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Abstract 

In this paper, a novel adaptive robust approach to modeling and control of a 
class of flexible-arm robots subject to actuators unmodeled dynamics is pro-
posed. It is shown how real-time signals measured from a dynamical system 
can be utilized to improve the accuracy of the mathematical model of flexible 
robots. Given the elasticity of the robot’s arms, flexible manipulators have 
both passive and active degrees of freedom. A nonlinear robust controller is 
designed for the active degrees of freedom to enable the robot to follow de-
sired trajectories in the presence of actuators unmodeled dynamics. Further-
more, it is shown that under some feasible conditions, another nonlinear ro-
bust controller is designed for the passive degrees of freedom. Moreover, to 
use the system response for model extraction, two auxiliary signals are pro-
posed to provide sufficient information for improving the accuracy of the dy-
namics of the system numerically. Additionally, two adaptive laws are pro-
posed in each case to update the two introduced auxiliary signals. As a result, 
the controller controls the passive degrees of freedom after the active degrees 
of freedom converge to their desired trajectories. Simultaneously, the infor-
mation collected from the system to update the auxiliary signals enhances the 
model accuracy. In the end, simulation results are presented to verify the per-
formance of the proposed controller. 
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1. Introduction 

The area of flexible-arm robots has attracted much attention during the last few 
decades [1] [2]. This interest is due to the advantages that flexible arms offer 
compared to their rigid counterparts. Weight reduction, lower energy consump-
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tion, and faster system response are among several benefits utilized in their nu-
merous applications such as space missions [3]. 

There has been a great number of studies coping with controlling flexible-arm 
robots, many of which investigate both theoretical and experimental aspects in 
this field [4] [5]. On grounds of the flexibility of the arms, along with a trajecto-
ry-tracking control problem, vibration control should be also considered for 
such systems to improve the control system performance [6]. As a result of the 
vibrations caused by the flexibility of the arms, designing controllers for such 
systems becomes a challenging task. There exist several research works in the li-
terature addressing the flexibility of the arm. Passive control methods are one 
way to deal with the vibrations of elastic arms which require modification in 
physical parameters of the system structure [7]. Due to these structural modifi-
cations, absorption properties of the structure can be employed to increase 
damping properties of the arms. Active control approaches have also been wide-
ly used to control flexible systems, in which actuation moments and forces are 
applied to address the vibrations [8] [9]. However, the mere use of passive con-
trol methods to reduce vibrations does not seem to suffice. Merely using active 
control approaches is not sufficient as well. It is because vibration modes with 
frequencies near actuators frequencies can lead to instability. Hence, a combina-
tion of passive and active controllers can be employed as a suitable solution to 
vibrations reduction [10] [11]. The boundary feedback scheme is another way to 
dampen the vibrations of flexible manipulators [12]. Luo et al. [13] controlled 
the vibrations of a class of flexible robots using a shear feedback control method. 
Lyapunov-based control has also been vastly utilized to cope with the challenges 
associated with controlling flexible structures [14]. As another example of Lya-
punov-based methods, Dadfarnia et al. [15] used the Lyapunov stability theory 
to develop a piezoelectric controller for flexible robots. 

Infinite dimensionality is one of the most considerable challenges in modeling 
flexible robots. The existence of flexibility in the system results in dynamics go-
verned by partial differential equations. Thus, techniques such as modal trunca-
tion are employed to express the dynamics by a set of ordinary differential equa-
tions [16]. As examples of such methods, Arts et al. [17] proposed an adaptive 
model integration method as a model reduction technique for planar flexible 
manipulators. Bruls et al. [18] used the global modal parameterization technique 
to reduce model-order of flexible multi-body dynamics. The procedure in both 
aforementioned methods is to divide the motion into two parts of rigid and elas-
tic. 

