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Abstract 
We present a method for identifying the flexural rigidity and external loads 
acting on a beam using the finite-element method. We used mixed beam ele-
ments possessing transverse deflection and the bending moment as the pri-
mary degrees of freedom. The first step is to determine the bending moment 
from the transverse deflection and boundary conditions. The second step is to 
substitute the bending moment into the final equations with respect to the 
unknown parameters (flexural rigidity or external load). The final step solves 
the resulting system of equations. We apply this method to some inverse beam 
problems and provide an accurate estimation. Several numerical examples are 
performed and show that present method gives excellent results for identify-
ing bending stiffness and distributed load of beam.  
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1. Introduction 

In recent years, analyses of inverse problems have been actively promoted in a 
variety of science and engineering fields. The usefulness of such analysis is that 
physical quantities or phenomena that are difficult to measure or observe di-
rectly can be determined from inverse problems via their outputs. 

Inverse problems are diverse but typically include 1) obtaining the shape of a 
domain being analyzed, 2) obtaining boundary conditions for an entire boun-
dary or the initial conditions, 3) obtaining loads applied to a domain, and 4) as-
suming the material characteristics of a field [1]. For analysis of inverse prob-
lems, the relationship between inputs and outputs is used in a manner similar to 
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that used for direct problems. In the analysis of inverse problems, discretization 
methods, such as the finite-element method (FEM) and boundary-element me-
thod (BEM), have been used by engineers and researchers. 

While identifying elastic structures, it is important to identify the location and 
shape of defects or cracks in the structure, extensive research has been carried 
out in this regard [2] [3] [4]. Yoshimura et al. [5] proposed a method based on a 
neural network and computational mechanics for identifying the solid-state 
properties of structures from their vibration characteristics using a plate. Arai et 
al. [6] demonstrated a BEM for identifying out-of-plane dynamic pressure dis-
tributions applied to a thin elastic plate. Both Ronasi et al. [7] and Rao & Ritti 
[8] demonstrated methods for estimating the load using a FEM. Jadamba et al. 
[9] employed output least-squares functional to identify the Lamé parameters in 
the linear elasticity. 

In the present paper, a methodology for inverse problems in Euler-Bernoulli 
beams using static deflections measurements is proposed. In the first, we detail a 
methodology for identifying the distribution of flexural rigidity in a beam by 
using static deflection measurements. In the second, we develop a method for 
the identification of external loads acting on a beam. We give examples that 
demonstrate this scheme will yield accurate solutions. 

2. Formulation of the Inverse Problem 
2.1. Formulation of Mixed Beam Element 

Consider the Euler-Bernoulli equations in the following form: 

( ) ( ) ( )
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where w denotes the transverse deflection and M(x) represents the bending 
moment at point x. The coefficient EI(x), called the flexural rigidity, is the prod-
uct of the modulus of elasticity E and the moment of inertia I of the beam’s 
cross-section. The function q(x) represents the transversely distributed load (see 
Figure 1). We will demonstrate the discretization process based on the mixed 
form of the beam bending equations, Equations (1) and (2). Here, we begin by 
assuming that w and M are approximated in the usual manner by appropriate 
shape functions and unknown parameters: 

,e ew M= =Nw NM                       (3) 

where N represents element shape functions and we and Me are the nodal para-
meters to be determined. Higher order functions can be used for shape func-
tions, but the same linear shape functions were used for we and Me to simplify 
the calculation. For the Galerkin solution, the original shape functions are simp-
ly used as weighting functions. If we consider the Galerkin form for an element 
of length  , we obtain: 
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Figure 1. The beam subjected to a normal load. 
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where θ and V denote the slope and shear force, respectively. Here N is the li-
near shape function, which is: 

1 21 , ,N N xξ ξ ξ= − = =                      (6) 

With the above approximations, Equations (4) and (5) yields the following 
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2.2. Identification of the Flexural Rigidity of a Beam 

We consider the inverse analysis of the flexural rigidity of a beam as applied to a 
finite-element solution of Equation (7). Suppose that the force acting on the 
beam domain, the boundary conditions, and the deflection at each point on the 
beam are given. Under these conditions, the bending moment at each point can 
be easily obtained from the second equation of Equation (7). The first equation 
of Equation (7) is written as follows: 
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By transforming Equation (9) into an equation for unknown quantity 1/EIe of 
flexural rigidity, the following equation is obtained. 

