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Abstract 
This work deals with the numerical solution of the gravitational waves effects 
on the orbital elements of the planets in case of commensurability between the 
wave’s frequency ng and the planet’s mean motion np. Taking Mercury and 
Pluto as practical examples for low frequency and high frequency, the varia-
tions of the orbital elements of Mercury due to resonance of gravitational 
wave are different and small than the perturbation on Pluto. The amount of 
changing in the orbital elements under the effects of gravitational waves is 
different from planet to planet according to the planet’s mean motion np. For 
low frequency ng, the secular variation in orbital elements will be negative (i.e. 
decreasing) in the inclination, semi-major axis and the eccentricity (i, a, e) like 
as Pluto. For high frequency ng like Mercury, the secular variation in all the 
orbital elements will be positive (i.e. increasing). The perturbation on all the 
orbital elements of two planets is changing during each revolution except the 
eccentricity e of Mercury and the mean anomaly M of Mercury and Pluto 
during the time. 
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1. Introduction 

All methods developed to detect gravitational waves depend more or less on the 
fact that the maximum variation in the particle separation occurs if the particles 
are located in XY-plane. The effect of gravitational waves is too small. A direct 
measurement of its physical properties is still lacking [1]. The gravitational 
waves spectrums cover an interval of about 18 orders of magnitude in wave-
length [2]. The frequencies in the range 10 - 104 Hz are the targets of several de-
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tectors like LIGO, TAMA, VIRGO, etc. Now the very low frequency is con-
cerned 10−9 - 10−7 Hz dealt with it [3]. Despite the wealth of the literature with 
works aiming at the evaluation of these effects, they are almost exclusively writ-
ten from the viewpoint of physicists, with consequence that the powerful tools of 
celestial mechanics are still off. The effects of incident gravitational waves on the 
orbital motion of gravitational bound system were investigated analytically by 
several authors with different approaches and various feature of both orbits and 
the waves [4]-[13]. The idea of using the solar system to try to detect gravita-
tional waves was first suggested by [14]. In the case of studying the effect of gra-
vitational waves it is often useful to utilize the perturbative or disturbing func-
tion which is analogous to the potential function U as in [15] [16] and [17]. The 
disturbing force of gravitational waves contains long, short and secular effects. 
Youssef (2017) has found that the effect of gravitational waves is pure short-period 
effects [15]. The short and long period’s perturbations due to the effect of gravi-
tational waves on the orbital elements of Jupiter are studies numerically [16]. 
The short and long period’s perturbations due to the effect of gravitational waves 
on the orbital elements of planets for different sources of GW are studies in [17]. 
The typical planetary orbital frequencies vary from 71.3 10−×  Hz for Mercury 
to 101.2 10−×  Hz for Pluto. In this work we treat the effect of gravitational 
waves on orbital elements of Mercury of high mean motion and Pluto of low 
mean motion in case of the commensurability between the frequency of gravita-
tional waves and the frequency of the planet using the Gauss form of Lagrange 
planetary equations. We determine the secular perturbations on the orbital ele-
ments using the Gauss form of Lagrange’s equations. Numerical method of 
Runge-Kutta 4th order is used to obtain the second order effect.  

2. Equations of Motion 

The wave creates a field of variable accelerations of the type 
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where Fx, Fy, and Fz are the components of the acceleration vector of normal in-
cident of plane gravitational wave in (x, y, z) coordinates and 
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The two polarized components of the transverse GW are 

( )11 1cos gh h n t α+= +                        (3) 

( )12 2cos gh h n t α×= +                        (4) 

where ng is the frequency of the wave, α1 and α2 are the phase difference, h+ and 
h× are the amplitude of the wave in the two orthogonal directions in the trans-
verse plane. Substituting Equations (3) and (4) into (2) and then into (1), there-
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fore the acceleration components are 

( ) ( )1 2cos cosx g gF n t x n t yβ α γ α= + + +               (5) 

( ) ( )2 1cos cosy g gF n t x n t yγ α β α= + − +               (6) 

0zF =                              (7) 

where 

21
2 gn hβ += −  and 21

2 gn hγ ×= −                   (8) 

Regarding the estimates of the values of the frequencies and amplitudes of 
gravitational waves from different sources, we can fairly assume that β and γ are 
of order the eccentricity of the elliptic orbit (e). Now we express the components 
of the acceleration in the directions S, T, W along the unit vectors ^ ^,P Q  and 

^W  in the direction of r, normal to r in the orbital plane and normal to the or-
bital plane respectively as shown in Figure 1. 

