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Abstract 

A local meshless method is applied to find the numerical solutions of two 
classes of inverse problems in parabolic equations. The problem is recon-
structing the source term using a solution specified at some internal points; 
one class is that the source term is time dependent, and the other class is that 
the source term is time and space dependent. Some numerical experiments 
are presented and discussed. 
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1. Introduction 

The inverse problem of parabolic equations appears naturally in a wide variety 
of physical and engineering settings; many researchers solved this problem using 
different methods [1]-[10]. An important class of inverse problem is recon-
structing the source term in parabolic equation, and it has been discussed in 
many papers [11]-[19]. 

In meshless method, mesh generation on the spatial domain of the problem is 
not needed; this property is the main advantage of these techniques over the 
mesh dependent methods. The moving least squares method and the radial basis 
functions method are all the primary methods of constructing shape function in 
meshless method. The moving least squares method is introduced by Lancaster 
and Salkauskas [20] for the surface construction; in this method, one can obtain 
a best approximation in a weighted least squares sense, and this method empha-
sizes the compacted support of weight function especially, so it has the local 
characteristics. The radial basis functions method [21] is very efficient interpo-
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lating technique related to the scattered data approximation, it has high preci-
sion, and it is very suitable for the scattered data model; however, there are some 
drawbacks such as the character of global supported, the full matrix obtained 
from discretization scheme is always ill-conditioned as the number of colloca-
tion points increases, and it is very sensitive for the selection of the free parame-
ter c. 

To overcome the problems of ill-conditioned and the shape parameter sensi-
tivity in radial basis functions method, the local radial basis function was intro-
duced by Lee et al. [22]; in contrast to radial basis functions method, only scat-
tered data in the neighboring points are used in local radial basis functions, in-
stead of using all the points, thus the order of the matrix which is obtained from 
discretization being reduced, so the matrix of shape function is sparse. This will 
improve the computational accuracy and be suitable for solving large-scale 
problems [23]. 

The meshless method of moving least squares coupled with radial basis func-
tions used for constructing shape function was introduced by Mohamed et al. 
[24], but this method is global, and the problems in radial basis functions still 
exist. The method based on the linear combination of moving least squares 
and local radial basis functions in the same compact support was introduced 
by Wang [25], which is a local method, and is very suitable for practical prob-
lems. 

In this paper, we consider two classes of inverse problems of reconstructing 
the source term in parabolic equation from additional measurements, and we 
use the local meshless method presented in [25]. 

This paper is organized as follows. In Section 2, we give an outline of the local 
meshless method. In Section 3, we solve the inverse problems using the local 
meshless method. In order to illustrate the feasibility of the method, numerical 
experiments will be given in Section 4.  

2. Preliminaries 

Let Ω be an open bounded domain in Rd, given data values  

{ }, , 1, 2, ,j jx u j N=  , where jx  is the distinct scattered point in Ω , ju  is 
the data value of function u at the node jx , N is the number of scattered nodes, 
and we let u  denote the approximate function of u in this work. 

Combining with the collocation method, in [25], the approximate function 
( )u x  was written as 

( ) ( )
1

,
N

i i
i

u x x uς
=

= ∑                        (1) 

where ( )i xς  stands for the shape function, and it can be written as the linear 
combination of the shape functions of moving least squares and local radial basis 
functions, 

( ) ( ) ( ) ( )1 ,M L
i i ix x xς νφ ν ψ= + −  

( )M
i xφ  and ( )L

i xψ  stand for the shape functions in method moving least 
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squares and local radial basis functions, respectively, ν is a constant which can be 
taken different values in [0, 1].  

3. The Inverse Problem and Its Numerical Solution  

Inverse problem I. The problem can be described as follows, 

( ) ( ) ( )
2

2

, ,
, 0 ,0 ,

u x t u x t
f t x l t T

t x
∂ ∂

= + < < < <
∂ ∂

            (2) 

with the initial condition 

( ) ( )0,0 , 0 ,u x u x x l= < <                       (3) 

and the boundary conditions 

( ) ( ) ( ) ( )1 20, , , , 0 .u t u x u l t u x t T= = ≤ ≤                 (4) 

The Formulas (2)-(4) are the direct problem, and the inverse problem is that 
the functions ( ),u x t  and ( )f t  are unknown, with the additional observation 
of ( ),u x t  at some internal point ( )0 00x x l< < , 

( ) ( )0 , ,u x t E t=                             (5) 

according to (5), consider the following transformation in [26], 

( ) ( ) ( )
2

0
2

,
,

u x t
E t f t

x
∂

′ = +
∂

                     (6) 

using (6), we get 

( ) ( ) ( )2
0

2

,
,

u x t
f t E t

x
∂

′= −
∂

                     (7) 

substituting (7) into (2), we have 

( ) ( ) ( ) ( )22
0

2 2

,, ,
, 0 , 0 ,

u x tu x t u x t
E t x l t T

t x x
∂∂ ∂

′= + − < < < <
∂ ∂ ∂

      (8) 

the initial and boundary conditions are 

( ) ( )0,0 , 0 ,u x u x x l= < <                     (9) 

( ) ( ) ( ) ( )1 20, , , , 0 .u t u x u l t u x t T= = ≤ ≤                 (10) 

So the inverse problem is transformed to a direct problem, then we use the 
local meshless method described in Section 2 solving the problem (8)-(10). 