[ ] { } { }e ee =A X B                       (10) 

with: 
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When a beam is divided into m elements, the number of flexural rigidity val-
ues to be considered as unknown quantities will become m, i.e., the same as the 
number of elements. The next step is the assembly of the final equations of the 
type given by Equation (12). This is accomplished, according to the rule of Equ-
ation (10), by simple addition of all the numbers in the appropriate space of the 
global matrix: 

[ ]{ } { }=A X B                          (12) 

in which [A] is an n m×  matrix, for which m is the total number of unknowns 
and n is the number of equations. For this problem, singular value decomposi-
tion is applied to [A], which yields: 

[ ] [ ][ ][ ]T=A U DΛ                        (13) 

where [ ] [ ],U Λ  and [ ]D  each denote the presence of ,n n n m× ×  and 
m m×  matrices, respectively. Matrix [ ]Λ  is given as follows, while the matrix 
rank [ ]A  is expressed by p: 
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where iλ  is the singular value of [ ]Λ . This immediately yields: 

{ } [ ][ ] [ ] { }1 T−=X D U BΛ                       (15) 

2.3. Identification of Loads Acting on a Beam 

If we consider the system of equations in Equation (7) to be a mixed system, in 
which M and w, the solution can proceed by eliminating M from the first equa-
tion and substituting it into the second to obtain: 

{ } [ ][ ] [ ]{ } [ ][ ] { }1 1
21 11 12 21 11

− −= − +F K K K w K K θ             (16) 

As the initial slope 0θ → , the equation above changes to: 

{ } [ ][ ] [ ]{ }1
21 11 12

−= −F K K K w                     (17) 

The vector {F} is termed the equivalent nodal force. The distributed forces q 
using interpolations of the form: 

e=q Nq                              (18) 

where eq  represents the distributed force parameters to be determined. For li-
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nearly distributed forces q over the element, the force vector by 
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The next step is the assembly of the final equation of the type given by: 

[ ]{ } { }=H q F                          (20) 

Finally, the unknown distributed forces vector q can be obtained by solving 
the resulting equation system. 

3. Numerical Examples 

To verify the proposed method, we attempted to identify the flexural rigidity of a 
beam and the forces acting on it. In practice, the beam deflection is found 
through direct measurements. In this calculation, however, the beam deflection 
is calculated using beam theory prior to the inverse analysis. Since it is a model 
calculation, it is sufficient to use a unified unit, so the unit is assumed to be a 
dimensionless quantity. 

3.1. Identification of the Flexural Rigidity of a Beam 

We consider a simply supported beam subject to a concentrated load p applied 
at the center of the beam. Since any unit system may be used, provided it is uni-
fied throughout, dimensionless quantities are used here. Thus the length of the 
beam is l = 10. 
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In Figure 2, the solid line shows the distribution of flexural rigidity assumed 
in solving the problem, and the circles show the results of identification obtained 
using the proposed method. For the monitoring point, at which deflection is de-
termined, the beam is divided into ten equal parts in Figure 2(a) and forty equal 
parts in Figure 2(b). In Figure 2, this method reproduces the behavior of a 
stepped beam almost exactly. 

The next example is a beam with small defects in close proximity, as shown in 
Figure 3, where the flexural rigidity is expressed as: 
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In this example, it is assumed that the reduction in flexural rigidity might be 
dependent on the level of damage. The beam is divided into fifty elements for 
identification. The results obtained are shown by plotting of the circles. It can be 
observed in Figure 3 that reductions in rigidity are identified with high accura-
cy. Figure 3 indicates that the flexural rigidity was evaluated precisely, except 
around the simple support, where the beam deflection was very small. 
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(a) 

 
(b) 

Figure 2. Identification for the stepped beam. (a) 10 Elements (11 
Nodes); (b) 40 Elements (41 Nodes). 

 

 
Figure 3. Identification of damage in the beam. 
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3.2. Identification of Loads Acting on a Beam 

We show the numerical results for the first example the simply supported beam 
subject to two concentrated loads, p = 1. In this example, we assume that the 
deflection is measured at 21 points. The circles at x = 0 and x = 10 in Figure 4 
denote the vertical reactions at the supporting point. In Figure 4, the method 
reproduces the loads acting on a beam almost exactly. 

In the next example, we show the numerical results for identification of a 
simply supported beam subjected to a uniform load acting over a portion of the 
beam, as indicated in Figure 5. Although a significant overshoot occurred 
around x = 3.5 and 8.5, on the whole, good identification results were obtained. 
In this figure, circles at x = 0 and x = 10 denote the vertical reactions at the sup-
porting point. Although there was a part disturbed by overshoot, its amount was 
small and good one was obtained as an estimated value. 
 

 
Figure 4. Identification of two concentrated loads. 

 

 
Figure 5. Identification of a uniformly distributed load. 
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4. Conclusion 

In this paper, we evaluated the efficacy of analysis techniques for identifying the 
flexural rigidity and distribution of loads acting on a beam. We applied an in-
verse analysis technique based on the finite-element method and singular value 
decomposition to the identification of the flexural rigidity of a simply supported 
beam subject to a concentrated load applied at the center of the beam. We fur-
ther investigated the identification of forces acting on the beam in the form of a 
concentrated load or distributed load. The results of the identification of flexural 
rigidity showed that our method was effective for identification of distributed 
beam stiffness values. Although 10% overshoot occurred in the identification of 
distributed forces, which changed rapidly in a stepwise fashion, good results for 
the identification of loads were obtained on the whole. 
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