On account of the elasticity of the arms, there are degrees of freedom on 
which no actuation acts (Passive degrees of freedom). Consequently, flexi-
ble-arm robots fall into the category of underactuated mechanical systems. That 
is, systems with a lower number of control inputs compared to the number of 
degrees of freedom. Designing controllers for underactuated systems is an open 
problem. Control designs for such systems are dynamics-dependent while dy-
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namical characteristics of the system play an essential role in the development of 
a control strategy. As an example of the existing control methods for underac-
tuated systems, Mahmut Reyhanoglu et al. presented a theoretical scheme for 
modeling and control of underactuated systems. As one of the requirements of 
their approach, the non-integrable acceleration relations are required to be satis-
fied [19]. As another example, Zhang and Tarn designed a hybrid switching 
control strategy for nonlinear and underactuated mechanical systems [20]. 

Feedback linearization methods are wildly used for nonlinear systems. Never-
theless, As a result of the underactuated nature of flexible arms, the exact feed-
back linearization method [21] cannot be employed for such mechanical systems. 
Hence, the partial feedback linearization method [22] is considered as one the 
most suitable way to cope with underactuated systems. That is, the entire system 
can be either linearized with respect to the active degrees of freedom (collocated 
problem) or with respect to the passive degrees of freedom (non-collocated 
problem). Be that as it may, such a control strategy fails to handle uncertainties 
as control inputs to feedback-linearized systems depend on the governing equa-
tions. 

In this paper, a novel adaptive robust nonlinear controller is designed for a 
class of multi-link flexible arms subject to uncertainties and unmodeled dynam-
ics of the actuators. The contribution of the current research work is to utilize 
the system’s real-time responses to improve the accuracy of the available ma-
thematical model. Additionally, despite uncertainties and underactuated nature 
of the system, the proposed controller is able to track desired trajectories 
asymptotically. That is, despite the presence of uncertainties and disturbance 
sources, the tracking error converges to zero. To do such, first, an adaptive ro-
bust controller is designed for the active degrees of freedom. Meanwhile, adap-
tive laws are proposed to estimate the system uncertainties as well as approx-
imating actuators uncertain dynamics. Furthermore, another adaptive robust 
controller is designed to control the passive degrees of freedom where the stabil-
ities of the overall closed-loop system, in both cases, in the presence of uncer-
tainties are established. In addition, due to the flexibility of the arms, the extrac-
tion of the system dynamics is demanding and, for the most part, should be 
done analytically. In the present approach, two adaptive signals are introduced 
and synthesized such that the cumbersome analytical part of the model extrac-
tion can be done numerically. 

2. Dynamic Equations 

In the current study, a multi-link flexible-arm robot is considered for modeling 
and control purposes. The investigated system is assumed to include m links 
containing l elastic modes. Therefore, the total degrees of freedom come to 
n m l= + . 

Equations governing a flexible arm using the Euler-Bernoulli beam can be 
written as follows 
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( ) ( )11 12 1

21 22 2

0
,

M M q
C q q G q

M M q T
    

+ + =    
   




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              (1) 

where ( ) 11 12

21 22

n n M M
M q

M M
×  

∈ =  
 

  is the positive definite inertial matrix;  

( ), nC q q ∈   includes Coriolis and centrifugal terms; ( ) nG q ∈  contains 
gravitational terms; [ ]TT

1 2q q q=  is the generalized coordinates vector where 

1
lq ∈  denotes the passive degrees of freedom, and 2

mq ∈  represents the 
active degrees of freedom. mT ∈  is the torque generated by the actuators act-
ing on the active degrees of freedom. ( ),C q q  and ( )G q  can be calculated as 
[23] 

( ) ( )
( )( )T

1,
2

q M q q
C q q M q q

q

∂
= −

∂

 



                   (2) 

( ) UG q
q

∂
=
∂

                            (3) 

where U denotes potential energy of the system. Extracting the dynamic equa-
tions of flexible robot arms is time consuming and can be analytically compli-
cated. Due to its analytical nature, there exists a high chance of computational 
errors as the equations are derived. The extraction of the dynamic equations can 
be divided into two phases: 1) Extracting the portions of the dynamics that are 
straightforward and demand less calculations such as kinetic and potential 
energy. It is to be noted that the inertia matrix ( )M q  can be arrived at directly 
from the rearrangement of the kinetic energy of the system. 2) Obtaining the 
portions of the dynamics which require lengthy analytical calculations such as 
( )G q  and ( ),C q q . It is worth noting that calculating ( )G q  and ( ),C q q  

require calculus of variations which can be cumbersome for systems with a large 
degrees of freedom. The idea of this paper is to propose a way to procure ( )G q  
and ( ),C q q  numerically using the system responses. For this purpose, (1) is 
rewritten as 

