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Abstract 
Casino games can be classified in two main categories, i.e. skill games and 
gambling. Notably, the former refers to games whose outcome is affected 
by the strategies of players, the latter to those games whose outcome is 
completely random. For instance, lotteries are easily recognized as pure 
gambling, while some variants of Poker (e.g. Texas Hold’em) are usually 
considered as skill games. In both cases, the theory of probability constitutes 
the mathematical framework for studying their dynamics, despite their clas-
sification. Here, it is worth to consider that when games entail the competi-
tion between many players, the structure of interactions can acquire a rele-
vant role. For instance, some games as Bingo are not characterized by this 
kind of interactions, while other games as Poker, show a network structure, 
i.e. players interact each other and have the opportunity to share or ex-
change information. In this paper, we analyze the dynamics of a population 
composed of two species, i.e. strong and weak agents. The former represents 
expert players, while the latter beginners, i.e. non-expert ones. Here, 
pair-wise interactions are based on a very simple game, whose outcome is 
affected by the nature of the involved agents. In doing so, expert agents have 
a higher probability to succeed when playing with weak agents, while the 
success probability is equal when two agents of the same kind face each oth-
er. Numerical simulations are performed considering a population arranged 
in different topologies like regular graphs and in scale-free networks. This 
choice allows to model dynamics that we might observe on online game 
platforms. Further aspects as the adaptability of agents are taken into ac-
count, e.g. the possibility to improve (i.e. to becomean expert). Results show 
that complex topologies represent a strong opportunity for experts and a risk 
for both kinds of agents. 
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1. Introduction 

In last years, online casino’s games exponentially grew. In particular, users from 
different countries now have the possibility to play and to bet money online in a 
very simple way, by registering in one of the many casino platforms. Beyond 
that, some of these games can be classified as pure gambling (e.g. slot machines), 
in particular when the outcome only depends on luck. While, other games as 
Poker, BlackJack, and so on, can be classified as “skill games” since “rational 
strategies” might influence the success probability of players [1] [2].  

Considering the case of Poker, some players show their skills facing, at the 
same time, a wide number of opponents, i.e. an amount much bigger than that 
they could face when seating in real “physical” tables. 

This mechanism, often defined in the jargon “multitabling”, can be adopted also 
for other games. The underlying motivation is that, if one is strong enough in ap-
plying a “rationality-based” method for moving, i.e. for choosing a strategy, then 
can “almost” safely bet a lot of money playing skill games. As before stated, in 
principle this is absolutely true, and might apply to bots [3] [4]. However, in the 
case of humans, a number of external factors can affect their performance. 

In general, previous investigations on Poker [5] [6] [7] reported that, at least 
in tournaments, this game can be considered as a skill game. In addition, it has 
been proved in real cases by very recent investigations [8] [9]. So, these findings 
corroborate the idea that expert players might play in different tables. At the 
same time, the increasing of availability of these services is making people more 
expert, so when two players with the same skills face each other, the outcome 
might become similar to that one observes in coin-ips (i.e. 50%). 

Starting from these considerations, in this work we focus on the dynamics of a 
simple game, comparing the outcomes between regular lattices and scale-free 
networks [10] [11]. In doing so, we can evaluate “if” and “how” a heterogeneous 
topology might affect the whole dynamics of the proposed model, and also to 
study the potential difference between the gains one achieves in the two struc-
tures (i.e. regular and heterogeneous). Moreover, in order to consider a simple 
“learning process”, we analyze a small variant of the model, allowing transitions 
from “non-expert” to “expert”. 

It is worth to highlight that the followed approach, for modeling these scena-
rios, results in a model that is strongly different from those we find in evolutio-
nary game theory [12] [13] [14]. 

Notably, even if we consider “learning processes”, here agents have no di-
lemma to solve, and there are no imitation processes to modify a strategy, as we 
might observe in games like the Public Goods Game [15] [16]. 

The remainder of the paper is organized as follows. Section II introduces the 
proposed model. Section III shows results of numerical simulations. Eventually, 
Section IV concludes the paper. 

2. Model 

Before to introduce our model, let us briefly summarize the agent-based ap-
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proach we used. As reported in [17], and as extended in specific investigations 
(e.g. biology [18] [19], finance [20], language dynamics [21], ecology [22] and 
optimization), our model considers a population of agents provided with a cha-
racter and interacting over a network. Our agents have not memory and, ac-
cording to their character, follow behavioral rules. It is worth to highlight the 
absence of external influences e.g. from environment. However, we consider 
an adaptive system, i.e. agents might change their character according to some 
mechanism. Eventually, numerical simulations allow studying the dynamics of 
the model. After this brief introduction, now we can present the proposed 
model with more details. In particular, our investigation aims to represent a 
simple scenario, i.e. the dynamics of a population with interactions based on a 
simple game, whose outcome is stochastic and depends on the agent’s strategy. 
Notably, agents can be “weak” (W) or “strong” (S), so that our population is di-
vided in two species (i.e. W and S). Accordingly, the success probability defined 
in the pair-wise interactions reads S W Equation (1) 

0.5 1
1 0.5

K
K

S
W
 
 


−

−
                      (1) 

with K in the range [0; 1], representing the probability that S agents prevail on 
W agents. 

