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ABSTRACT 

Retinal vasculature is a network of vessels in the 
retinal layer. In ophthalmology, information of reti-
nal vasculature in analyzing fundus images is impor-
tant for early detection of diseases related to the ret-
ina, e.g. diabetic retinopathy. However, in fundus 
images the contrast between retinal vasculature and 
the background is very low. As a result, analyzing or 
visualizing tiny retinal vasculature is difficult. There- 
fore, enhancement of retinal vasculature in digital 
fundus image is important to provide better visuali-
zation of retinal blood vessels as well as to increase 
accuracy of retinal vasculature segmentation. Fluo-
rescein angiogram overcomes this imaging problem 
but it is an invasive procedure that leads to other 
physiological problems. In this research work, the 
low contrast problem of retinal fundus images ob-
tained from fundus camera is addressed. We develop 
a fundus image model based on probability distribu-
tion function of melanin, haemoglobin and macular 
pigment to represent melanin, retinal vasculature 
and macular region, respectively. We determine reti-
nal pigments makeup, namely macular pigment, 
melanin and haemoglobin using independent com-
ponent analysis. Independent component image due 
to haemoglobin obtained is used since it exhibits 
higher contrast retinal vasculature. Contrast of reti-
nal vasculature from independent component image 
due to haemoglobin is compared to those from other 
enhancement methods. Results show that this ap-
proach outperforms other non-invasive enhancement 
methods, such as contrast stretching, histogram eq- 
ualization and CLAHE and can be beneficial for 
retinal vasculature segmentation. Contrast enhance-
ment factor up to 2.62 for a digital retinal fundus 
image model is achieved. This improvement in con-
trast reduces the need of applying contrasting agent 
on patients. 

Keywords: Contrast Enhancement; Independent Comp- 
onent Analysis; Medical Image Processing; Retinal Fundus 
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1. INTRODUCTION 

Analyzing retinal fundus image is important for early 
detection of several diseases related to the retina, e.g. 
diabetic retinopathy. In diabetic retinopathy, retinal capi- 
llary occlusion occurs and accordingly causes enlarge- 
ment of foveal avascular zone. Foveal avascular zone is 
the fovea where there is no blood vessels and located in 
the very centre of macula. Information of retinal vascu-
lature is important to accurately determine the foveal av- 
ascular zone. However, digital color fundus images ob-
tained from fundus camera suffer from several problems 
as can be seen from Figure 1. Figure 1(a) illustrates the 
problems of very low contrast and non-uniform illumi-
nation which can be seen at the area towards the edge of 
the image. Figure 1(b) shows the occurrence of noise 
which consists of impulse and Gaussian noises. Detec-
tion of the foveal avascular zone is even difficult due to 
very low image contrast of retinal vasculature against the 
background in the macular region.  

A number of enhancement methods focused in the im- 
age spatial domain [2,3,4,5]. Histogram equalization wi- 
th its modification is commonly used to enhance the im- 
age contrast [6]. However, histogram equalization tends 
to over-enhance the image and results in noisy appear-
ance of the output image. One of the adaptive methods 
called contrast limited adaptive histogram equalization 
(CLAHE) worked well on the enhancement of retinal 
vasculature [7]. Iznita found that the contrast improve-
ment using contrast limited adaptive histogram equaliza-
tion on an image model ranges between 1.7 and 3 [8]. 
However, contrast limited adaptive histogram equaliza-
tion creates artefacts in the enhanced image and the se-
lection of contrast gain limit is image-dependent. 

Other related works used the information of color 
taken from digital color images [9,10]. Colors observed 
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Figure 1. Digital fundus images obtained from fundus camera [1]. 

in the retinal image correspond to the architecture of re- 
tinal layer and the optical properties of the pigments 
[11,12]. Styles et al. developed a model using the con-
centrations of the five main absorbers found in the fun-
dus layers, namely retinal haemoglobin, choroidal hae-
moglobin, choroidal melanin, retinal pigment epithet- 
lium melanin and macular pigment [13]. This approach 
focuses more towards reconstructing rather than improv- 
ing the contrast. Tsumura et al. showed that spatial dis-
tributions of melanin and haemoglobin from a skin color 
image can be separated using independent component 
analysis [9,14]. Nugroho et al. successfully applied a 
technique based on principal component analysis and 
independent component analysis to convert the RGB 
skin image into a skin image that represents skin areas 
due to melanin and haemoglobin only [10]. The above 
efforts focus on using independent component analysis 
to transform digital color image (RGB) into independent 
components that correspond to the biological makeup of 
the skin. 

