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Abstract 
Based on tetradentate metalloligand LCu ([Cu(2,4-pydca)2], 2,4-pydca = pyri-
dine-2,4-dicarboxylate) and lanthanides (Sm3+, Dy3+), two 
3d-4fheterometalliccoordination polymers, namely, 
{[Sm2(DMSO)4(CH3OH)2][LCu]3·7DMSO·2CH3OH}n 1 and 
{[Dy2(DMSO)3(CH3OH)][LCu3(DMSO)]·4DMSO·CH3OH}n 2 (DMSO = di-
methyl sulfoxide), have been synthesized and well characterized by elemental 
analysis, Fourier-transform infrared spectroscopy, thermogravimetric and 
single-crystal X-ray diffraction analysis. Single-crystal X-ray analysis reveals 
that both 1 and 2 crystallize in the triclinic crystal system with P-1 space 
group and possess the 3D framework structures, which are constructed from 
metalloligands LCu connecting with {Sm2} and {Dy2} clusters, respectively. The 
3D structure of 1 has a 6-connected single-nodal topology with the point 
symbol {49 × 66}, while 2 features a different framework with the point symbol 
of {412 × 63}. Thermogravimetric analysis exhibits that the skeleton of both 1 
and 2 collapse after 350˚C. Magnetic properties of 1 and 2 have also been in-
vestigated. 
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1. Introduction 

Nowadays, a great deal of attention has been dedicated to the wide family of 
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coordination compounds due to their unique molecular structures and potential 
applications in the field of luminescence, magnetism, catalysis and biochemistry 
[1] [2] [3] [4]. Current interest in these materials mainly focuses on the coordi-
nation polymers (CPs) associated with mixed-metal ions [5]. Among various 
approaches to the construction of heterometallic CPs, the most efficient one is to 
employ metalloligands that can connect with other metal centers, such as transi-
tion metal [6] [7] [8] and lanthanide ions [9]-[16]. For example, molecular 
building units [M(CN)8]3−/4− (M = W, Mo, Nb) and [MS4]2− (M = W, Mo) have 
been successfully applied in the fabrication of heterometallic CPs as metalloli-
gands [17] [18] [19] [20]. Recently, an O-containing metalloligand 
[Cu(2,4-pydca)2] (LCu, see Scheme 1) based on pyridine-2,4-dicarboxylate 
(2,4-pydca) has been developed [21]. Several heterobimetallic coordination 
compounds have been reported from the reaction between metalloligand LCu and 
transition metal (MnII, CoII, NiII) [22] [23] [24] [25] [26], alkaline-earth ions 
[27]. 

On the other hand, the molecular structures and properties of CPs are also 
highly influenced by several critical factors during the synthetic process, such as 
pH values, metal-ligand ratio, solvent polarity, auxiliary ligands and synthetic 
strategy. For example, although several 3d-4f heterobimetallic CPs containing 
LCu structure have been reported [28]-[33], in which the LCu come from the reac-
tions between cupric oxide/cupric nitrate and pyridine-2,4-dicarboxylic acid via 
the hydro-thermal reaction. However, the direct application of metalloligand LCu 
in the construction of 3d-4f heterometallic CPs has not been reported yet. In ad-
dition, the coexistence of 3d transition metal and 4f lanthanide ions in one mo-
lecule may lead to various structures and physical properties due to the rich 
coordination environments of lanthanide and transition metal ions, which will 
finally affect the spatial configurations and magnetic couplings [34] [35] [36]. 
Meanwhile, benefited from the large spin values, spin-ion anisotropy and large 
spin-orbit couplings of lanthanide ions, 3d-4f heterometallic CPs may exhibit 
fascinating and complicated magnetic behaviors [37] [38] [39]. Therefore, me-
talloligand LCu and lanthanide centers (Sm3+ and Dy3+) will be introduced for the 
construction of 3d-4f coordination polymers with magnetic properties through  
 