From (1), the approximate function ( ),u x t of ( ),u x t  at mt t=  can be 
represented as 

( ) ( ) ( )
1

, , ,
N

m j j m
j

u x t x u x tς
=

= ∑                     (11) 

where ( )j xς  is the shape function described in Section 2. 
Then 

( ) ( ) ( ) ( ) ( ) ( )
2 22 2

00
2 2 2 2

1 1

, ,
, , , ,

N N
j jm m

j m j m
j j

x xu x t u x t
u x t u x t

x x x x
ς ς

= =

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂∑ ∑   

for the derivative of t, we apply one step forward difference formula to t, and let
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1 , 1, 2, ,m mt t t m M+∆ = − =  , then we have 

( ) ( ) ( ) ( ) ( ) ( )1 1, , ,
, ,m m m m m

m

u x t u x t u x t E t E t
E t

t t t
+ +∂ − −

′= =
∂ ∆ ∆

 

 

so the Equation (8) can be rewritten as 

( ) ( )

( ) ( ) ( ) ( ) ( )

1

2 2
01

2 2
1 1

, ,

( )
, , ,

m m

N N
j jm m

j m j m
j j

u x t u x t
t
x xE t E t

u x t u x t
tx x

ς ς

+

+

= =

−

∆
∂ ∂+

= + −
∆∂ ∂∑ ∑

 

 

 

that is equivalent to 

( ) ( ) ( ) ( ) ( ) ( )

( )

2
1

1 2
1

2
0

2
1

, , ,

( )
, ,

N
j m m

m m j m
j

N
j

j m
j

x E t E t
u x t u x t t u x t

tx

x
u x t

x

ς

ς

+
+

=

=

 ∂ −
= + ∆ + ∆∂

∂
− ∂ 

∑

∑

  



 

by substituting each kx  for x, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
1

1 2
1

2
0

2
1

, , ,

, ,

N
j k m m

k m k m j m
j

N
j

j m
j

x E t E t
u x t u x t t u x t

tx

x
u x t

x

ς

ς

+
+

=

=

 ∂ −
= + ∆ + ∆∂

∂
− ∂ 

∑

∑

  



     (12) 

from (12) and the conditions (9)-(10), we can obtain the numerical solution 
( ),k mu x t , and ( ) , 1, 2, , , 1, 2, ,mf t k N m M= =

  . 
Inverse problem II. The problem can be described as follows, 

( ) ( ) ( )
2

2

, ,
, , 0 ,0 ,

u x t u x t
f x t x l t T

t x
∂ ∂

= + < < < <
∂ ∂

          (13) 

with the initial condition 

( ) ( )0,0 , 0 ,u x u x x l= < <                     (14) 

and the boundary conditions 

( ) ( )0, 0, , 0, 0 .u t u l t t T= = ≤ ≤                  (15) 

The Formulas (13)-(15) are the direct problem, and the inverse problem is 
that the functions ( ),u x t  and ( ),f x t  are unknown, with the additional ob-
servation of ( ),u x t  at some internal point ( )0 00x x l< < , 

( ) ( )0 , .u x t E t=                          (16) 

Assume that the function ( ),f x t  can be described as 

( ) ( ) ( ), ,f x t t xη ψ=                       (17) 

where ( )xψ  is the known function, and satisfies the following restrictions: 
1) ( )0 0,xψ ≠  
2) ( )xψ  is smooth enough, 
3) ( ) 0xψ =  on the boundary of the computational domain.  
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Let 

( ) ( ) ( ) ( ), , ,u x t t x x tθ ψ ω= +                    (18) 

where 

( ) ( )
0

d ,
t

t s sθ η= ∫                      (19) 

substituting (17) and (18) into (13), we have 

( ) ( ) ( ) ( )2 2

2 2

, , d
, 0 ,0 ,

d
x t x t x

t x l t T
t x x

ω ω ψ
θ

∂ ∂
= + < < < <

∂ ∂
      (20) 

from (18) and combining (16),we get 

( ) ( ) ( )
( )