Therefore we have 

( ) ( ){ }1 2 3cos 2 sin 2S r A A f A fω ω= + + + +           (9) 

( ) ( ){ }2 3sin 2 cos 2T r A f A fω ω= − + + +           (10) 

( ) ( ){ }1 2cos sin sinW r B f B f iω ω= + + +          (11) 

where 
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iA h h+
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{ }3 1 2cos sin 2 cos 2A i h h= − Ω + Ω               (14) 

1 1 2sin 2 cos 2B h h= Ω − Ω                   (15) 

{ }2 1 2cos cos 2 sin 2B i h h= Ω + Ω                 (16) 

 

 
Figure 1. The disturbing force of gravitational waves in (S, T, W) directions and the angle 
i between the orbital plane and reference plane and the angles (Ω, ω, f). 
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i, ω, and f are the inclination, longitude of node, argument of perigee and the 
true anomaly of an orbit respectively. The Gauss form of Lagrange’s planetary 
equations is (Roy, 1965) [18] 
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Substituting Equations (9), (10) and (11) into Equations (17) to (22). We solve 
these equations numerically using Runge-Kutta four order methods, the ma-
thematical program written by language of MATHEMATICA V10. Considering 
the commensurability between the gravitational wave and the mean motion of 
Mercury and of Pluto (i.e. we are studying the effect of GW when the frequency 
of GW equal to the mean motion of Mercury and when the frequency of GW 
equal to the mean motion of Pluto). 

3. Solution and Results 

We now describe a perturbation approach to solve the above equations to yield 
the variation in the elements during any interval of time. The amount of pertur-
bations depends on the orders of the disturbing forces such that when the per-
turbing force is small compared to 2r

µ  we will not find large changes in the 
osculating elements like the force of gravitational waves, but this change may be 
not ignored for studying the gravitational waves effects in future. We describe a 
procedure to calculate the perturbations as numerical integration for the set of 
differential equations in the form 

( )d ,
d
X єf x t
t
=                         (23) 

where є is a small parameter, then the solution will be in the form 

1
kK j
jF Bζ
=

= +∑                       (24) 

B is a constant n-vector and  

( ) ( )1 , dє f x t t C xζ  = + ∫                   (25) 
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( )1 1 , d , 1, 2j є f x t t jζ ζ+ ⋅= − =∫                 (26) 

where j
xζ  is the Jacobian matrix of the set jζ  with respect to the set x, x is 

kept constant during the integration and ( )C x  is an arbitrary function of x. 
The secular effects will obtain from (26), representing the second order effect. 
Using the elliptic orbit relations 

coscos
1 cos

E ef
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21 sinsin
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( )cos cosr f a E e= −  

2sin 1 sinr f a e E= −  

E is the eccentric anomaly and related to the mean anomaly M through the Kep-
ler’s equation  

sinE e E M− =  

Changing the independent variable from the time t to the eccentric anomaly E 
and using the above elliptic relations in the equations of motion (17) to (22). 
Solving the equations numerically when the frequency of GW is equal to the 
frequency of Mercury and Pluto as in Table 1 and Table 2. Assuming 1

π
2

α = −  
and 2

π
2

α = , and the amplitude is equal to 2115 10−× . The variation of the or-
bital elements during the time in radian due to the effect of GW for five revolu-
tions is presented in Table 3 and Table 4 and in the Figure 2 and Figure 3. 
 
Table 1. The orbital elements of mercury reference date 12.00 UT 1 Jan. 2000. 

Elements of the Planet Mercury 

The semi-major in Km (a) 57.9 × 106 

The eccentricity (e) 0.205627 

Inclination in degree (i) 7.00399 

Longitude of node in degree Ω 47.85714 

Longitude of perihelion in degree ϖ 76.83309 

Mean daily motion in degree/day n 4.092339 

 
Table 2. The orbital elements of Pluto reference date 12.00 UT 1 Jan. 2000. 