The objective of this work is to address the low con-
trast problem of retinal fundus images obtained from 
fundus camera when no contrasting agent is injected. A 
novel approach is presented to enhance the contrast of 
retinal vasculature by determining the retinal pigments, 
namely macular pigment, haemoglobin and melanin 
from fundus images. Distribution of haemoglobin is ex-
tracted from a fundus image to reveal retinal vasculature, 
which is a network of vessels in the retinal layer. Con-
trast of retinal vasculature obtained using this approach 
is compared to those from other enhancement methods, 
such as contrast stretching, histogram equalization and 
contrast limited adaptive histogram equalization to test 
the performance of this approach. 

2. APPROACH 

The approach taken in this research is as follows. First, a 
model of ocular fundus based on the light interaction is 
developed to describe the reflectance of the fundus. Se- 
cond, a model of spectral absorbance of the retinal image 
is developed to show the components composing the ob- 
served colours in a digital fundus image. Third, inde-

pendent component analysis based on the spectral ab-
sorbance of the model is applied to determine retinal 
pigments from fundus images. Finally, two fundus image 
models are developed to test performance of the pro-
posed algorithm. 

2.1. Ocular Fundus Model 

Ocular fundus represents the structure of the back of the 
eyes that consists of multiple layers of tissue [13]. The 
ocular fundus image obtained from a fundus camera sh- 
ows different intensity of reflectance. The reflectance 
depends on the wavelength, the structure of fundus’ lay-
ers, the optical properties and quantities of retinal pig-
ments in the ocular fundus. The incident light from a 
fundus camera can be reflected, absorbed, scattered or 
transmitted by the retinal tissues.  

Generally, the structure of the eye can be classified 
into two main groups, namely ocular media and ocular 
fundus [15]. Ocular media consists of cornea, lens and 
vitreous. It is located between the ocular fundus and the 
observer. The ocular fundus consists of the retina, the 
retinal pigment epithelium, the choroid and the sclera. 
The reflectance of the fundus can be described in the 
terms of these layers [16]. Figure 2 depicts a model of 
ocular fundus showing possible pathways of the re-
flected light. 

2.2. Ocular Fundus Spectral Absorbance Model 

The spectral absorbance image provides useful informa-
tion to identify the absorbance components [14]. In this 
work, we focus on the distribution of retinal pigments, 
namely haemoglobin, melanin, and macular pigment, 
rather than on the fundus layers, to model spectral ab-
sorbance of the ocular fundus [17]. 

Basis of linear combination of the absorption coeffi-
cients of melanin, haemoglobin and macular pigment is 
modelled from three absorbances μa(λ1), μa(λ2) and 

 

Figure 2. A model of ocular fundus showing pathways of re-
flected light. 
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μa(λ3) at three wavelengths λ1, λ2 and λ3. These wave-
lengths λ1, λ2 and λ3 represent the red (R), green (G) and 
blue (B) color channels. Fundus spectral absorbance 
image shows spectral characteristics of the absorbance 
components in the ocular fundus. Two conditions are 
assumed when analyzing fundus spectral absorbances. 
First, the color observed in the fundus image is due to 
the distributions of melanin, haemoglobin and macular 
pigment. Second, the quantities of these components are 
spatially independent of each other. The spectral absorb- 
ance in the fundus image represents the linear combina-
tion of the absorption coefficients of melanin, haemo-
globin and macular pigment. 

Let sx,y and vx,y designate a three-dimensional (3-D) 
quantity vector and composite color vector on an image 
coordinate (x, y) of a digital color image. A mixing ma-
trix A with a1, a2 and a3 represents pure color vectors of 
the three components (haemoglobin, melanin, macular 
pigment) per unit quantity. It is assumed that a linear 
combination of mutually independent pure color vectors 
with the quantities of s1x,y, s2x,y and s3x,y result in the 
composite color vectors of v1x,y, v2x,y and v3x,y on the im-
age coordinate (x, y). The following equation illustrates 
the transformation matrix, where T denotes the trans-
pose. 

vx,y = A sx,y                (1) 

sx,y = [s1x,y, s2x,y, s3x,y]
T              (2) 

The pixel value of each channel corresponds to each 
element of the color vector. Figure 3 depicts the spectral 
absorbances of the ocular fundus which consist of pure 
spectral vectors of melanin, haemoglobin and macular 
pigment.  