0

0

,
,

E t x t
t

x
ω

θ
ψ
−

=                      (21) 

then according to (19), 

( ) ( ) ,t tη θ′=                       (22) 

substituting (21) into (20), 

( ) ( ) ( ) ( )
( )

( )2 2
0

2 2
0

,, , d
, 0 ,0 ,

d
E t x tx t x t x

x l t T
t xx x

ωω ω ψ
ψ
−∂ ∂

= + < < < <
∂ ∂

  (23) 

the initial and boundary conditions are 

( ) ( )0,0 , 0 ,x u x x lω = < <                    (24) 

( ) ( )0, 0, , 0, 0 .t l t t Tω ω= = ≤ ≤                  (25) 

Through the above descriptions, if we have the numerical solution ( ),x tω  
of (23), from (17)-(18) and (21)-(22), we can get the numerical solution ( ),u x t  
and ( ),f x t . 

Next, we use the local meshless method described in Section 2 solving the 
problem (23)-(25). 

From (1), the approximate function ( ),x tω  of ( ),x tω  at mt t=  can be 
represented as 

( ) ( ) ( )
1

, , ,
N

m j j m
j

x t x x tω ς ω
=

=∑   

where ( )j xς  is the shape function described in Section 2. 
Then 

( ) ( ) ( ) ( ) ( )
22

0 0 2 2
1 1

, , , , ,
N N

j
m j j m j m

j j

x
x t x x t x t

x x
ςω

ω ς ω ω
= =

∂∂
= =

∂ ∂∑ ∑


    

for 
t
ω∂
∂

, we apply one step forward difference formula to t, and let  

1 , 1, 2, ,m mt t t m M+∆ = − =  , then we have 

( ) ( )1, ,
,m mx t x t

t t
ω ωω + −∂

=
∂ ∆

 

 

so the Equation (23) can be rewritten as 
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( ) ( )

( ) ( )
( ) ( ) ( )

( )
( )

1

2 0 2
1

2 2
1 0

, ,

,
d

, ,
d

m m

N

m j j mN
j j

j m
j

x t x t
t

E t x x t
x x

x t
xx x

ω ω

ς ω
ς ψ

ω
ψ

+

=

=

−

∆

−
∂

= +
∂

∑
∑

 





 

that is equivalent to 

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

2

1 2
1

0 2
1

2
0

, , ,

,
d

,
d

N
j

m m j m
j

N

m j j m
j

x
x t x t t x t

x

E t x x t
x

x x

ς
ω ω ω

ς ω
ψ

ψ

+
=

=


∂

= +∆  ∂


− 
+




∑

∑

  



 

by substituting each xk for x, 

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

2

1 2
1

0 2
1

2
0

, , ,

,
d

,
d

N
j k

k m k m j m
j

N

m j j m
j k

x
x t x t t x t

x

E t x x t
x

x x

ς
ω ω ω

ς ω
ψ

ψ

+
=

=


 ∂

= + ∆ 
∂


− 
+




∑

∑

  



        (26) 

from (26) and the conditions (24)-(25), we can obtain the numerical solution 
( ),k mx tω  and ( ), 1, 2, , , 1, 2, ,k mf x t k N m M= =

 , . 

4. Numerical Experiments and Discussions  

To test the efficiency of the method in this paper, in this section, we give two 
examples to illustrate the correctness of the theoretical result and the feasibility 
of the method. 

Example 1. Consider the problem (2)-(5), with the conditions 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 12 sin , 2 e , 2 sin e , sin π ,t tu x x u t t u t t l E t t− −= + = + = + + =  

and we let 02, 2, 1l T x= = = . 
The exact solutions are 

( ) ( ) ( ) ( ), 2 sin e , 1 e .t tu x t t x f t t− −= + + = − +  

Firstly, we plot the error functions ( ) ( )f t f t−   and ( ) ( ), ,u x t u x t−   in 
Figure 1, respectively, where 0.0001, 0.05t x∆ = ∆ = . 

From Figure 1, we can see that the approximation effect is good. 
Secondly, in order to test the stability of the numerical solution, we give small 

perturbations on ( )E t , and the artificial error is introduced into the additional 
specification data by defining function 
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(a)                           (b) 

Figure 1. The error functions (a) ( ) ( )f t f t−  ; (b) ( ) ( ), ,u x t u x t−  . 
 

( ) ( )( )1 ,E t E tγ γ= +                  (27) 

where γ is the noise parameter. 
We plot the error functions ( ) ( )f t f t−   and ( ) ( ), ,u x t u x t−   when 

0.001γ =  in Figure 2, where 0.0001, 0.05t x∆ = ∆ = . 
From Figure 2, we see that when there is the noisy data, the approximation 

effect of numerical solution is worse relatively, but there is no obvious oscillation 
in the error graph. 

