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Abstract 
Risk-neutral pricing of European call options is investigated from a mathe-
matical point-of-view and is found to be a specious concept1. Risk-neutral 
pricing of European call options is an approximation in which all terms of 
order ( )rα σ−  are ignored, where rα −  is the risk premium and σ is the 
volatility. 
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1. Introduction 

The concept of risk-neutral pricing of European call options is investigated from 
a mathematical approach. It is found that risk-neutral pricing used in the pricing 
of European call options is a specious concept [1] [2] [3] that is only 
approximately correct and that ignores terms of ( )rα σ− , where rα −  is the 
risk premium and σ2 is the variance of the one-day return of the asset that 
underlies the call option. The risk premium equals ( )rα −  with α the true drift 
rate of the underlying option and r the risk-free rate. 

2. Background 

First some notation and background information. Let the probability density 
function (pdf) for a random variable x  be ( )f xx . The probability that a 
measurement of the random variable x  takes a value between x  and dx x+ , 
{ }dP x x x< ≤ +x , is given by ( )df x xx . The cumulative density function (CDF) 

 

 

1Specious “refers to something that appears at first encounter to be genuine or to be soundly argued 
or reasoned” [1]. A specious argument is “an argument that seems correct only if you do not think 
about it carefully” [2]. Something specious is “seemingly well-reasoned, plausible or true, but actu-
ally fallacious” [3]. 
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( ) { } ( )da
F a P a f ξ ξ

−∞
= ≤ = ∫x xx . 

Let tS  be the value of an asset at time t. Let the 1-day return be 
( )1lnt t tR S S −=  and the n-day return be ( ), lnt n t t nR S S −= . Note that  

( ) ( ), 1 1 2 1

1 2 1

ln lnt n t t n t t t t t n t n

t t t t n

R S S S S S S S S
R R R R

− − − − − + −

− − − +

= = × × ×

= + + + +



        
(1) 

and, for simplicity in notation, that ,1t tR R= . 
When returns over non-lapping time periods are independent, the pdf for the 

n-day return is the n-fold convolution of the pdf of the 1-day return since the 
n-day return is the sum of n independent 1-day returns. Variances add under 
convolution, and hence the variance of n-day returns is n times the variance that 
describes the distribution of the 1-day returns. Since the normal distribution is 
stable under self-convolution, if the 1-day return distribution is a normal 
distribution with a mean μ and a variance σ2, then the pdf for an n-day return is 
a normal distribution with a mean nµ=  and with a variance 2nσ=  [4]. 

The returns of assets are better described by Student’s t-distributions than by 
normal distributions. However, Student’s t-distributions are not stable under 
self-convolution and have fat tails. The fat tails lead to integrals that diverge and 
these integrals are needed to price options. Both of these characteristics make 
pricing with Student’s t-distributions difficult [4] [5] [6] [7] [8]. For simplicity 
and to be specific, the pricing of European call options for returns with normal 
distributions is discussed in this note. In particular, attention is paid to the 
mathematical basis for risk-neutral pricing of European call options. The results 
apply to fat tailed distributions as well [9]. 

Following [10] [11], the price of a European call option at time T is 
( ){ }T T TC E K += −S . In the expression for TC , ( ){ }T TE K +−S  is the 

expectation of the maximum value of 0 or the difference ( )T TK−S  of the 
value of the asset TS  and the strike price TK  at time T. At time 0t = , when 
the option is purchased, the value of the option is ( )0 exp TC rT C= −  as the sale 
of the option is a cash transaction and therefore the value of the option at time T, 

TC , is discounted by the time value of money, with r the risk-free rate. 
The expression for TC  follows from the arbitrage theorem [10] [11] [12] [13] 

[14]. 