 
Scheme 1. Structure of LCu. Hydrogen atoms are omitted for clarity. 
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the inter-diffusion method. 
In this work, we have successfully synthesized two new 3d-4f heterometallic 

CPs from the metalloligand LCu, i.e.,  
{[Sm2(DMSO)4(CH3OH)2][LCu]3·7DMSO·2CH3OH}n 1 and  
{[Dy2(DMSO)3(CH3OH)][LCu3(DMSO)]·4DMSO·CH3OH}n 2. X-ray crystallo-
graphic studies reveals that both CPs 1 and 2 exhibit the 3D framework struc-
tures, which are constructed from metalloligands LCu connecting with {Sm2} and 
{Dy2} clusters. 1 and 2 possess the different 6-connected single-nodal topology 
with point symbol {49 × 66} and {412 × 63}, respectively. According to the 
molecular formula of CP-2, which has been determined definitively from the 
crystal structure, one of the metalloligand LCu was changed into LCu (DMSO) 
during the reaction process.Further, the TGA behaviors of two CPs have been 
measured in the temperature range of 25˚C - 800˚C, while the magnetic proper-
ties of 1 and 2 have also been investigated. 

2. Experimental Section 
2.1. Materials and Physical Measurements 

All the chemicals and solvents were reagent grade and purchased from commer-
cial sources and used without further purification. Pyridine-2,4-dicarboxylate 
acid and metalloligand LCu were synthesized according to procedures already 
reported outlined in the literature [21]. Element analyses for C, H and N were 
performed with a PerkineElmer 240C elemental analyzer. Infrared spectra were 
obtained from a sample powder pelletized with KBr disks on a Nicolet Nexus 
470 spectrometer (Germany) over a range of 400 - 4000 cm−1. Thermogravime-
tric analysis (TGA) measurements were carried out in the temperature range of 
25˚C - 800˚C on a PerkineElmer Pyis 1 system in a nitrogenpurge with a heating 
rate of 10˚C/min. The temperature dependence of molar magnetic susceptibility 
was measured under an applied field of 1000 G in the form of χmT versus T in 
the range of 1.8 - 300 K by Quantum Design MPMS XL-5. The influence of sam-
ple holder background was subtracted by the automatic subtraction feature of 
the software. 

2.2. Preparation of  
{[Sm2(DMSO)4(CH3OH)2][LCu]3·7DMSO·2CH3OH}n (1) 

The methanol solution of Sm(NO3)3·6H2O (44 mg, 0.1 mmol) was slowly dif-
fused into a dimethyl sulfoxide solution (DMSO) of LCu (62 mg, 0.1 mmol) 
through 1 mL DMSO blank solvent as the buffer solution. After several days, the 
obtained blue crystals were collected by filtration, washed with methanol. Yield: 
50 mg, 60.6% (based on Cu). Anal. Calcd for C68H88Cu3N6O42S11Sm2(2453.57): C, 
33.29; H, 4.11; N, 3.41. Practical found: C, 33.32; H, 4.12; N, 3.40. IR (KBr, cm−1): 
3419(s), 2980(m), 2924(m), 2354(m), 1660(s), 1617(s), 1555(s), 1476(m), 
1390(s), 1341(s), 1261(m), 1181(w), 1083(w), 1009(s), 942(m), 899(w), 825(w), 
783(m), 739(m), 684(s), 530(w), 463(w). 
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2.3. Preparation of  
{[Dy2(DMSO)3(CH3OH)][LCu3(DMSO)]·4DMSO·CH3OH}n (2) 

CP-2 was obtained as light blue block crystals with the same synthetic method as 
that of 1 except that Sm(NO3)3·6H2O was replaced by Dy(NO3)3·6H2O (46 
mg, 0.1 mmol). Yield: 6 mg, 18% (base on Cu). Anal. Calcd for 
C60H60Cu3N6O36S8Dy2(2195.38): C, 32.83; H, 3.37; N, 3.83. Found: C, 32.56; H, 
3.36; N, 3.88. IR (KBr, cm−1): 3434(s), 2992(w), 2912(w), 2372(s), 1654(s), 
1611(s), 1537(m), 1476(w), 1402(s), 1329(s), 1248(w), 1089(w), 1022(m), 954(w), 
832(w), 783(w), 733(m), 684(m), 524(w). 

