 2002; Whit-
tington & Thelen, 2009). To the best of our knowledge, no previous study has 
described the positive forces observed in the present study. During the double 
stance phase, the fact that the trailing limb can generate positive push-off force is 
beyond doubt (Perry, 1992; Oastin, 2004). If the leading limb generates only 
negative forces (i.e., deceleration force) at the early-double stance phase, forces 
generated by the leading and trailing limbs will cancel each other. The cancelled 
forces do not show low relative phases. Thus, this finding showed that the lead-
ing limb can generate a positive force at the early-double stance phase. Future 
studies are necessary to clarify how this positive force is generated. Furthermore, 
abnormal coordination during the double stance phase in subjects with stroke 
was observed when the leading limb was the affected limb and the trailing limb 
was the unaffected limb (Sousa et al., 2013). The abnormal coordination suggests 
that the positive force generated by the leading limb could be an important fac-
tor for increasing walking speed in subjects with stroke. The relative phases of 
the AP component of the GRF in subjects with stroke should be investigated in 
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future studies. 
Regulated step lengths might be a limitation of the present study. Although 

walking speeds varied with changes in conditions in this study, step lengths were 
regulated by the dimensions of the force plates. Step lengths are also one of the 
factors affecting the magnitude of the GRF (Donelan et al., 2002; Kuo, 2007). 
Furthermore, because step length is directly proportional to walking speed (Se-
kiya et al., 1997; Kuo, 2001), regulating walking speed is similar to regulating 
step length. This limitation of the present study might have affected its results. 
However, as in previous studies, the dimensions of the force plates always affect 
subject performance (Donelan et al., 2002; Adamczyk & Kuo, 2009). From this 
point of view, the findings of the present study would depend on walking speeds. 
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