2.1. Black-Scholes Option Pricing Formula 

The Black-Scholes option pricing formula gives prices for European call options 
and is obtained under the constraints of: 1) no arbitrage; 2) the price of an asset 
is described by a geometric Brownian motion process with support [ ],−∞ +∞ ; 3) 
risk-neutral pricing; and, 4) the future price is a martingale. Constraint 1) 
requires, from the arbitrage theorem [12] [13] [14], that ( ){ }T T TC E K += −S . 
Constraints 3) and 4) require { } ( ) 0exptE rt S=S  where tS  is the price of the 
asset at time t, 0S  is the price at time 0t = , and r is the risk-free rate. Given 
that tS  is a geometric Brownian motion process derived from a stochastic 
process ,t nR  with mean nµ  and variance 2nσ , i.e., the 1-day returns are 
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normally distributed with drift rate μ and variance σ2, then the expectation of 

tS  is given by  

{ } ( )2
0 exp 2tE S t tµ σ= +S

                   
(2) 

for the time origin chosen such that t n= . 
Since by assumption tS  is geometric Brownian motion process and since the 

distribution of ,t nR  is an n-fold convolution of the 1-day return distribution, 
then the constraint { } ( ) 0exptE rt S=S  specifies the drift rate for tS  and the 
n-fold convolution dictates the shape and the variance of the distribution of 

,t nR , which then dictates the shape and variance of tS . From Equation (2) and 
constraints 3) and 4), tS  must have a drift rate 2 2rµ σ= −  and from the 
n-fold convolution, ,t nR  must be normally distributed (by assumption the 
1-day return is normally distributed) with a variance of 2nσ , and 2 2n tσ σ=  
when the time origin is chosen such that t n= . 

The value of a stock is expected to drift at the rate of ( )r rα α= + −  where 
rα −  is called the risk premium and r is the risk-free rate. 

2.2. Risk-Neutral Pricing 

Assume that ( )0 expT S=S ξ  where ,T T= Rξ  is the T-day return and that the 
T-day return is normally distributed with mean Tα′  and variance 2Tσ . Thus 
{ } ( ) 0expTE T Sα=S  where 2 2α α σ′= + . 
The price of a European call option with strike price TK  is then [10] [11], 

assuming normal statistics for the returns with support [ ],−∞ +∞ ,  

( ) ( )( )

( )( )
0

0

22

0 0 2ln
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∞−
 
  
 

∞−
 
  
 

 − + = − 
 
 
 − − − − 
 
 

∫

∫
       

(3) 

The difference between the Black-Scholes option pricing formula and 
Equation (3) rests in the α in Equation (3). If one sets rα =  in Equation (3), 
then one obtains the Black-Scholes formula. The Black-Scholes formula is 
obtained by using the concept of risk-neutral pricing, wherein one essentially 
sets the risk premium, rα − , equal to zero. Mathematically this approach can 
not be correct. Setting 0rα − =  violates the no arbitrage condition that 

( ){ }T T TC E K += −S . The distribution for tS  is centred about ( )0 expS tα  
(i.e., the mean of the pdf for the n-day return is ( )2 2n nα α σ′ = − ). Arbitrarily 
setting the mean of the distribution will change the value of the expectation 

( ){ }T TE K +−S  and hence mis-price European call options. In general, for 
small T, ( )r T Tα σ−   and the error introduced by arbitrarily setting the 
mean of the distribution will be small. Application of Girsanov’s theorem in 
risk-neutral pricing is discussed in Sec. 3. 

A series expansion in α of 0C  about the risk-neutral value rα =  shows that 
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risk-neutral pricing underestimates the price of a call option when rα > . 0C
α  

is the cost at time 0t =  of a European call option whereas 0 rC
α=  is the cost of 

a European call option using risk-neutral pricing (i.e., using the same 
assumptions that yield the Black-Scholes option pricing formula).  

( ) ( )( ) ( )( )( )

( )( )
0 0 0 1 1 2

2 2

1 e rT
TrC C S f d F d K f d r T

O r T

α α
α

α

−
=

= + + − − −

+ −
     

(4) 

with  

( ) ( )2
0

1

ln 2TK S r T
d

T

σ− +
=

                  
(5) 

2
2 1d d Tσ= +                         (6) 

and ( )f a  and ( )F a  the pdf and CDF for a normal distribution with a mean 
of zero and a variance of σ2. See Equation (8) for definitions of ( )f a  and 
( )F a . 

