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ABSTRACT 

We improve spatially selective noise filtration technique proposed by Xu et al. and wavelet transform scale filtering 
approach developed by Zheng et al. A novel dyadic wavelet transform filtering method for image denoising is proposed. 
This denoising approach can reduce noise to a high degree while preserving most of the edge features of images. Dif-
ferent types of images are employed to test in the numerical experiments. The experimental results show that our 
filtering method can reduce more noise contents while maintaining more edges than hard-threshold, soft-threshold 
filters, Xu’s method and Zheng’s method. 
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1. Introduction 

Wavelet transform is a multi-resolution representation of 
a signal or image. It is a powerful tool in several areas of 
applications like signal processing, image processing, 
pattern recognition, data compression, commutation, etc. 
Singularities and irregular structures often carry essential 
information in signals and images. For example, the dis- 
continuities of the intensity of an image indicate the lo- 
cations of edges. 

The local regularity is characterized by the decay of 
the wavelet transform amplitude across scales. Signal 
singularities and image edges can be detected by the dy- 
adic wavelet transform modulus maxima across scales 
[1,2]. In mathematics, singularities are generally measu- 
red with Lipschitz exponents. The wavelet theory proves 
that these Lipschitz exponents can be calculated from the 
propagating amplitude values of the different modulus 
maxima across scales. 

The original signal or image has singularities whose 
Lipschitz exponents are greater than or equal to zero, and 
the noise has singularities whose Lipschitz exponents are 
less than zero. Thus, the amplitudes of signal or image 
modulus maxima increase when the scale increases, wh- 
ile the amplitude of noise modulus maxima decrease str- 
ongly when the scale increases. By using these properties, 
the noises can be eliminated from the noised signals or 
images. The approaches for separating signal and noise 
in wavelet scale space are proposed by many researchers. 
For example, the original signal can be extracted from  

the noisy version by estimating the signal modulus max- 
imum at small scales [1,2]. Adaptive Wiener filtering 
were used to remove noise in signals and images [3-5]. 
The selective noise filtration technique and adaptive thr- 
esholding function in image denoising were developed 
[6-8]. The scale space filtering algorithms applied to im- 
age denoising were also proposed [9,10]. In addition, 
many other novel approaches for image denoising have 
been presented by some researchers [11-13] recently. In 
this work, we develop an image denoising approach by 
improving spatially selective noise filtration technique 
proposed by Xu et al. [6] and wavelet transform scale 
filtering approach given by Zheng et al. [9]. Hard-thr- 
eshold and soft-threshold filters that were proposed by D. 
L. Donoho [14,15] are widely used in image denoising 
processing. We will compare our filtering approach with 
hard-threshold filtering, soft-threshold filtering, Xu’s me- 
thod and Zheng’s method in the numerical experime- nts. 
Peak-Signal-Noise-Rate (PSNR) and Root-Mean-Square- 
Error (RMSE) are employed to estimate the quality of 
restored images. 

2. 2-D Dyadic Wavelet Transform 

Let    1 2,k x x  (k = 1, 2) be wavelet functions. 
We denote that 
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is called 2-D dyadic wavelet transform of  1 2, f x x . The 

Fourier transforms of   1
1 2, x x  and   2

1 2, x x  are 
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We suppose that 1 2 ,x x ,   2
1 2, x x are recon- 

structed wavelet functions. If their Fourier transforms 
satisfy 

       
       

1 1
1 2 1 2

1 1
1 2 1 2

ˆ ˆ2 , 2 2 , 2
1

ˆ ˆ2 , 2 2 , 2

j j j j

j j j j
j

     

     









 

  
   (3) 

Then  1 2, f x x can be reconstructed from their dyadic 
wavelet transform i.e. 
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Because of the limitation of image’s resolution, we int- 
roduce a smoothing function  1 2,x x  

Whose Fourier transform satisfies 
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We define the smoothing operator 
2 jS  by 
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The wavelet transform between the scales 1 and  
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provides the details that are in but that have 
lost in . 

1 1 2,S f x x 
 1 22

,jS f x x
Mallat [1] has given the fast algorithm for the discrete 

dyadic wavelet transform. The fast dyadic wavelet trans- 
form can also be calculated with a filter bank algorithm 
called the algorithm  trous proposed by Holschneider, 
Kronland-Martinet, Morlet and Tchamitchian [16]. In 
this paper, we use  trous algorithm to reconstruct the 
image. 

a

a

3. Dyadic Wavelet Transform Filtering  
Algorithm 

In recent years, some denoising techniques based on the 
wavelet transform have been studied by many authors 
[2,6,12,17]. The edge modulus maxima can be distin-
guished from noise modulus maxima by analyzing the 
singularity properties of wavelet transform domain ma- 
xima of a signal or image across scales [2]. Y. Xu [6] 
developed wavelet transform domain filters based on the 
direct spatial correlation of the wavelet transform at sev- 
eral adjacent scales. Y. Zheng [9] proposed a wavelet 
transform scale filtering algorithm by using the proper-
ties of signal and noise modulus maxima across large 
scales. Our approach relies on the variations of the dy-
adic wavelet transform data across all scales to remove 
noises rather than extracting edges directly. 