2.4. Single-Crystal Structure Determination 

Sizeable and high-quality single crystals of two compounds were selected care-
fully from little glass tubes, and mounted on a glass fiber with epoxy resin cov-
ered. All measurements were obtained by a Rigaku Saturn 724+ CCD imaging 
plate diffractometer with graphite-monochromated Mo-Ka radiation (λ = 
0.71073 Å) at room temperature. The two crystals structures were solved by di-
rect methods, while the non-hydrogen atoms were subjected to anisotropic re-
finement on F2 through full-matrix least-squares with SHELX-97 package [40] 
[41] [42]. All the non-hydrogen atoms were determined with anisotropic ther-
mal displacement coefficients. Hydrogen atoms were treated isotropically ac-
cording to a riding model, beyond that the hydrogen atoms were located in idea-
lized positions. The contribution of missing solvent molecules (DMSO, CH3OH) 
to the diffraction pattern was subtracted from the reflection data by the 
“SQUEEZE” method as implemented in PLATON [43]. Details of the crystal 
parameters, data collection and refinement of CPs 1 and 2 are listed in Table 1, 
while the selected bond lengths are listed in Table 2. 

3. Results and Discussion 
3.1. Synthetic Method 

CPs 1 and 2 were crystallized from the reactions between metalloligand 
[Cu(2,4-pydca)2] and Sm(NO3)3·6H2O/Dy(NO3)3·6H2O, respectively. According 
to the literature, the reported pydca-based 3d-4f structures were obtained from 
rare earth hydrates, copper oxide/copper acetate hydrate and pyri-
dine-2,4-dicarboxylic acid through the hydro-thermal synthetic approach 
[28]-[33]. Compared to the hydro-thermal syntheses of above pydca-based 3d-4f 
structures, the inter-diffusion method was applied as a mild way for the crystal-
lization of 1 and 2. In this work, our synthetic strategy uses DMSO as the buffer 
solution, which can slow the interactions between LCu and lanthanide ions. As a 
result, well shaped crystals of 1 and 2 can be obtained from the cushion breaker. 
It is obviously that the use of blank solvent as buffer solution provides a stable 
condition for the reaction between two different reactive components [21]. 
Compared with the conventional hydro-thermal/solvent-thermal synthetic  
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Table 1. Crystal data for 1 and 2. 

Compound 1 2 

Empirical formula C68H88Cu3N6O42S11Sm2 C60H60Cu3N6O36S8Dy2 

Formula weight 2453.57 2195.38 

Crystal system Triclinic Triclinic 

Space group P-1 P-1 

a/Å 11.9943(5) 17.005(3) 

b/Å 13.3535(5) 17.539(3) 

c/Å 15.4288(6) 21.668(4) 

α/˚ 110.795(2) 92.01(3) 

β/˚ 101.239(2) 104.49(3) 

γ/˚ 94.795(2) 107.16(3) 

Volume/Å3 2234.21(15) 5936.8(18) 

Z 1 2 

Absorption coefficient 2.157 1.913 

F(000) 911 1914 

Rint 0.0328 0.0434 

Completeness 99.4% 96.5% 

GooF 1.055 1.054 

R(I > 2σ(I)) 
R1 = 0.0584 R1 = 0.0494 

wR2 = 0.1555 wR2 = 0.1327 

R(all data) 
R1 = 0.0642 R1 = 0.0558 

wR2 = 0.1600 wR2 = 0.1369 

Largest diff peak and hole 3.612, −3.757 1.697, −1.770 

 
approach, the inter-diffusion method here plays an important role in the crystal-
lization process of CPs 1 and 2. 