0 0rC C
α α=

<  when rα >  since the expansion is only valid for T TS K> , 
which follows from the definition ( ){ }T T TC E K += −S . Thus the risk-neutral 
pricing underestimates the value of the call option and gives, on average, an 
advantage to the option buyer when rα > . The converse holds. The seller has, 
on average, an advantage under risk-neutral pricing when rα < . Neither party 
has, on average, an advantage when the true value of α is used to price an option. 
The best estimate of a true value is typically the sample mean. 

Table 1 gives pricing of European call options for 30 365T =  years, 1%r =  
per annum, 0.01 365σ =  as measured over one-year, and 0 50.00S =  for 
geometric Brownian motion with Gaussian increments. Note that risk-neutral 
pricing (i.e., the Black-Scholes formula) underestimates the price of a European 
call option when rα >  and overestimates the price of a European call option 
when rα < . 

The “success” of risk-neutral pricing owes to the fact that the magnitude of 
the random fluctuations are typically significantly greater than the magnitude of 
the risk premium, i.e., ( )T r Tσ α − , and thus the random fluctuations  

 
Table 1. The costs of European options, 0C , for various strike prices and values of α, 

given 1%r =  per annum, 0 $50.00S = , 30 365T =  years, and 0.01 30σ = . The 
column labelled rα =  corresponds to prices obtained via risk-neutral pricing, i.e., by 
the Black-Scholes formula.  

TK  2rα =  rα =  4rα =  8rα =  

46.00 4.089 4.108 4.225 4.382 

48.00 2.369 2.385 2.483 2.616 

50.00 1.102 1.113 1.178 1.268 

52.00 0.393 0.398 0.430 0.475 

54.00 0.105 0.107 0.118 0.134 
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obscure the drift. Presumably fluctuations about the mean value are described 
well by the shape and scale parameters of the distribution and one should use the 
best available estimate of the location parameter of the distribution (i.e., the 
mean drift rate, α) to price an option. 

Consider a normal distribution with mean μ and variance σ2. If µ σ , then 
to an error of µ σ< , μ can be ignored. This can be verified from a series 
expansion of the CDF  

( ) ( ) ( )
( )2 2 2

2 41 .
2 6

aaF a F a f a
σ µµ

µ µ
σ σ

 −
 − ≈ − + +
 
            

(7) 

Note that ( )f a  has a factor of 1σ − , that ( )F a  is the cumulative density 
function (CDF), and that ( )f x  is the zero mean pdf with variance σ2:  

( ) ( ) ( )( )2 21d exp 2 d .
2π

a a
F a f x x x xσ

σ−∞ −∞
= = −∫ ∫

          
(8) 

 The standard deviation σ is a measure of the width of the distribution 
whereas the mean μ shifts the curve left or right. For a broad curve, small shifts 
left or right make a small difference. 

In an Ito calculus formalism, risk-neutral pricing is explained as  

( )
( ) ( )

( )
( )

2

2

2

2

d 2 d d

2 d d d

2 d d d

2 d d

t t t t

t t t t

t t t

t t t

t

r t r t
rr t t

r t

α σ σ

σ α σ
ασ σ
σ

σ σ

= − +

= − + − +

− = − + + 
 

′= − +

S S S W

S S S W

S S W

S S W
            

(9) 

where ( ) ( )d dt t t t= + −W W W  is an increment of Brownian motion (or 
Weiner process ( )tW  ([15], p. 79) with { }d 0tE =W , { }2d dtE t=W , and 
{ }d d 0,t sE s t= ≠W W . d t′W  is for a transformed process with non-zero mean 