( )
( ) ( )

11 12 1 1

21 22 2 2

0,
,

M M q h q q
T d tM M q h q q

     
+ =      +     

 

 

              (4) 

where 

( ) ( ) ( )
( )( )T

1 11 1 12 2
1 1

1,
2

q M q q Uh q q M q q M q q
q q

∂ ∂
= + − +

∂ ∂

 

 

            (5) 

( ) ( ) ( )
( )( )T

2 21 1 22 2
2 2

1,
2

q M q q Uh q q M q q M q q
q q

∂ ∂
= + − +

∂ ∂

 

 

            (6) 

and ( )d t  is an unknown vector added to the equations to account for uncer-
tain dynamics of the actuators. It is also assumed that ( )d t γ≤  where γ is an 
unknown constant. 

In order to complete the dynamic equations given in (4), ( )1 ,h q q  and 
( )2 ,h q q  should be computed. As it follows from (5) and (6), ( )1 ,h q q  and 
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( )2 ,h q q  are expressed in terms of the matrix M, system states, and its potential 
energy. Therefore, one can use the measurement of the states along with the ki-
netic and potential energy of the system and use numerical computations to ob-
tain 1h  and 2h . Hence, the system dynamics is computed as it runs without 
going through analytical calculations. However, such dynamic equations are 
prone to numerical and measurement errors. Thus, a special measure should be 
taken to improve the accuracy of such computations. To compensate for such 
errors, two unknown auxiliary signals P and S are employed as follows 

11 1 12 2 1 0M q M q H P+ + =                        (7) 

21 1 22 2 2M q M q H S T+ + =                        (8) 

where lP∈  and mS ∈  are two unknown auxiliary signals introduced to 
account for numerical and measurement errors;  

( ) ( )1 2, , ,l l m mH q q H q q× ×∈ ∈    are two diagonal matrices constructed as 
( ) 2 2

1 1 1 1, , , , nH q q diag h h h =  
  and ( ) 2 2

2 2 2 2, , , , nH q q diag h h h =  
 ; j

ih  de-
notes the jth element of the vector ih  where 1,2i = . Given the physical and 
geometric properties of flexible arm robots, it is not restrictive to assume that 
both 1H  and 2H , as defined above, have full ranks. Therefore, their column 
space can be utilized as a basis for the vectors 1h  and 2h  at any given time. 
Thus, for any exact value of 1h  and 2h  at any given time, there exist two 
unique vectors P and S such that 1 1h H P=  and 2 2h H S= . It is clear that the 
vectors P and S change in values over time. Hence, their values need to be up-
dated according to the system response. Therefore, an adaptive procedure is de-
veloped for each of these vectors along with designing a controller in Section 3. 
Consequently, as the system runs, its response is used to update the values of P 
and S. 

3. Control Design 

In this section, an adaptive controller is designed for the considered system in 
the presence of uncertainties. Alongside the adaptive controller, two adaptive 
laws are derived for updating the values of P and S which are used to complete 
the dynamic equations. As it was shown in the previous section, (7) and (8) ex-
hibit the dynamic equations governing an n-degree of freedom flexible-arm, 
with m active and l passive degrees of freedom. The first objective is to design a 
controller for the active degrees of freedom. 

3.1. Control Design for Active Degrees of Freedom 

Employing (7), (8) can be rewritten as follows 

( )( )1
21 11 12 2 1 22 2 2M M M q H P M q H S T d− − − + + = +               (9) 

Two matrices N and R are defined as 1
21 11R M M −=  and 22 12N M RM= − . 