3.2. Crystal Structure of 1 

The result of single crystal X-ray structural analysis reveals that CP-1 crystallizes 
in the triclinic crystal system with P-1 space group and exhibits a 3D framework 
structure. The asymmetric unit consists of one [Sm(DMSO)2(CH3OH)]3+ cation, 
one and half [LCu]2− ions. 

The coordination mode of Sm atom and the connecting modes of LCu metallo-
ligands in CP-1 are shown in Figure 1. As in Figure 1(a), each Sm atom is 
coordinated by eight O atoms from five LCu metalloligands, two DMSO mole-
cules and one CH3OH molecule forming a square antiprism spatial configuration 
and exhibiting D4d symmetry. In accordance with Figures 1(b)-(d), CP-1 have 
three different LCu metalloligands: both LCu1 and LCu5 units connect with four Sm 
atoms through the carboxylic oxygen atoms showing a four-connecting mode, 
while the LCu4 unit connect with two Sm atoms exhibiting a single-bridged mode. 
Attributable to the bidentate coordination mode of carboxylic acid in LCu1 and  
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Table 2. Selected bond lengths (Å) for 1 and 2. 

1 

Sm(1)-O(11) 2.315(4) Cu(1)-N(3)#1 1.959(5) 

Sm(1)-O(5) 2.349(4) Cu(1)-N(3) 1.959(5) 

Sm(1)-O(6) 2.361(4) Cu(4)-O(14) 1.935(5) 

Sm(1)-O(8) 2.372(5) Cu(4)-O(14)#2 1.935(5) 

Sm(1)-O(4) 2.397(4) Cu(4)-N(2)#2 1.945(6) 

Sm(1)-O(3) 2.435(4) Cu(4)-N(2) 1.945(6) 

Sm(1)-O(9) 2.445(5) Cu(5)-O(2)#3 1.925(5) 

Cu(1)-O(13) 1.940(6) Cu(5)-N(1)#3 1.953(5) 

Cu(1)-O(13)#1 1.940(6) C(7)-O(6)#4 1.244(7) 

O(6)-C(7)#4 1.244(7) Sm(1)…Sm(1)#2 4.491(1) 

2 

Dy(1)-O(21)#1 2.260(3) Cu(1)-N(6) 1.962(4) 

Dy(1)-O(27) 2.334(3) Cu(1)-N(5) 1.963(4) 

Dy(1)-O(11) 2.452(3) Cu(2)-O(6)#2 1.950(5) 

Dy(1)-O(12) 2.460(3) Cu(2)-N(2)#2 1.960(5) 

Dy(2)-O(53) 2.281(5) Cu(2)-O(51) 2.238(9) 

Dy(2)-O(16) 2.285(3) Cu(3)-N(3)#3 1.956(5) 

Dy(2)-O(14) 2.326(3) Cu(3)-O(4)#3 1.965(4) 

Dy(2)-O(7) 2.360(3) O(4)-Cu(3)#4 1.965(4) 

Dy(2)-O(22)#1 2.365(3) O(21)-Dy(1)#6 2.260(3) 

O(6)-Cu(2)#5 1.950(5) Dy(1)…Dy(2) 5.020(1) 

Symmetry transformations used to generate equivalent atoms for 1: #1 −x, −y, −z − 1; #2 −x + 2, −y + 1, −z 
+ 1; #3 −x + 2, −y + 1, −z; #4 −x + 1, −y, −z; for 2: #1 x − 1, y, z; #2 x, y − 1,z; #3 x, y, z − 1; #4 x, y, z + 1; #5 
x, y + 1, z; #6 x + 1, y, z. 