such that { } ( )d tE rα σ′ = −W . Provided that ( )rα σ−  is negligible, then the 
process that underlies d t′W  is to a good approximation equal to the process 
that underlies d tW  and the values of TC  as calculated under the processes 
that yield d tW  and d t′W  are essentially the same. If ( )rα σ−  is not 
negligible, then the risk premium needs to be known to calculate the value of an 
option ( ){ }T T TC E K += −S  and risk-neutral pricing is not possible. It should 
be noted that d t′W  strictly speaking is not a Brownian motion: { }d 0tE ′ ≠W  
and { } ,d d dt s t sE tδ′ ′ ≠W W . Girsanov’s theorem is discussed in Sec. 3. 

The solution to Equation (9) is not ( )0 expt S rt=S  since { }d 0tE ′ ≠W . The 
solution to Equation (9) is, with 2 2α α σ′ = − ,  

( )( )0 0
exp d

t
t S α σ τ τ′= +∫S w

                  
(10) 

 which follows from the solution, in a Langevin formalism [16] [17], of the 
equivalent stochastic differential equation to Equation (9):  

( ) ( ) ( ) ( )d
d

t
t t t

t
α σ′= +

S
S S w

                  
(11) 
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where ( )t t=S S  and ( )tw  is a zero mean stochastic process that in a limit is 
delta function correlated. In the limit, ( )tw  is a white noise and the Wiener 
process ( ) ( )

0
d

t
t τ τ= ∫W w , ( ) ( ) ( )d d dt t t t t t= + − =W W W w  ([15], p. 79). 

Equation (11) is equivalent to the first line of Equation (9). In the Langevin 
formalism, the equation for the development in time of the average value of 
( )tS , ( )S t , is  

( ) ( ) ( )
2d

d 2
S t

S t S t
t

σ
α α
 

′= + = 
                  

(12) 

with solution  

( ) ( )
2

0 00 0
exp d exp d .

2
t t

S t S t Sσ
α τ α τ

 
′= + = 

 
∫ ∫

           
(13) 

In the event that α is a constant, ( ) ( )0 expS t S tα= . The mean value of tS  
(or ( )tS , ( ) tt =S S ) drifts at the rate α when the time development of tS  (or 
( )tS ) is described by Equation (9) in an Ito formulation or equivalently by 

Equation (11) in a Langevin formulation. 
Note that the 2 2σ  contribution to the drift arises from averaging over an 

ensemble of realizations of the stochastic process ( )tw  (c.f. Equations (2), (10), 
and (13)). Care must be employed in obtaining and in interpreting results within 
the Ito formalism. One could attempt, in the Langevin picture, to hide the risk 
premium rα −  in ( )tw , as was attempted in Equation (9) to justify 
risk-neutral pricing. However, one would experience a similar difficulty. The 
transformed ( )tw  would not be zero mean and would not be delta function 
correlated in the limit, and knowledge of rα −  would still be required to price 
the option unless ( )rα σ−  is negligible. 

Langevin equations are first order differential equations with noise driving 
terms. The Langevin equations should be interpreted as integral equations ([16], 
p. 172; [17], Ch. 10.2; [15], p. 79). Average values found by the Langevin 
approach are identical to solutions found by Ito’s calculus ([17], p. 189). The 
Langevin approach has the advantage that transformations obey the usual rules 
of calculus. Ito’s lemma is not applied for each transformation in the Langevin 
approach ([17], pp. 189, 282).  

3. Girsanov’s Theorem 

Girsanov’s theorem [18] provides for a multiplicative transformation that alters 
the shape of the pdf. This allows the mean of a random variable to be set to an 
arbitrary value, without using an additive correction to the original problem or 
pdf ([19], pp. 36-39). In option pricing, the goal behind the multiplicative 
transformation is an economic one: to find a risk-neutral measure to ensure no 
risk-free arbitrages in pricing ([19], p. 39). The multiplicative transformation must 
decrease probabilities for values greater than the desired mean and increase 
probabilities for values that are less than the desired mean. 