2.3. ICA of Fundus Spectral Absorbance Image 

Independent component analysis (ICA) is a technique to 
determine the original signals from mixtures of several 
independent sources [18,19]. The independent compo- 

 

Figure 3. Model of spectral absorbance of the ocular fundus. 
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Figure 4. The problem of ICA in ocular fundus image. 

nent analysis is modelled as 

v = As                  (3) 

with mixing matrix A and random vector v, denoting the 
mixtures v1, v2, …, vn. Similarly, s random vector denotes 
the elements of s1, s2, …, sn. This model shows how the 
observed data vn is generated by a process of mixing the 
components si. The independent components cannot be 
directly observed and neither can the mixing matrix. 
Only the random vector v is being observed. Mixing 
matrix A and random vector s are estimated using v. 
Subsequently, separating matrix W is used to find the 
independent component simply by 

ŝ = Wv,                 (4) 

with ŝ is defined as estimated sources. The objective of 
independent component analysis is then to get ŝ as close 
as possible to s, which is determined as original sources, 
by determining the optimum separating matrix W. Mu-
tually independent components are determined as ele-
ments of vector s from the mixture of vectors in the im-
age. A diagram is shown in Figure 4 to illustrate the idea 
of using independent component analysis in separating 
the spatial distributions of melanin, haemoglobin, and 
macular pigment in the ocular fundus. Three color cha- 
nnels, namely red, green and blue channels, represent 
random vector v and are used to determine these inde-
pendent components [17]. By applying the independent 
component analysis to the composite colour vectors in 
the image, the relative quantity and pure colour vectors 
of each independent component are determined with no 
prior information on the quantity as well as colour vector. 
In this case, the independent components represent the 
retinal pigments, i.e. melanin, haemoglobin and macular 
pigment. The quantities of the retinal pigments are pre-
sumed to be mutually independent for the image coordi-
nate. The separating matrix W is defined to separate 
vector ŝx,y using the following equations. 

ŝx,y = W vx,y               (5) 

ŝx,y = [ŝ1x,y, ŝ2x,y,  ŝ3x,y]
T          (6) 

The extracted independent components ŝ1x,y, ŝ2x,y and  
ŝ3x,y may be similar to s1x,y, s2x,y and s3x,y, respectively. 
The composite colour vector vx,y is determined based on 
the logarithm transformation of the pixel intensities in 
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the color channels of red, green and blue. Logarithmic 
transformation is used to transfer reflectance spectra into 
spectral absorbance since spectral absorbance image 
provides useful information to identify the absorbance 
components [14]. 

[μa(λ1),μa(λ2),μa(λ3)]=[-log(rx,y),-log(gx,y),-log(bx,y)] (7) 

here, the values of rx,y, gx,y and bx,y correspond to 
pixel intensity in the color channels of red, green and 
blue respectively. The composite color vector is de-
noted as 

vx,y = [μa(λ1), μa(λ2), μa(λ3)]
T         (8) 

According to the model of spectral absorbance in the 
ocular fundus from Figure 3, the color density vector of 
the fundus can be stated as 

vx,y = A sx,y + a4             (9) 

where A = [a1, a2, a3] and sx,y = [s1x,y, s2x,y, s3x,y]
T. Ele-

ments a1, a2 and a3 of the mixing matrix A represents 
pure color vectors of the three components (haemoglo-
bin, melanin, macular pigment) per unit quantity. It is 
assumed that a linear combination of mutually independ- 
ent pure color vectors with the quantities of s1x,y, s2x,y 
and s3x,y results in the composite color vectors of v1x,y, 
v2x,y and v3x,y on the image coordinate (x, y). Additionally, 
a4 is similar to noise in the ICA model. In this case, the 
model is assumed to be noise-free, therefore a4 can be 
neglected.  