For a 2-D image, the discrete sampling of  
    1 22 1

,j

k

j J
W f x x

 
 is given by 

       
    2

1 2 1 2
1 2 1 22 2 , ,
, , 1

d

j j

k k

x x k k
W f k k W f x x j J

 
   (7) 

The discrete coarse smoothed image is denoted by 
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In the scale space, the modulus maxima of 
2

 
across scales produced by image edges have positive 
correlation. When the scale  increases, the amplitudes 
of modulus maxima coeffcients will increase or retain 
constant. On the contrary, the modulus maxima produced 
by noises have negative correlation and the amplitudes of 
their coeffcients decrease as  increases. 
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where  J re- 

presents the maximum scale of the decomposition. 
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The 2-scale direct correlation sharpens and enhances 
major edges while suppressing noise and small features. 
So comparing the values of  and  

 can separate important edges from noise in 
images. Before comparison,  needs to be 
rescaled to  Xu’s rescaling scheme is 
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Zheng et al. use the modulus maxima rescaling method 
at large scales, and apply the above mentioned rescaling 
method at small scales. Let S be the upper limit of small 
scales, assume 
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At small scales, noise in the noised image is dominat- 

ing except some sharp image edges. According to Xu and  

Zheng’s ideas, if compare   2 ,kCr m n  with  

   ,kWc m n  directly, then too much noise will be ext- 

racted as edges. To avoid this drawback, we apply the 
modulus maxima rescaling at all scales and renew the 
formula (13) as 
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where  k
m  is a weight parameter with respect to the 

scale m. 
After rescaling  to  for all 

m and n, the important edges can be identified in  
 by comparing the absolute values of 
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Figure 1 shows 
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Figure 1. The effect of the new wavelet filtering at the scale 
m = 3 and   3 27.  k

m m  (a) The original Lena image; (b) 
the noised  image; (c) W

(
; (h)   2 3newW n

 1 3,c n ; (d)    2 3,Wc n ; (e) 
       1 13, 4,Wc n Wc n ;    3, n W ; (g) 
  , . 

f)  Wc  2 4,c n2

 1 3,newW n
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th ugh the inverse dyadic wav- 

elet transform. The fil
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inverse dyadic wavelet transform that we implemented in 
our technique uses a trous algorithm and the quadratic 
spline scaling functions and wavelets given in [18]. 

Now we give some comments on the choice of the 
number of iterations and weight parameter  k

m . We can 
design wavelet filtering iteration times and parameter 
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m  according to the user’s request. For th umber of 

iterations, when it is too small, we can not obtain a 
oth estimate. If the number of iterations is too large, 

most of the edge information of reconstructed image will  
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be eliminated. Thus we should choose a tradeoff between 
the number of iterations and the estimation of filtered 
image. It is well known that the Lipschitz exponents of 
image and noise are different. At the finer scales such as 

12  and 22 , the modulus maxima mainly produced by 
noise, while at coarser scale, most modulus maxima 

duced  image. So if we set the different value of 
 k
m

pro by
  at the different scale m, noise will be eliminated 
more effectively. In general, let parameter  k

m  be lager 
e larger scale. 

4. Experimental Results 
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where  and  denotes the pixel valu
processed and the original images respectively. Hard- 

ldin sof

entioned Lena im- 
ag

presses more noise while preserves 
m

sian noise with the standard 
de

,i jw ,i ju es of the 

thresho g and t-thresholding are widely used for 
denoising in image processing by many researchers. 
Therefore, in the following tests the hard-thresholding 
method, soft-thresholding method, Xu’s method and 
Zheng’s method will be used to compare with the dyadic 
wavelet transform filtering algorithm. 

Example 1: When we use our filtering method to do 
denoising experiment for the above m

e corrupted by additive noise, the restored result is 
Figure 2(a). If apply softthreshold, hard-threshold, Xu’s 
method and Zheng’s method to filter the noised image, 
the result is in Figures 2(b)-(e). 

Table 1 presents the values of PSNR and RMSE for 
each of the schemes. 

From all the five restored images, it is clear that our 
proposed method sup

ore fine details and small structures in the image. In 
addition, from the values of PSNR and RMSE for res- 
tored image, our method increases the PSNR by 1 - 3 dB 
and reduce the RMSE 5 - 6. 

Example 2: A texture image is used in the second test. 
It is added by the white Gaus

viation 30  . Use our filtering method, soft-thr- 
esholding method, hard-thresholding method, Xu’s met- 
hod and Z method to process noised image, we 
can find that our method is also better than other four 
methods. Figure 3(a) is the original image, Figure 3(b) 
is the noised image. Figures 4(a)-(e) show the results 
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（d）Xu’s Method.  
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（e）Zheng’s Method.  
heng’s 

processed by the five methods. 