At the same time, when two agents of the same kind (i.e. using the same 
strategy) play each other, the outcome of the challenge is a coin-ip, i.e. both 
agents have equal probability to succeed. Previous investigations on Poker [5] 
reported a value of K ~0:8 for representing challenges between “rational” and 
“irrational” agents. In this case, a strong strategy S only refers to the skills agents 
gain with experience, while a W strategy to the lack of experience, i.e. to 
non-expert agents. At each interaction, one agent wins a pot of value ±1, i.e. +1 
when successful and −1 when loses. So, we are interested in analyzing the gain of 
agents, belonging to the two species, over time, considering the density of S 
agents (ρS) as a degree of freedom. Notably, tuning _S we can study “if” and 
“how much” strong agents can win when arranged in two different topologies: 
regular lattices and scale-free networks. It is worth to highlight that comparing 
results achieved in these two configurations allows evaluating the difference be-
tween agents playing o_-line, i.e. with a limited amount of interactions, with 
those playing online. Remarkably, as previously mentioned, online platforms al-
low users to play at the same time with many opponents. In doing so, strong 
agents might, in principle, gain a lot of money, in little time. The algorithm to 
implement the dynamics of our model is very simple, and composed of the fol-
lowing steps: 
1) Define a population with N agents, with a fraction ρS of strong players; 
2) At each time step, randomly select one agent and let it play with all its neigh-

bors; 
3) Repeat from 2) until a number of time steps elapsed. 
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The step 2) of the algorithm entails that both the selected agent and its neigh-
bors accumulate their payoff, i.e. again after all the interactions (with proba-
bility defined in Equation (1). Here, it is worth point out that our agents are 
“memory-aware”, i.e. they accumulate also their payoff over time. In order to 
understand the dynamics of the population, there are two important parame-
ters to analyze: the “volatility” _ and the final average payoff of each kind of 
agents. The concept of volatility is well known in financial markets. Notably, 
traders aim to forecast the trend of a particular financial asset trying to identi-
fying those with a high volatility, along a period of reference (e.g. one hour, 
one day, one month, and soon). Here, the volatility is defined as shown in Eq-
uation (2).  

( ) ( )MAX minG Gν = −                    (2) 

with G gain (or payoff) achieved by the agents belonging to one species over 
time. Therefore, we have volatility for S agents and one for W agents. In addi-
tion, since the model now described is non-adaptive, i.e. agent never change 
their strategy/nature, we study a small variation to consider a learning process. 
In particular, we study a population that, at the beginning, is composed only of 
W agents. Then, the selected agent, after playing with its neighbors, might im-
prove its skills becoming a S agent. Thus, we implement a simple learning 
process based on a parameter _ that represents the transition probability from 
the two strategies, i.e. from W —› S. As result, the amount of S agents can be 
analytically described as in Equation (3). 

dy W
dx

η= ⋅                          (3) 

Therefore, after a while and depending on the learning rate η, all the popula-
tion gets com-posed only of S agents. Despite the theoretical assumptions, what 
that can be interesting in this simple dynamics is related to the fact that might al-
low representing a common scenario, i.e. usually, after a while, people non-expert 
people improve their skills in a specific game. Like for the non-adaptive case, the 
model is studied both on regular lattices and on scale-free networks. 

3. Results 

Numerical simulations have been performed on a population composed of N = 
2500 agents, arranged in two different configurations: on regular lattice with 
continuous boundary conditions, and on scale-free networks. The former ac-
tually corresponds to a toroid, so that all agents have the same degree, i.e. the 
same number of neighbors, whereas the latter is intrinsically heterogeneous, i.e. 
a number of agents have a low degree and only few have a high degree (defined 
hubs). In addition, the scale-free structure is implemented by using the BA mod-
el [10]. Now we present the results achieved in both configuration, separating the 
non-adaptive case from the adaptive one. We remind that the non-adaptive case 
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entails the number of S agents does not vary over time, while in the adaptive case 
agents improve their skills according to a learning rate η = 0.005. Moreover, we 
set the value of K = 0.6, i.e. the probability a S agent prevails on a W agent. Fi-
nally, each simulation lasts 107 time steps, and we remind that at each time step 
more than one interaction occurs. 