Several methods, such as fast fixed-point algorithm 
(FastICA) [20], joint approximate diagonalization of 
eigen-matrices (JADE) [21] and information- maximi- 
zation (infomax) [22] have been proposed to solve the 
problem of independent component analysis. In ICA, the 
only assumption needed are: 1) the sources are statisti-
cally independent, 2) the probability densities of the 
sources are non-Gaussian, 3) the mixing of the sources 
into the observations is linear, and 4) the number of ob-
servations is larger than or equal to he number of sources 
[19]. The FastICA algorithm with symmetrical orthogo-
nalization is used to get the estimated independent com-
ponents because of its good accuracy and high computa-
tional speed for high dimensional data [20]. 

2.4. Fundus Image Model 

A model of fundus image is developed to test the per-
formance of independent component analysis in sepa-
rating the distribution of macular pigment, hemoglobin 
and melanin. Mixture of three mutually independent 
components, i.e. macular pigment, hemoglobin and 
melanin is used to model a fundus image. As shown in 
Table 1, the statistical intensity description of macular 
pigment, haemoglobin and melanin in red, green and 
blue channels are taken from the 44 test images from 
FINDeRS [23]. A smaller region containing macular area 
is sampled to get the probability density function of the  

Table 1. Statistical intensity description of macular pigment, 
haemoglobin and melanin in red (R), green (G) and blue (B) 
channels. 

 
Macular 
pigment 

Haemoglobin Melanin 

Mean R 97.14868 120.0417 156.5642 

Standard 
deviation R 28.39299 27.16076 23.98799 

Skewness R 0.714194 0.74299 0.07827 

Kurtosis R 0.522469 0.259348 0.215941 

Minimum R 46.26375 73.32877 102.7158 

Maximum R 174.1571 195.1525 219.6025 

Mean G 48.29849 62.24773 96.08492 

Standard 
deviation G 13.82747 17.29835 19.95184 

Skewness G 0.719616 0.376683 0.620011 

Kurtosis G 1.577469 0.236853 1.59036 

Minimum G 21.67789 32.06349 57.14166 

Maximum G 95.15525 114.2881 164.2989 

Mean B 7.971792 17.48195 35.1042 

Standard 
deviation B 5.483867 11.73761 18.85215 

Skewness B 1.989686 1.596864 1.31945 

Kurtosis B 6.239178 3.978853 2.216477 

Minimum B 1.992481 2.412698 12.66622 

Maximum B 31.36347 63.40678 100.4873 

 
retinal pigments. In the macular region, retinal capillar-
ies usually show a very low contrast between retinal 
blood vessels and the background. A clustering method 
using k-means based on the intensity of red, green, and 
blue channels of the macular pigment, haemoglobin and 
melanin is performed to classify the samples due to large 
value of standard deviation and intensity range of the 
sample. Based on the experiment, two numbers of clus-
ters are found to be optimal to classify the samples.  

In Figure 5, two fundus image models to represent 
fair and dark fundus images with mixture of specified 
sample intensity distribution of macular pigment, hae-
moglobin and melanin in red, green and blue channels 
are shown. Using these models as the input, the inde-
pendent component analysis should be able to separate 
these components into three outputs, namely macular 
pigment, haemoglobin and melanin. 

3. RESULTS AND DISCUSSIONS  

A fundus image model is firstly tested using independ-
ent component analysis to see performance of the algo-
rithm. The inputs to the FastICA are three separate 
channels (i.e. red, green and blue channels) of a color 
fundus image model. As can be seen from Figure 6, the 
proposed algorithm successfully separates the compo- 
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(a). Fair image model 

 
(b). Dark image model 

Figure 5. Fundus image model. 

a. Macular region b. Melanin

c. Retinal vasculature  
Figure 6. Independent component analysis of dark fundus 
image model. 

nents into three, namely macular pigment, haemoglobin 
and melanin. These three independent components rep-
resent macular region, retinal vasculature and melanin, 
respectively. In Figure 6(a), the brighter area in lower 
part of the fundus image model is related to the macular 
region. In Figure 6(b), the melanin is illustrated as the 
brighter area in upper part of the fundus image model. 
These two components can be clearly distinguished from 

the other component, which is related to retinal vascula-
ture, since the retinal vasculature is almost invisible in 
the appearance of these two components (i.e. macular re- 
gion and melanin). Furthermore, the retinal vasculature 
is clearly visualized in Figure 6(c). As a result, indepen- 
dent component image due to haemoglobin obtained ex- 
hibits higher contrast retinal vasculature compared to 
that of the original image. 