Consequently, (9) comes to 

2 2 1Nq H S RH P T d+ − = +                      (10) 
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As N is positive definite, (10) can be expressed as follows 
1

2 2 1q H S H P U N d−= − + + +                    (11) 

where 1
2 2H N H−= ; 1

1 1H N RH−= , and 1U N T−= . Tracking error and its dy-
namics can be defined as 2 2de q q= −  and 2 2de q q= −   , respectively; 2dq  is 
the desired trajectory for the active degrees of freedom. A measure of the track-
ing error is also defined as 

1Q e eλ= +                              (12) 

where 1
m mλ ×∈  is a positive definite matrix. The estimation errors of the un-

certainty vectors are shown by P  and S  which are defined as S S S= −  and 
P P P= − ; mS ∈  and lP∈  are the estimations of the uncertainty vectors. 
Using the definitions of S  and P , (11) is rewritten as follows 

( ) ( ) 1
2 2 1q H S S H P P U N d−= − − + − + + 

            (13) 

Considering (12), Q  is calculated as follows 

( ) ( ) ( ) 1
1 2 2 2 1 2d dQ q q H S S H P P U N d qλ −= − − − + − + + −  

        (14) 

To proceed with the control design, the following Lyapunov function is pro-
posed 

( )T T T 21
2

V Q Q P P S S γ= + + +  

                 (15) 

where ˆγ γ γ= −  is the Euclidean norm of the estimation error of the uncertain 
dynamics of the actuators. Taking time-derivative of (15) gives 

( ) ( )( )T 1
1 2 1 2 2 1 2

T T

d dV Q q q H S S H P P T u N d q

P P S S

λ λ

γγ

−= − − − + − + + + −

+ + +

 

  



  



   (16) 

where U  is decomposed into U T u= + . Given the structure of (16), the fol-
lowing control and adaptive laws are proposed 

( )1 2 2 2 1 2d dT Q q q H S H P qψ λ= − − − + − +                (17) 

T T
1 0P Q H− =

                          (18) 

T T
2 0S Q H+ =

                          (19) 

where m mψ ×∈  is a positive definite matrix; (17) is the proposed control law, 
and (18)-(19) are the adaptive laws to update the two auxiliary signals intro-
duced in (7)-(8). Substituting (17)-(19) into (16) yields 

T T T 1V Q Q Q u Q N dψ γγ−= − + + + 


                 (20) 

(20) can be rewritten as follows 

( ) ( )2 1 T
min ˆV Q Q N Q uλ ψ γ γ γγ−≤ − + − + + 



            (21) 

where .  stands for the Euclidean norm. Since N is a bounded positive defi-
nite matrix, the adaptive law to update γ  is proposed as 
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1Q Nγ −=                            (22) 

Employing (22), (21) becomes 

( ) 2 1 T
min ˆV Q Q N Q uλ ψ γ−≤ − + +                 (23) 

To establish the asymptotic stability of the closed-loop system, the second part 
of the control law is introduced as follows in (24). It is to be noted that the 
second part of the control law compensates for the actuators uncertain dynam-
ics. 

( )

2 1

1

ˆ

ˆ

N Q
u

Q N t

γ

γ σ

−

−
= −

+
                      (24) 

where ( ) 1t Lσ ∈  is an arbitrary signal where ( )
0

dt tσ
∞

< ∞∫ . By substituting 
(24) into (23), the following is obtained 

( )
( )
( )

1
2

min 1

ˆ

ˆ

Q N t
V Q

Q N t

γ σ
λ ψ

γ σ

−

−
≤ − +

+
              (25) 

Since ( )1, ,Q N tσ−  are positive, the following inequality is concluded 

( )
( )

( )
1

1

ˆ

ˆ

Q N t
t

Q N t

γ σ
σ

γ σ

−

−
≤

+
                  (26) 

Hence, (25) is simplified as follows 

( ) ( )2
minV Q tλ ψ σ≤ − +                   (27) 

Taking integral from both sides of (27) gives 

( ) ( ) ( ) ( )2
min 0 0

d 0 d
t t

Q V V tλ ψ τ σ τ τ≤ − +∫ ∫             (28) 

Considering the fact that ( ) 1t Lσ ∈ , the following is achieved 

( ) ( ) ( )2
min 2 0

d 0Q t V V aλ λ
∞

≤ − ∞ +∫               (29) 

where a is a positive constant. It is observed that the left side of (29) is 
non-negative, thus, it follows that ( ) ( )( )0V V− ∞  is bounded. As a result, it is 
deduced that the right side of (29) remains bounded as well. Consequently, 

2Q L∈ . It is also easy to check that Q L∞∈ . Therefore, it is concluded from 
Barbalat’s lemma that ( )lim 0

t
Q t

→∞
=  which implies ( )lim 0

t
e t

→∞
= . Thus, it was 

proven that adopting the extracted control laws (17), (24), and adaptive laws 
(18), (19)) and (22) guarantees the asymptotic stability of the closed-loop system. 
That is, the system is able to track desired trajectories asymptotically in the 
presence of model and actuators uncertainties. 