Elements of the Planet Pluto 

The semi-major in Km (a) 5896 × 106 

The eccentricity (e) 0.250236 

Inclination in degree (i) 17.1699 

Longitude of node in degree Ω 109.88562 

Longitude of perihelion in degree ϖ 224.16024 

Mean daily motion in degree/day n 0.003979 
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Variation of semi-major during five revolutions 

 
Variation of inclination during five revolutions 

 
Variation of Ω during five revolutions 

 
Variation of ω during five revolutions 

Figure 2. The variation of the orbital elements of Mercury during five revolutions, X-axis 
represents the eccentric anomaly from 0 to 5π and Y-axis is the amount of variation of 
the orbital elements (a, i, Ω, ω) in radian. 
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The variation of the semi-major during five revolutions 

 
The variation of the eccentricity during five revolutions 

 
The variation of the inclination during five revolutions 

 
Variation of Ω during five revolutions 

 
Variation of ω during five revolutions 

Figure 3. The variation of the orbital elements of Pluto during five revolutions, X-axis 
represents the eccentric anomaly from 0 to 5π and Y-axis is the amount of variation of 
the orbital elements (a, e, i, Ω, ω) in radian. 
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Table 3. The variation of the elements of mercury due to the resonance of GW in radians. 

δi δe δa period 

1.735647 × 10^−24 3.307374 × 10^−22 4.947566 × 10^−15 0 

1.736209 × 10^−24 3.307374 × 10^−22 4.947571 × 10^−15 1 

1.736770 × 10 ^−24 3.307374 × 10^−22 4.947575 × 10^−15 2 

1.737332 × 10^−24 3.307374 × 10^−22 4.947580 × 10^−15 3 

1.737894 × 10^−24 3.307374 × 10^−22 4.947585 × 10^−15 4 

 
δM δΩ δω period 

1.98933` × ^−7 5.0877643 × ^−26 5.408152 × ^−25 0 

1.98933` × ^−7 5.0877452 × ^−26 5.408153 × ^−25 1 

1.98933` × ^−7 5.0877261 × ^−26 5.408155` × ^−25 2 

1.98933` × ^−7 5.0877070 × ^−26 5.408157 × ^−25 3 

1.98933` × ^−7 5.0876879 × ^−26 5.408159 × ^−25 4 

 
Table 4. The variation of the elements of Pluto due to the resonance of GW in radians. 

δi δe δa period 

0 0 0 0 

−2.300079 × ^−17 −5.685610 × ^−17 −9.650559 × ^−8 1 

−2.288160 × ^−17 −5.650615 × ^−17 −9.582255 × ^−8 2 

−2.276240 × ^−17 −5.615620 × ^−17 −9.513952 × ^−8 3 

−2.264321 × ^−17 −5.580624 × ^−17 −9.445648 × ^−8 4 

 
δM δΩ δω period 

0.0000167118` 0 0 0 

0.0000167118` 8.438826 × ^−24 7.464780 × ^−23 1 

0.0000167118` 8.439177 × ^−24 7.464740 × ^−23 2 

0.0000167118` 8.439528 × ^−24 7.464700 × ^−23 3 

0.0000167118` 8.439879 × ^−24 7.464660 × ^−23 4 

4. Conclusion 

The resulting solution for our model from Equations (17) to (22) represents the 
secular effects of gravitational waves on the orbital elements under the com-
mensurability of wave’s frequency and the mean motion of the planets. The per-
turbations on the orbital elements of elliptic orbits are calculated numerically for 
five revolutions considering the time of perihelion passage is zero. The perturba-
tion on semi-major a of Mercury increases with each revolution during the time 
from zero to 5π, but decreases for Pluto, and the perturbation on the eccentricity 
e of Mercury did not change with revolution but decreasing for Pluto and the 
mean anomaly M of Mercury and Pluto did not change as seen in Figure 2 and 
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Figure 3. The amount of changing in the orbital elements under the effects of 
gravitational waves is different from planet to planet according to the planet’s 
mean motion np. For low frequency ng, the variation in orbital elements will be 
negative (i.e. decreasing) in the inclination, semi-major axis and the eccentricity 
(i, a, e) like as Pluto. For high frequency ng like Mercury, the variation in all the 
orbital elements will be positive (i.e. increasing). 
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