https://doi.org/10.4236/jmf.2018.82022


D. T. Cassidy 
 

 

DOI: 10.4236/jmf.2018.82022 341 Journal of Mathematical Finance 
 

3.1. Probability Measures 

A pdf defines a probability measure P. If the pdf for a random variable x  is 
( )f xx , then  

( ) ( )d .
A

P A f ξ ξ= ∫x x                      
(14) 

If ( )A x  is a small neighbourhood of a specific outcome x, then 
( )( ) ( ) ( )d dP A x P x f x x= =x x x . For ( )G x  a function of the random variable 

x , then the expectation of ( )G x  over x  is  

( ){ } ( ) ( ) ( ) ( )E d d .G G P G fξ ξ ξ ξ ξ= =∫ ∫x x xx
           

(15) 

Two probability measures P and Q are said to be equivalent if, for any set A in 
the probability space, ( ) 0P A >  AND ( ) 0Q A >  ([15], p. 245). This means 
that all events that are possible under the measure P are possible under the 
measure Q, and vice versa. If for some set B, ( ) 0P B =  and ( ) 0Q B > , then 
the event B is impossible in measure P whereas event B is possible in measure Q, 
and the two measures P and Q are not equivalent. The possibilities that 
not-equivalent measures describe are different. 

3.2. Transformed Stochastic Process [19] 

Consider a stochastic process ( )tx  (for a stochastic process, ( )tx  is a 
random variable for each point in time t) that has a drift rate μ and is driven by a 
Wiener process ( )tW , such that, e.g., ( ) ( ) ( ) ( )d d dt t t t tµ σ= +x x x W . Define 
([19], pp. 36-39 and pp. 210-214)  

( ) ( ) ( )21exp .
2

r t rµ µ = − − − − 
 

Z x
               

(16) 

P  and P are equivalent probability measures and are related by ([19], pp. 
36-39 and pp. 210-214)  

dP P= ∫Z

                         
(17) 

where P  is the equivalent risk-neutral measure. d dP P=Z   is called the 
Radon-Nikodým derivative. 

If dP is the unit-normal distribution (i.e., the underlying pdf is normally 
distributed with zero mean and standard deviation of unity, ( )d ~ 0,1P N ) then  

( ) ( ) ( ) ( )2 21 1exp exp 2 d
22πA

P A r x r x xµ µ = − − − − − 
 ∫

      
(18) 

and the equivalent risk-neutral measure for this example, for a small 
neighbourhood ( )A x  near x , is  

( )
( ) ( ) ( )( )( )2

d

1lim d exp 2 d .
2πA x x

P A P x x r xµ
→

= = − − − 

        
(19) 

Clearly Z is selected to give the desired mean to the equivalent measure. In the 
example given here, ( )dP x  is a unit normal distribution with a mean of rµ − . 
A change of variable starts the transformation of the process  
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( ) ( )d dt r tµ σ+ −W  to a zero mean process ( )d tW . 
The transformed process for the example given is  
( ) ( ) ( ) ( )d d dt r t t t tσ= +x x x W    where 2 2r r σ′ = +  could be the risk-free rate 

and ( )d tW  is a Gaussian increment at time t of a Brownian motion. In the 
equivalent measure dP , ( )tx  is a geometric Brownian motion that increases 
on average at the risk-free rate r′ : ( ){ } ( ) ( )E 0 expt x r t′=x  . 

3.3. Analysis 

Gardiner ([15], p. 245) writes “can show that two stochastic differential 
equations can be considered equivalent if their noise terms are the same even if 
their drift terms are different”. See Equations (20) below for examples of 
stochastic differential equations with different drift and noise terms. 

Gardiner ([15], p. 246) writes “the possible sample paths from the two 
equations are identical, but depending on the choice of measure for the underlying 
driving process ( )V t  the relative frequency of the paths is different”. 
Emphasis added. All paths are available in the two measures P and P , but 
different paths and hence end points are emphasized in the two measures. 