3.1. Non-Adaptive Case 

The first analysis is devoted to studying the agents’ gain over time, considering 
that at each time t only a fraction of the population is involved in the game, i.e. a 
randomly selected agent and its neighbors. We start considering the regular lat-
tice. Figure 1 reports the average agents’ gain G in three different cases: ρS = 0.1,  
 

 
Figure 1. Agents gain over time in regular lattices. (a) Strong agents, with ρS = 0.1; (b) Both Strong (red) and 
Weak (blue) agents, with ρS = 0.1; (c) Strong agents, with ρS = 0.5; (d) Both Strong (red) and Weak (blue) 
agents, with ρS = 0.5; (e) Strong agents, with ρS = 0.9; (f) Both Strong (red) and Weak (blue) agents, with ρS = 
0.9. Each plot refers to single and randomly selected realizations. 
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ρS = 0.5, ρS = 0.9, i.e. starting with few S agents and observing the value of G in-
creasing their amount. On the left of Figure 1, only the gain of S agents is re-
ported (i.e. red line), while plots on the right show both that of S and of W 
agents. The first observation is that both kinds of agents have a limited gain 
(positive or negative) in the range ±4, according to the topology of the network. 
So, limited gain entails also limited risks. Considering the gain of S agents, it 
seems quite similar for ρS ≤ 0.8, while for higher values, their average gain re-
duces. As for the W agents, they have limited risks when there are only few S 
agents and, obviously, they receive many times negative gains when ρS increases 
up to 0.9. Then, focusing on the same parameter (i.e. G or GS when referred on-
ly to S agents), we observe results on scale-free networks—see Figure 2. 

 

 
Figure 2. Agents gain over time in scale-free networks. (a) Strong agents, with ρS = 0.1; (b) Both Strong 
(red) and Weak (blue) agents, with ρS = 0.1; (c) Strong agents, with ρS = 0.5; (d) Both Strong (red) and 
Weak (blue) agents, with ρS = 0.5; (e) Strong agents, with ρS = 0.9; (f) Both Strong (red) and Weak (blue) 
agents, with ρS = 0.9. Each plot refers to single and randomly selected realizations. 
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A quick glance to the plots indicates the presence of richer behavior, e.g. the 
range of gain is now wider than in the regular lattice case. This fact is clearly due 
to high number of neighbors one agent might have. Like for the regular lattice 
configuration, plots on the left represent the average gain of S agents (averaged, 
at each step, considering only the S agents actually involved in the game), while 
plots on the right show the gain for both species. It is worth highlight that in-
creasing ρS, the range of GS decreases. 

The motivation is related to the opportunity to exploit the high number of 
non-expert agents when ρS is small. Instead, for the W agents, as in the regular 
lattice we observe that their actual risks increase while increasing ρS. At this 
point, the previous results show fluctuating gains and, in principle, one might 
compare them to the fluctuating prices of financial assets. Therefore, we need a 
macroscopic measure to obtain further information on the population. As pre-
viously mentioned, the volatility allows observing the system considering the 
average behavior of the population, in different realizations (i.e. according to a 
Monte Carlo approach). Figure 3 reports a comparison between considering S 
(and W) agents in the two structures. A fast glance to both plots allows appre-
ciating the Strong difference, in the proposed model, between a regular structure 
and a heterogeneous one. In particular, on the left of Figure 3 we observe the 
two vitalities referred to scale-free (black line) and regular lattice (green line). In 
addition, for each point in the plot, it is reported the highest and the smallest 
value computed (on average). The same, considering W agents, in reported in 
the right plot of Figure 3. Looking at the range of gain used to compute the vo-
latility, one might observe the high risks of W agents in scale-free networks 
when populated by too many expert users. At the same time, S agents achieve on 
average 0 good positive gain only if their density is smaller than ρS = 0.4, because 

 

 
Figure 3. Average volatility computed in regular lattices and scale-free networks. (a) Results related to strong agents; (b) Results 
related to weak agents. As indicated in the legend, the green line indicates the regular lattices result, while the black line indicates 
those achieved on scale-free networks. Numerical values close to each point indicate the average maximum value and the average 
minimum value used for computing the related volatility. 
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for higher value the positive and negative gains become almost equal (on abso-
lute value). 