3.2. Control Design for Passive Degrees of Freedom 

In this section, a robust nonlinear controller is designed for the passive degrees 
of freedom alongside extracting adaptive laws to update uncertainties vectors. 
To do such, (8) is rewritten as 
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( )1
2 22 21 1 2q M M q H S T d−= − − + +                   (30) 

Substituting (30) into (7) yields 

1 2 1 0Fq GH S h P GT Gd− + + + =                  (31) 

where 1
12 22G M M −= ; 1

11 12 22 21F M M M M−= − . It follows from the structure of M 
that M22 is nonsingular. In addition, it can be easily shown that F is a positive de-
finite matrix as well. Therefore (31) can be expressed as follows 

1
1q KS DP V F Gd−= − − −                    (32) 

where 1
2K F GH−= , 1

1D F H−= , 1J F GT−= , and J is a control signal yet to be 
defined. The actual control input can be retrieved from J as follows 

1T G FJ−=                           (33) 
It is concluded from (33) that G should be nonsingular. Thus, according to the 

definition of G, M12 needs to be invertible as well. Hence, in order to extract a 
non-singular control law for the passive degrees of freedom, the following as-
sumption is made: 

Assumption 1 It is assumed that the number of passive degrees of freedom is 
less or equal than the number of active degrees of freedom. 

The tracking error for the passive degrees of freedom and its dynamics are de-
fined as 1 1de q q= −  and 1 1de q q= −

   where 1dq  is the desired trajectory for 
the passive degrees of freedom. Moreover, a measure of the tracking error is de-
fined as 2Q e eλ= +   where 2

l lλ ×∈  is a positive definite matrix. Using the 
definitions of ,S P  , which are defined in the previous section, (32) is expressed 
as follows 

( ) ( ) 1
1q K S S D P P J F Gd−= − − − − − 

              (34) 

Based on the structure of (34), the following Lyapunov function is introduced 

( )T T T 21
2

V Q Q P P S S γ= + + +  

                 (35) 

The time-derivative of (35) is calculated as 

( )( ) ( )
( ) ( )

T T T
2 1 1 1 2

T T T 1
1

d

d

V Q q q KS DP J J P Q D P

S Q K S Q F Gd q

λ

γγ −

= − + − − − + +

+ − + − −



 

 



 

 

       (36) 

where 1 2J J J= + . Given (36), the following control and adaptive laws are pro-
posed 

( )1 2 1 1 1d dJ Q q q KS DP qψ λ= + − + − −                  (37) 

T T 0P Q D+ =

                          (38) 

T T 0S Q K− =

                          (39) 

where l lψ ×∈  is a positive definite matrix. Substituting (37)-(39) into (36) and 
taking the Euclidean norm form both sides lead to the following 

( ) ( )2 1 T
min 2ˆV Q Q F G Q Jλ ψ γ γ γγ−≤ − + − − +



          (40) 
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To make (40) negative semi-definite, the following control and adaptive laws 
are proposed 

( )

2 1

2 1

ˆ

ˆ

Q F G
J

Q F G t

γ

γ σ

−

−
=

+
                   (41) 

1= Q F Gγ −


                        (42) 

where ( )tσ  is a positive arbitrary signal belonging to 1L . Substituting (40)-(42) 
into (40) gives 

( ) ( )2
minV Q tλ ψ σ≤ − +                    (43) 

Similar to the stability analysis presented in the previous section, it is con-
cluded from (43) that ( )lim 0

t
Q t

→∞
= , which implies that lim 0

t
e

→∞
= . Hence, it is 

guaranteed that the tracking error converges to zero asymptotically in the pres-
ence of uncertainties. 