Gardiner ([15], p. 246) writes that “the stochastic differential equations 

( ) ( ) ( ) ( )d d dt a t t b t t= +x W  

( ) ( ) ( ) ( )d d dt f t t g t t= +y W                   (20) 

are equivalent if ( ) ( )b t g t= . This result is Girsanov’s theorem.” 
Gardiner ([15], p. 247) shows simulations of a stochastic differential equation. 

The simulations for the same noise but different drifts look qualitatively 
indistinguishable whereas the simulation with different noise looks different 
than the other simulations with same noise but different drifts: “it is quite 
credible that either could be a simulation of the other equation.” Qualitatively 
indistinguishable appears to mean the rms noises about the local trend lines 
appear to be similar. 

This result is not surprising. The solution to Equation (9) or to Equation (11) 
in a Langevin approach is given by Equation (10) and can be recast as  

( ) ( )( )0
0 0

exp d .
exp d

tt
tt

S
σ τ τ

α τ
′= =

′
∫

∫
S w S

             

(21) 

t′S  is a scaled version of tS  and is determined solely by the noise ( )tw , 
( ) ( )d dt t t=w W . Provided that the drift α′  is not too large compared to σ, 

then any tS  with the same σ but different drift should look similar. In this case, 
one is using the higher frequency noise as a fiducial to compare observations of 

tS  for 0 t T≤ ≤  for different ( )tw  and/or α′ . 
Figure 1 presents simulations of tS  for 200 time steps (200 days) for rα =  

and for 8rα = , with 1%r =  per annum. The smooth lines are the expected 
values. All simulations used 0.01σ = . Note the similarity between the 
simulations with different drifts. Note also the difference between the simulations 
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and the expected means for the different drift rates: a simulation with rα =  
(red curves) gives values that are less than the values obtained with 8rα =  
(blue curves). 

Figure 2 presents simulations of tS  for 1000 time steps (1000 days) for 
rα =  and for 8rα = , with 1%r =  per annum. The smooth lines are the 

 

 
Figure 1. Simulations of tS  for 1%rα = =  per annum (red curves) and for 8%α = , 1%r =  (blue curves) with tS  given 

by Equation (10). The smooth curves are the expected values { }t tE S=S , Equation (13). All calculations in this figure used 0.01σ = . 

 

 
Figure 2. Simulations of tS  for 1%rα = =  per annum (red curves) and for 8%α = , 1%r =  (blue curves) with tS  given 

by Equation (10). The smooth curves are the expected values { }t tE S=S , Equation (13). All calculations in this figure used 0.01σ = . 
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expected values. All simulations used 0.01σ = . Figure 1 shows the first 201 
points of Figure 2. The sharp rise in tS  owes to the sequence of random draws. 
A different seed for the pseudo random number generator gives drastically 
different results. 

Figure 2 is included to show the drift possible (observe the trend from 
200t =  to 400t = ) owing to random draws. The noise ( )tw  had a mean of 

0.06 over the interval 1t =  to 1000t = ; 0.026 over 1t =  to 200t = ; 0.30 
from 200t =  to 400t = ; and, −0.007 from 400t =  to 1000t = . 

The simulations for the same noise but different drifts look qualitatively 
indistinguishable, as pointed out by Gardiner ([15], p. 247). 

Gardiner ([15], p. 247) writes:  

“Girsanov’s theorem is now the justification for use of the drift rate r 
instead of μ in the valuation of options using the risk-neutral procedure. 
The noise term is identical for both cases, and in the case we can say that 
the two processes can be seen as arising from the choice of a different 
probability measure to the same set of sample paths. In some sense it can be 
shown that this is a rigorously justifiable procedure [10.11], although not 
everyone would accept that. However, the use of change of measure is now 
an accepted part of the procedure for valuing options and other derivatives 
when one goes beyond the simple geometric Brownian motion picture.” 

Gardiner does not seem to be a true believer, and seems resigned to a deeply 
engrained status quo. 