3.2. Adaptive Case 

Now, we briefly study a scenario composed of agents that can improve their 
skills. In particular, starting with a population composed of only W (i.e. 
non-expert) agents, a learning process at rate η turns agents to S. The dynamics 
of the transition process, between the two states (or strategy), can be analytically 
studied by means of eq. 3, so that after a number of time steps (which depends 
both on η and on N) all agents become expert (i.e. S). Figure 4 shows results of 
the numerical simulation, as before, considering the two configurations. The two 
plots on the top refer to the regular lattice configuration that, like observed in 
the non-adaptive case, shows two limits, i.e. ± in the gain that both kinds of 
agents can reach. Instead, the situation appears different for the scale-free 
configuration. In addition, at the beginning the average gain (computed considering 

 

 
Figure 4. Agents gain over time, considering the adaptive mechanism, in regular lattice and scale-free networks. (a) Strong agents 
in regular lattices; (b) Both Strong (red) and Weak (blue) agents in regular lattices; (c) Strong agents in scale-free networks; (d) 
Both Strong (red) and Weak (blue) agents in scale-free networks. Each plot refers to single and randomly selected realizations. 
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only the agents involved in the interaction) is close to zero. Then, with the 
emergence of expert agents (i.e. S) the gain fluctuates for a while, showing on the 
right that in scale-free networks W agents risk a lot. At the end of the process, as 
expected, the average gain goes again to zero since all the agents have the same 
strategy, i.e. they are all strong/expert. 

Finally, it is worth emphasize that, beyond the considered case (i.e. non-adaptive 
and adaptive), results indicate that (as expected) strong agents earn more than 
weak ones. However, despite the different volatility we computed in the two to-
pologies, the final average gain for expert is not strongly different between them, 
i.e. considering an opportune amount of time their gain is quite similar, even if a 
bit higher for those playing in scale-free networks. 

4. Discussion and Conclusion 

In this work, we study the dynamics of a population whose interactions are 
based on a simple (stochastic) game, which outcome allows agents to receive a 
payoff, i.e. gain. The latter depends on the strategy adopted by the agents, that 
can be expert (i.e. Strong) or non-expert (i.e. Weak). Obviously, the expected 
result of a similar process suggests that expert agents overcome the non-expert 
ones, i.e. strong agents receive on average a higher gain. Beyond that, here we 
are interested in evaluating the influence of the interaction topology in the dy-
namics of the model (see also [22] for further details about the role of complex 
topologies in dynamical processes). In particular, considering real scenarios 
where online users might face at the same time several opponents, we aim to 
analyze the benefits and potential risks of heterogeneous interaction structures. 
For instance, in the case of online Poker, the emerging trend defined of “multi-
tabling” indicates that a number of users are able to play Poker with more than 
10 opponents at time. Since these games involve the utilization of money, a dee-
per understanding of the related dynamics might allow providing useful insights 
to potential players and to those that manage online platforms, or their rules. 
Therefore, motivated by this problem, we compare the outcome of a simple 
two-strategy game, where the strategy corresponds to the skill of a player, and 
arranging agents in two different configurations: regular lattice and scale-free. 
The former aims to represent offline challenges, i.e. those that one player might 
perform with a restricted number of opponents, while the latter allows 
representing the online case previously described. In addition, two different cas-
es are considered: non-adaptive and adaptive. The former entails agents never 
change strategy, whereas the latter entails that non-expert agent can improve af-
ter a while, becoming experts. In the proposed model, there are two main points 
to investigate: are scale-free networks better than regular lattice for some kind of 
agents? And, since we study the non-adaptive case considering different densi-
ties of strong agents, is there a critical density ρS? As for the first question, re-
sults of numerical simulations indicate a higher volatility, i.e. more opportunity 
for gaining, in the scale-free configuration. On the other hand, the latter entails 
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higher risks for both kinds of agents, in particular when the density of experts 
exceeds a value close to 0:4. Therefore, as for the second question, real players 
might be aware that, after a while, a platform can become less convenient than it 
was at the beginning, because of learning processes that involve all agents 
achieving more experience. In addition, we found also a relatively small differ-
ence between the average gain that strong agents receive in scale-free networks 
and in regular lattice. So that, even if simulations refer to a very simple game, 
real players should be aware about that, notably because only very few of them 
will be successful. Before concluding, there is a further aspect of our investiga-
tion that deserves to be clarified. In particular, in the proposed model, our 
agents have the capability of improving their strategy becoming experts, i.e. they 
can learn. So, in principle, it can be possible to assume that some of them can 
learn before than others. While this aspect would be of strong interest for hig-
hlighting the relation between the speed of learning and the equilibrium of the 
population, we think that it might constitute the topic for a future extension of 
the present work. To conclude, we deem that some of the achieved results are 
already known to gamblers, from direct experience, however, this can be helpful 
for a deeper understanding of gambling and its relation with online platforms. 
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