 
LCu5 units, a {Sm2} cluster is constituted by four μ2-bridged carboxyl groups 
(Figure 2(a)). These {Sm2} clusters can be linked by four LCu metalloligands to 
build a quadrangular ring (Figure 2(b)). Extension of such rings through 
six-connected {Sm2} clusters leads to the whole 2D layer structure (Figure 2(c)) 
showing a classic sql network (Figure 2(d)). These 2D layers are further ex-
tended to the 3D framework (Figure 2(e)) via the LCu4 metalloligands (Figure 
2(f)), which can be regarded as the pillars of the 3D structure. The packing dia-
gram showing the 3D extending structure of CP-1 from a axis is displayed in 
Figure 3. As in Figure 3, CP-1 exhibits a porous structure with various channels 
traversing the framework. Due to the small steric hindrance of DMSO molecules 
and long lengths of LCu units, 3D framework of 1 possesses big cavities in these 
channels. The solvent accessible volume of CP-1 calculated by PLATON is 855.1 
Å3 (38.3%), which is large enough for hosting the solvent molecules (seven 
DMSO and two CH3OH). The network analysis based on TOPOS program re-
veals that CP-1 can be simplified to a (6,6)-connected network with {49 × 66} to-
pology, which is depicted in Figure 4. As in Figure 4, the {Sm2} clusters act as  
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Figure 1. (a) Coordination mode of Sm atom; (b) 
Connecting mode of LCu unit (Cu1) in CP-1; (c) 
Connecting mode of LCu unit (Cu4) in CP-1; (d) 
Connecting mode of LCu unit (Cu5) in CP-1. Hy-
drogen atoms and coordinated O atom are omitted 
for clarity. 

 

 
Figure 2. (a) {Sm2} cluster; (b) Quadrangular ring from four {Sm2} clusters and four LCu 
units; (c) 2D network structure in CP-1; (d) sqltopologystructure; (e) 3D framework of 
CP-1; (f) LCu unitin CP-1 (Cu4). Hdrogen atoms are omitted for clarity. 
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Figure 3. Packing structure of CP-1 (a axis). Hydrogen atoms and DMSO molecules are 
omitted for clarity. 
 

 
Figure 4. Topological structure of CP-1. 

 
the vertexes of the geometry, while the sides are formed by LCu metalloligands. 

The selected bond lengths of CPs 1 and 2 are listed in Table 2. As shown in 
Table 2, the lengths of Cu-N bond range from 1.981(3) to 1.984(3) Å, while the 
value of Cu-O fall into the range of 1.971(3)-2.238(4) Å. Among the Cu-O bond, 
the lengths between Cu atoms and O atoms from water molecules are larger than 
the distances between Cu atoms and O atoms from carboxylates. Bond lengths of 
Sm-O vary from 2.316(4) to 2.531(8) Å. In the {Sm2} cluster, the shortest dis-
tance between two Sm atoms is 4.491(1) Å. 

3.3. Crystal Structure of 2 

The X-ray crystallography study identifies that CP-2 also crystallizes in the tric-
linic crystal system with P-1 space group and consists of the porous 3D frame-
work structure. The asymmetric unit of CP-2 contains one [Dy(DMSO)2]3+ cation, 
one [Dy(DMSO)(CH3OH)]3+ cation, two [LCu]2− ions and one [LCu(DMSO)]2− 
ion. Interestingly, one of the terminal coordinated O atom from LCu has been re-
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placed by a DMSO molecule during the synthetic process of CP-2. 
In accordance with Figure 5(a), Dy atoms in CP-2 have two different coordi-

nation environments: Dy1 is coordinated by eight O atoms from four LCu metal-
loligands, one LCu (DMSO) metalloligand and two DMSO molecules, while Dy2 
is coordinated by eight O atoms from four LCu metalloligands, one LCu (DMSO) 
metalloligand, one DMSO molecule and one CH3OH molecule. According to the 
concrete crystal structure, there are three kinds of LCu metalloligands in CP-2. As 
shown in Figure 5(b) and Figure 5(c), both LCu1 (DMSO) and LCu2 units in a 
four-connected mode are linked with two Dy1 and two Dy2 atoms through the 
carboxylic oxygen atoms. The LCu3 unit in CP-2 connects with one Dy1 and one  
 