From [20]:  

“The relation (5) has been called by Cox-Ingersoll-Ross (1981) the “Local 
Expectation Hypothesis”, a terminology which has led to some confusion. 
Note that the equilibrium process has not been changed, it is the same 
under both measures P and P . Girsanov’s Theorem allows us to replace 
the relation (4) through the equivalent simpler relation (5). In particular, no 
assumption has been made about the existence of risk-neutral investors. In 
a real economy neither a “representative” nor a “risk-neutral” investor will 
exist, since both assumptions would prevent the existence of a (stable) 
equilibrium. The great advantage of the representation (5) under the 
(martingale) measure P  is that we do not have to know anything about 
the individual expectations P and the investors’ attitude towards risk. 
In summary: tx  has not been changed. It is the same equilibrium price 
process as under P, but in simpler representation under P . P  is called 
the “equivalent risk-neutral measure” or the “P-equivalent martingale 
measure”. ([20], p. 72)  

It would appear that tx  has been changed. The possible paths are the same, 
but more weight (probability) has been placed on lower yielding paths 
(assuming the risk premium is greater than zero). From [19]:  

“After the change of measure, we are still considering the same set of stock 
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price paths, but we have shifted the probability on them. If rα > , as it 
normally is, then the change of measure puts more probability on the paths 
with lower return so that the overall mean rate of return is reduced from α 
to r.” ([19], p. 217)  
“In finance, the change from the actual to the risk-neutral probability 
measure changes the distribution of asset prices without changing the asset 
prices themselves, ...” ([19], p. 37) 

Altering the distribution changes the problem, unless the alteration is undone 
by an inverse transformation to return to the original frame of reference. 
Essentially, the risk-neutral approach appears to be to multiply one term on one 
side of an equation by Z. This is not a valid mathematical approach. Consider 
x x aα= − +  with solution ( )1x a α= + . Now solve x x Z aα= − + . The 

solutions for x  are not the same unless 1Z = .  
In the development of the risk-neutral measure d t′W  in Equation (9), it is 

considered that d t′W  is a Weiner process (Brownian motion). Strictly speaking, 
Brownian motion is a zero mean process. d t′W  is not a zero mean process. One 
might wish to apply a coordinate transformation such that d t′W  is a zero mean 
Brownian motion in the transformed frame of reference. However, one must 
remember that one is working in a transformed coordinate system, and provide a 
reverse transformation at the end to obtain the answer in the original frame of 
reference. This is similar to the problem of relative motion. 

Consider an airplane that can cruise at v km/hour with respect to the air mass 
in which the airplane is embedded (i.e., the local air) and assume that the local 
air is moving relative to the ground. If one is interested in the location of the 
plane after a given time, one can solve the problem by using a coordinate system 
that is embedded in the moving air. Relative to this coordinate system the plane 
has travelled a distance d vt=  in time t. The choice of coordinate system 
makes the problem look simpler. However, to know the location of the plane 
relative to a reference coordinate system on the ground such as an airport, one 
must know the relationship between the reference coordinate system and the 
moving coordinate system. In a similar manner, to find the value of an asset or 
an option, one must know the risk premium. 

3.4. A Thought Experiment 

Consider pricing a very long lived option, one so long lived that the mean value 
tα  is 4 trt σ> + . With 99.99% certainty (normal statistics are assumed in this 

work), the value of the underlying tS  will be rt> . Does it make sense to use 
risk-neutral pricing and force { } ( )0 exptE S rt=S ? In this case, the 
approximation that ttα σ  does not hold, and it appears that risk-neutral 
pricing would not be a reasonable approach. 

3.5. Apply Girsanov’s Theorem 

Let us examine the justification for risk-neutral pricing, which is presented as 
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Equation (9). As before, define a risk premium, move it to the noise term tW , 
and absorb the risk premium in t′W . 