Lastly, we define the following error of functions ( )f t  and ( ),u x t , 

( ) ( )( ) ( ) ( )( )2 2

1 1 1
, ,

, ,

N M N

j j i j i j
j i j

f t f t u x t u x t
Ef Eu

N MN
= = =

− −
= =
∑ ∑∑



  (28) 

where ( ) ( ), ,j i jf t u x t  and ( ) ( ), ,j i jf t u x t

  are the exact and numerical solu-
tions at ,j mx t , M and N are the number of nodes about x and t, respectively. we 
give the results under the different cases in Table 1. 

From Table 1, we get that the error decreases with the decrease of Δt, when 
the number of nodes are fixed. When Δt is fixed, the error decreases with the in-
crease of the number of nodes. When Δt and Δx are fixed, the error varies with 
the change of the noisy data, and the error decreases with the decrease of noisy 
data. 

Example 2. Consider the problem (13)-(16), with the conditions 

( ) ( ) ( )0 0, sin π ,u x E t t= =  

and we let 01, 1, 0.5l T x= = = . 
The exact solutions are 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ), sin π sin π , π sin π cos π π sin π ,u x t x t f t x t= = +  

with 

( ) ( )π sin π .x xψ =  

Firstly, in order to illustrate the accuracy of the method, we plot the error  
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(a)                              (b) 

Figure 2. The error functions (a) ( ) ( )f t f t−  ; (b) ( ) ( ), ,u x t u x t−  . 
 
Table 1. The error under different cases. 

 Eu Ef 

0.1x∆ =  0.001t∆ =  0γ =  43.0404 10−×  48.9672 10−×  

0.1x∆ =  0.0001t∆ =  0γ =  53.2054 10−×  41.0005 10−×  

0.05x∆ =  0.0001t∆ =  0γ =  53.0491 10−×  59.9319 10−×  

0.05x∆ =  0.0001t∆ =  0.01γ =  21.0624 10−×  23.6728 10−×  

0.05x∆ =  0.0001t∆ =  0.001γ =  31.0902 10−×  33.7621 10−×  

0.05x∆ =  0.0001t∆ =  0.01γ =  59.7477 10−×  46.6848 10−×  

0.05x∆ =  0.0001t∆ =  0.001γ =  52.8639 10−×  46.7360 10−×  

 
functions ( ) ( ), ,f x t f x t−   and ( ) ( ), ,u x t u x t−   in Figure 3, where  

0.0001, 0.05t x∆ = ∆ = . 
From Figure 3, we see that the approximation effect is good. 
Secondly, in order to test the stability of the numerical solution, we give small 

perturbations on ( )E t , and the artificial error is defined by (27). 
The results of ( ) ( ), ,f x t f x t−   and ( ) ( ), ,u x t u x t−   with 0.001γ =  are 

shown in Figure 4, where 0.0001, 0.05t x∆ = ∆ = . 
From Figure 4, we see that when there is noise, the approximation effect is 

worse than there is no noise, but the error function is smooth and there is no 
obvious oscillation in error graph. 

At last, we define Eu by (28), and the definition of Ef is same as Eu, we give 
the results under the different cases in Table 2. 

From Table 2, we get that when 0γ = , the error decreases with the decrease 
of Δt and Δx, when Δt and Δx are fixed, the error decreases with the decrease of 
noise parameter. 

5. Conclusion  

In this paper, we use the local meshless method based on the moving least  
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(a)                              (b) 

Figure 3. The error functions (a) ( ) ( ), ,f x t f x t−  ; (b) ( ) ( ), ,u x t u x t−  . 
 

 
(a)                              (b) 

Figure 4. The error functions (a) ( ) ( ), ,f x t f x t−  ; (b) ( ) ( ), ,u x t u x t−  . 
 
Table 2. The error under different cases. 

 Eu Ef 

0.1x∆ =  0.001t∆ =  0γ =  55.4019 10−×  26.1220 10−×  

0.1x∆ =  0.0001t∆ =  0γ =  53.4139 10−×  25.0868 10−×  

0.05x∆ =  0.0001t∆ =  0γ =  64.1224 10−×  34.9563 10−×  

0.025x∆ =  0.0001t∆ =  0γ =  62.4053 10−×  41.8843 10−×  

0.05x∆ =  0.0001t∆ =  0.001γ =  44.8531 10−×  38.2379 10−×  

0.05x∆ =  0.0001t∆ =  0.01γ =  34.8766 10−×  25.2515 10−×  

 
squares method and the local radial basis functions method to solve two classes 
of inverse problems of reconstructing the source term in parabolic equations. 
From the experiments, we can see that this method is accurate and efficient. 
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