 
Figure 5. (a) Coordination modes of Dy1 and Dy2 atoms; (b) Connect-
ing mode of LCu unit (Cu1) in CP-2; (c) Connecting mode of LCu unit 
(Cu2) in CP-2; (d) Connecting mode of LCu unit (Cu3) in CP-2. Hydro-
gen atoms are omitted for clarity. 
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Dy2 atom via four carboxylic oxygen atoms with the chelate mode (Figure 
5(d)). Similarly to CP-1, Dy1 and Dy2 atom in CP-2 can be built to a {Dy2} clus-
ter with the help of LCu1 (DMSO) and LCu2 units (Figure 6(a)). The connection of 
such {Dy2} clusters and LCu metalloligands (Cu2 and Cu3) through the carboxyl 
groups also forms a quadrangular configuration (Figure 6(b)). As depicted in 
Figure 6(c), these quadrangular configurations link with each other to construct 
the 2D network structure with (4,4) topology. With the assist of LCu1 (DMSO) 
(Figure 6(d)), these 2D networks can also be extended to a 3D framework 
structure (Figure 6(e)). The overall structure of CP-2 can be viewed as a 
grid-like frame with square channels traversing the framework (Figure 7). The 
solvent accessible volume of CP-2 is 2945.2 Å3 (49.6%), which is large enough 
for hosting the solvent molecules (four DMSO and one CH3OH). The regular 
6-connected mode of {Dy2} cluster lead to a {412 × 63} topological network 
(Figure 8). The topology structural difference between CP-1 and CP-2 is mainly 
due to the distinct connection modes of LCu metalloligands in CPs 1 and 2. 

The averagelength (1.971(4) Å) of Cu−N bond in CP-2 is little larger than the 
value that in CP-1 (1.952(5) Å). As for the Cu-O bond in CP-2, the bond lengths 
range from 1.933(4) Å to 2.388(5) Å. The distance (2.388(5) Å) between Cu  
 

 
Figure 6. (a) {Dy2} cluster; (b) Grid-likering from four {Dy2} clusters and four LCu units; 
(c) 2D network structure in CP-2; (d) LCu unit in CP-2 (Cu1); (e) 3D framework of CP-2. 
Hydrogen atoms are omitted for clarity. 
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Figure 7. Packing structure of CP-2 (c axis). Hydrogen atoms and DMSO molecules are 
omitted for clarity. 
 

 
Figure 8. Topological structure of CP-2. 
 
atom and O atom from DMSO molecule is little larger than the value between 
Cu atoms and O atoms from water molecules (2.238(9) Å for Cu2, 2.306(8) Å for 
Cu3). Bond lengths of Dy-O range from 2.260(3) Å to 2.808(5) Å. The shortest 
distance of Dy···Dy in {Dy2} cluster is 5.020(1) Å in the CP-2. 

3.4. Thermogravimetric Analysis 

Thermal properties of CPs 1 and 2 were examined by thermogravimetric analy-
sis (TGA) from 25˚C to 800˚C in a nitrogen atmosphere with a heating rate of 
10˚C/min. Thethermogravimetric curve of CPs 1 and 2 are shown in Figure 9. 
As shown in the Figure 9, the first weight loss of CP 1 (5.21%) occurs from 50˚C 
to 118˚C, corresponding to the loss of four methanol molecules (calcd: 5.22%). 
Further weight loss (19.05%) appears from 142˚C to 236˚C, corresponding to the 
loss of six free DMSO molecules (calcd: 19.10%). In the temperature range of 
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273˚C - 341˚C, four coordinated and one free DMSO molecules (15.84%) lose 
with the rise of temperature (calcd: 15.92%). After 350˚C, the organic groups of 
CP-1 start to lose and the skeleton structure starts to crumble. As for CP-2, the 
first weight loss of 2.86% (calcd: 2.92%) is observed from 50˚C to 110˚C for two 
MeOH molecules, which is similar to that of CP-1. The following weight loss 
(14.07%) occurs from 158˚C to 229˚C, which is corresponding to four solvent 
DMSO molecules (calcd: 14.23%). The third stage of weight loss (14.96%) starts 
at 280˚C, after that, four coordinated DMSO molecules escape until 342˚C 
(calcd: 14.23%). With the increase in temperature, the 3D framework of CP-2 
begins to collapse. 