( )
( ) ( )

( )
( )

2

2

2

2

d 2 d d

2 d d d

2 d d d

2 d d .

t t t t

t t t t

t t t

t t t

t

r t r t
rr t t

r t

α σ σ

σ α σ
ασ σ
σ

σ σ

= − +

= − + − +

− = − + + 
 

′= − +

S S S W

S S S W

S S W

S S W
           

(22) 

Now t′W  is a non-zero mean noise term, except in the special case that 
0rα − = . Multiply the noise term by Z Z , c.f. Equation (16), to obtain  

( )

( )

2

2

d 2 d d

2 d d .

t t t t

t t t

r t

r t

σ
σ

σ
σ

′= − +

′′= − +

S S S Z W
Z

S S W
Z                 

(23) 

Z  is chosen such that the mean value of d t′Z W  is zero, i.e., { }E d 0t′ =Z W . 
One could redefine σ Z  on the right hand side of Equation (23) to obtain  

( )2d 2 d dt t G t tr tσ ′′= − +S S S Wσ ,
               

(24) 

which is a simple-looking equation but it must be remembered that G σ= Zσ  
is no longer a constant. The dependence of Gσ  on 1−Z  undoes the work to 
create a zero mean noise term d t′′W . Alternatively, one could multiply both 
sides of Equation (23) by Z, follow the rules for transformation of stochastic 
differential equations and variables ([17], Sec. 10.2-10.4, p. 275), only to find the 
same result that the work undid the desired result of setting the mean of d t′′W  
to zero. 

If in Equation (9) or in Equation (22) ( )rα σ−  can be ignored, then under 
this approximation risk-neutral pricing would be accurate. 

3.6. A Scaled Approach 

Equation (21) suggests an approach to understand risk-neutral pricing of a 
European call option. Start with the expression for the value of the call option 
and manipulate to remove the drift owing to the risk premium in TS :  

( ) ( ){ }

( )
( )( )
( )( )

( ) ( )( ) ( ){ }

0

0

0

0

exp

exp d
exp {( ) }

exp d

exp exp d

T T

T

T TT

T
T T

C rT E K

r
rT E K

r

rT r E K

α τ

α τ

α τ

+

+

+

= − −

−
= − −

−

′ ′= − − −

∫

∫

∫

S

S

S
          

(25) 

where both TS  and TK  have been scaled by the same factor to remove drift in 

TS  owing to the risk premium. The expectation in the last line might be 
anticipated at first look to be risk neutral. However, '

TK  is a function of the  

risk premium: ( )( )0
exp d

T
T TK K rα τ′ = × − −∫ . In addition, the inverse scaling  
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factor remains in the expression for 0C  as an overall multiplicative factor. The 
risk premium is thus required to price the option. If the risk premium is 
negligible, then the scaling factor is approximately unity and risk-neutral pricing 
of the European call option would be sufficiently accurate. The approach 
presented in this section is silent on the magnitude of the risk premium that is 
negligible—one would need to examine the expectation, as was done in Sec. 2.2, 
to determine the magnitude. The rms fluctuations of the one day returns, σ, is 
the relevant metric. It is the magnitude of the ratio ( )rα σ−  that determines 
what is negligible or not. 

4. Conclusions 

Risk-neutral pricing of European call options is mathematically an approximation. 
Provided that ( )rα σ−  is small, then the drift rate is obscured over short 
time intervals by random fluctuations and one is justified in ignoring the risk 
premium rα −  in the drift rate. It would seem honest to state this as the 
rationale behind risk-neutral pricing, rather than appealing to theorems and 
pretending that risk-neutral pricing is exact. 

Risk-neutral pricing underestimates the price of a European call option when 
rα >  and overestimates the price of a European call option when rα < . 

It is interesting to note that risk-neutral pricing of European call options 
ignores rα −  but takes great care to include 2 2σ  in the average drift rate. If 
the risk premium can be ignored, then likely 2 2σ  can also be ignored. For the 
S & P 500, on average 2 52 5 10σ −≈ ×  whereas the risk premium 41 10rα −− ≈ × . 
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