4. Simulation Results 

In this section, a simulation is conducted to validate the analytical results. The 
simulated case study is a one-link flexible-arm robot with a payload at the tip of 
the arm. It is assumed that the system is subject to uncertainties and unmodeled 
dynamics in the actuators. The strategy is, first, to control the active degrees of 
freedom to their desired values. Then, the control law and adaptive laws switch 
to the non-collocated control to dampen the vibrations of the flexible arm. The 
physical properties of the investigated arm are as follows: Arm s Length = 1 m; 
Density = 7850 kg/m3; Beams section area = 2e−4 m2; Elasticity = 2.07e11; Load 
mass = 0.1 kg. The actual values uncertainty signals are 8.2S =  and 5.5P = . 

It is shown in Figure 1 that the flexible arms hub angle is successfully con-
trolled to the desired angle. It is also observed from Figure 1 that the hubs angle 
remains in its desired angle after the controller switches. 

In Figure 2, the vibrations of the flexible arm are displayed, and its zoomed-in 
version is depicted in Figure 3. It follows from Figure 3 that the arm residual 
vibrations are dampened as the controller switches. 

Figure 4 and Figure 5 correspond to the estimation of the introduced aux-
iliary signals to compensate for uncertainties. As noticed from the figures, the 
estimation of the uncertain parameters have converged to their limits after about 
two seconds through the simulation. 

Finally, the required actuator torque to control the arm is shown in Figure 6. 
It follows from the simulations results that the arm tip can be controlled to its 
desired position more accurately. The reason stems from the fact that the 
non-collocated control helps decrease the response time. It is because that it 
would dramatically take a longer time for the residual vibrations to dampen na-
turally. 

It was shown both analytically, in Section 3, and through simulation that the 
proposed controller can achieve asymptotic tracking in the presence of unknown  
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Figure 1. Arm’s hub angle (rad). 

 

 
Figure 2. Flexible arm’s vibrations (m). 

 

 
Figure 3. Zoomed-in version of the arm’s vibrations.  
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Figure 4. Auxiliary signal estimation (P). 

 

 
Figure 5. Auxiliary signal estimation (S). 

 

 
Figure 6. Control signal (Nm). 
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and bounded disturbance sources. As a comparison to other recent robust ap-
proaches to the control problem of such flexible manipulators, authors in [24] 
linearize the dynamics to simplify the complexity of their model. However, the 
nonlinear dynamics of the system is considered in the present study, and the 
controller is designed accordingly. It is to be noted the asymptotic tracking in 
this study is established on the postulate that no prior knowledge of the bound 
of the disturbance is available. Be that as it may, existing methods in the litera-
ture merely guarantee the boundedness of control and state signals in case of 
unknown disturbance sources. That is, they cannot prove the output can con-
verge to desired trajectories asymptotically. As an example, authors in [25] take a 
robust adaptive approach to control a flexible manipulator using the Lyapunov 
stability theory. Their analytical analysis suggests the boundedness of all signals 
in the presence of disturbance. Thus, given a desired trajectory, the output can 
stay in the vicinity of the trajectory. However, the convergence of the output to 
the desired trajectory is not guaranteed. 

5. Conclusion 

As presented in detail, an adaptive robust nonlinear controller was designed for 
a class of flexible-arm robots based on the Lyapunov stability theory. A new nu-
merical technique was presented to facilitate the extraction of the governing eq-
uations of flexible-arm robots. It was shown how computational errors caused 
by numerical operations could be compensated and approximated as uncertainty 
signals. In the control design process, first, an adaptive controller was designed 
for the active degrees of freedom to enable the system to follow desired trajecto-
ries in the presence of uncertainties. Further, it was shown that under some 
feasible conditions, another adaptive robust controller could be designed for the 
passive degrees of freedom. Therefore, as the system was being controlled, its 
responses were utilized to improve the accuracy of the mathematical model. 
Thus, the presented method leads to improvements in the controller perfor-
mance and increases tracking accuracy. Furthermore, due to a numerical ap-
proach to extracting the dynamics, the amount of analytical computations is re-
duced dramatically. 
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