3.5. Magnetic Properties 

The temperature dependence of magnetic susceptibility is recorded for crystal-
line samples of CPs 1 and 2 at an applied magnetic field of 1000 Oe in the tem-
perature range of 1.8 - 300 K. The measurement results are shown in Figure 10 
and Figure 11, respectively, in which χm is the molar magnetic susceptibility. As 
in Figure 10, The χmT values of CP-1 at room temperature is 1.62 cm3 K mol−1, 
which is a little smaller than the theoretical value (1.69 cm3 K mol−1) for a two 
isolated Sm3+ ions (S = 5/2, g = 2/7) and three Cu2+ ions (S = 1/2, g = 2) without 
magnetic interaction. Upon decreasing the temperature, the χmT product drops 
slowly to a minimum of 0.47 cm3 K mol−1 at 1.8 K. This decrease in χmT may 
originate in the antiferromagnetic interaction between metal centers. The mag-
netic data in the range of 50 - 300 K followed the Curiee-Weiss fitting with a Cu-
rie constant of C = 1.8 cm3 K mol−1 and negative Weiss constant of θ = −57.7 K. 
As shown in Figure 11, the room temperature χmT value of CP-2 is 29.36 cm3 K 
mol−1, which is a little smaller than the theoretical value of 29.48 cm3 K mol−1 for 
three Cu2+ ion (S = 1/2, g = 2) and two Dy3+ ions (S = 5/2, g = 4/3) due to the 
thermally populated excited states of Dy3+ [44]. Upon sample cooling, the χmT  
 

 
Figure 9. TGA curves of CPs 1 and 2. 
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Figure 10. Plots of the temperature dependence of χmT and χm (insert) for CP-1. 
 

 
Figure 11. Plots of the temperature dependence of χmT and χm (insert) for CP-2. 
 
value decreases continuously to a minimum value of 17.55 cm3 K mol−1 at 7 K. 
After that, the χmT value increases sharply to18.49 cm3 K mol−1at 1.8 K. The 
transformation trend of χmT curve below 7 K suggests the presence of weak 
intramolecular ferromagnetic correlation. And this magnetic difference is due to 
the different electron spin of the two center metals. The data in the range 100 - 
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300 K were fitted to the Curie-Weiss law, yielding C = 29.50 cm3 K mol−1 and θ = 
−16.59 K, which indicates the weak ferromagnetic interactions between the 
spincenters at 100 - 300 K. 

4. Conclusion 

In summary, two interesting 3D heterobimetallic coordination polymers, 
{[Sm2(DMSO)4(CH3OH)2][LCu]3·7DMSO·2CH3OH}n 1 and  
{[Dy2(DMSO)3-(CH3OH)][LCu3(DMSO)]·4DMSO·CH3OH}n 2, have been pre-
pared from the reaction between metalloligand LCu and lanthanoid ions (Sm3+, 
Dy3+). Both CPs 1 and 2 possess the 3D consecutive framework structures, which 
are constructed from LCu metalloligands connecting with six-connected {Sm2} 
and {Dy2} clusters, respectively. Thermal analysis indicates that the skeleton 
structures of CPs 1 and 2 begin to collapse after 350˚C. Magnetic measurements 
reveal that CPs 1 and 2 exhibit anti-ferromagnetic properties due to the contri-
bution of 3d-4f couplings. Further work to explore new metalloligand-based 
3d-4f heterobimetallic CPs with interesting magnetic and optical properties are 
currently in progress. 
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