Figure 2. Filtered results. (a) Our method; (b) Soft-threshold; 
(c) Hard-threshold; (d) Xu’s method; (e) Zheng’s method. 

 
Table 2 is the comparison of the values of PSNR and 

RMSE for restored images. 
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Table 1. PSNR and RMSE for each of the schemes. 

threshold method method
Method 

Our 
method 

Soft- 
threshold 

Hard- Xu’s Zheng’s 

PSNR 25.2035 dB 23.1125 dB 22.4597 dB 24.0583 dB23.1079 dB
RMSE 14. 6 17. 19. 15.007 8203 2111 9818 17.8297
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（a）Original image.
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（b）Noised image.  

Figure 3. Texture image. (a) Original image; (b) Noised 
image. 
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（e）Zheng’s Method.  
Figure 4. Results for the texture image. (a) Our method; (b) 
Soft-threshold; (c) Hard-threshold; (d) Xu’s method; (e) 
Zheng’s method. 

od 
Soft-thresh

old 
Hard-thresh

old 
Xu’s 

method 
Zheng’s 
method

 
Table 2. PSNR and RMSE for restored images. 

Method Our meth

PSN 74 dBR 24.1536 dB 22.5607 dB 22.5533 dB 22.3974 dB 22.77

From t s ot  
visual 
ti r
pr

he results above, it is obviou that n only for
quality of images, but 

u
also for quantitative evalua-
r don of 

ocessi
es imtored ages, o  metho  tuin tex re im e ag

ng is still better than other four methods. 
Example 3: We use a man image containing both a 

human face and some textures to do the third test. The 
challenge with this image is to keep both texture details 
and smooth transitions in the human face in the process-
ing. We add the original image (Figure 5(a)) with the 
white Gaussian noise with σ = 30, and get a noised image 
(Figure 5(b)). Figures 6(a)-(e) are the results obtained 
by five methods 
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（a）Original image.
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（b）Noisy image.
 

Figure 5. Man image. (a) Original image; (b) Noisy image. 
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（c）Hard-threshold.

50

100

200

150

250
25020015010050
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（e）Zheng’s Method.  

Figure 6. Results for man image. (a) Our method; (b) Soft- 
threshold; (c) Hard-theshold; (d) Xu’s method; (e) Zheng’s 
method. RMSE 15.8075 18.9892 18.9966 19.3488 18.5212
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Table 3 is the quantitative comparison among the five 
methods. 

The results above reveal that our method not only 
maintain more texture details and smooth transitions in 
the face but also suppress more noise than other methods 
after processing. Additionally, our method can increase 
more PSNR and decrease RESE than other methods. 

At last, we give some other types of images. And we 
only present results recovered by our m thod. A MR 

w
aintain all important information and filter out 

m

 wavelet transform filtering  
 

method method

e
image (see Figure 7(a)) has been corrupted with white 
Gaussian noise (σ = 20) and become a noised image, see 
Figure 7(b). After the noised image has been processed 

ith our method, we can see that our restoration scheme 
is able to m

uch noise, see Figure 7(c). 
Figures 8(a), (b) and (c) are an original building im-

age, the noised image, and the processed result by our 
method. We can see that the recovered image can pre-
serve more image edge details. 

A fingerprint image is used in the last test. Figures 
9(a)-(c) are the original image, the noised image with σ = 
15, and the recovered result with our scheme. From the 
visual quality, it is obvious that restored image is as good 
as the original one. 

5. Conclusions 

We have introduced the dyadic

Table 3. Comparison of PSNR and RMSE for restored images. 

Method 
Our 

method 
Soft-threshold Hard-threshold 

Xu’s Zheng’s 

PSNR 
25.7523 

dB 
23.8359 dB 23.5585 dB 

24.4842 
dB 

23.7759 
dB 

RMSE 13.1500 16.3963 16.9284 15.2171 16.5099
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50

100

200

150

250

25020015010050

（a）Original image.

50

100

200

150

250
25020015010050
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50

100

200

150

250
25020015010050

 im-
age with σ = 30; (c) The result recovered with our scheme. 
 

（c）The result recovered with our scheme.
 

Figure 8. Building image. (a) Original image; (b) Noisy
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（c）The result recovered with our scheme.

 

Figure 9. Fingerprint image. (a) Original image; (b) Noised 
image with σ = 15; (c) The result recovered with our 
scheme. 
 
technique for denoising in image processing. Our filtering 
algorithm is superior to soft-thresholding method, hard- 
thresholding method, Xu’s method and Zheng’s method 
because important edge features in the wavelet transform 
domain are preserved while much noise is suppressed. 
The other filtering methods perform very poorly in image 
denoising because they tends to remove the high-fre- 
quency component exclusively, which yields smooth im- 
ages and blurs the image edge features. 

Figure 7. MR image. (a) Original image; (b) Noised image 
with σ = 20; (c) The result recovered with our scheme. 
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