In this work, 44 retinal fundus images containing 
macular region are taken from FINDeRS database to 
model a retinal fundus image. The fundus image model 
undergoes several enhancement methods, such as con-
trast stretching, histogram equalization, contrast limited 
adaptive histogram equalization (CLAHE) to measure 
contrast improvement factor of these methods and com-
pare to the proposed algorithm. A smaller region con-
taining the macular area is taken to see the enhancement 
of retinal capillaries, which usually show a very low 
contrast between retinal blood vessels and the back-
ground. Figure 7 shows green band of dark fundus im-
age model undergoing several enhancement methods, i.e. 
contrast stretching, histogram equalization and CLAHE. 
Qualitatively, haemoglobin related ICA shows better 
enhancement because no artefacts is produced in the 
process. Nevertheless, the other three enhancement me- 
thods tend to increase the noise presence in the image as 
well as to produce artefacts.  

From the fundus image model, the green band image 
shows the average contrast intensity of 24.60 and 16.80 
for fair and dark image model, respectively. Using these 
values as a reference, the proposed algorithm using ICA  

a. Contrast stretching b. Histogram equalization

c. Contrast limited AHE d. ICA (haemoglobin)  
Figure 7. Dark fundus image model undergoes several en-
hancement methods. 

with contrast enhancement factor of 1.47 and 2.62 for 
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fair and dark fundus image models shows a better im-
provement for both fair and dark fundus image models 
than that of the other three enhancement methods. Fur-
thermore, as is shown in Figure 8, CLAHE with en-
hancement factor of 1.37 and 1.98 for fair and dark fun-
dus image model, respectively, is still better than that of 
contrast stretching and histogram equalization. However, 
compared to that of CLAHE, the proposed algorithm 
produces no artefacts in the process. 

Here an example of retinal image showing macular 
region is taken to see enhancement of retinal vasculature 
using the proposed algorithm. In a preliminary work 
using the above algorithm, it is found that non-uniform 
illumination in fundus images resulted in false detection 
of the retinal pigments [17]. This is because the algo-
rithm responds to the spectral reflectance or absorbance 
of the retinal pigments in the image. Therefore, homo-
morphic filtering is performed prior to independent com- 
ponent analysis to reduce the problem of non-uniform 
illumination. Homomorphic filtering is used to reduce 
illumination which varies slowly in space and at the 
same time [24].  

Figure 9 shows an original color fundus image un-
dergoing homomorphic filtering and its independent 
components estimated by the FastICA algorithm. The 
components represent the distribution of the pigments, 
namely macular pigment, haemoglobin and melanin. The 
brighter area in the centre of the first independent com-
ponent (Figure 9(b)) represents the distribution of 
macular pigment. The second independent component 
(Figure 9(c)) shows the distribution of haemoglobin. It 
is indicated by the enhancement of retinal vasculature. 
The third independent component (Figure 9(d)) shows 
brighter area related to the distribution of melanin. This 
result is consistent with the location of melanin, which is 
fairly distributed in the retinal pigment epithelium and 
the choroid. Based on the assumption that the image is 
noise-free, independent component analysis is able to 
determine the retinal pigments. Moreover, as shown in 
Figure 10, a green band image undergoing CLAHE is 
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Figure 8. Contrast enhancement factor of retinal vasculature in 
fundus image model. 

a. Fundus image after 
homomorphic filtering

b. First component

c. Second component d. Third component

a. Fundus image after 
homomorphic filtering

b. First component

c. Second component d. Third component  
Figure 9. Independent component analysis of a retinal image 
containing macular region. 

      

Figure 10. Comparison of contrast enhancement of retinal 
vasculature between CLAHE and ICA. 

compared to the haemoglobin-related component image 
after the intensity is being inverted to demonstrate that 
contrast enhancement is also achieved. In this work, 
CLAHE is also performed on the same images undergo- 
ing the proposed algorithm to compare the contrast im-
provement between these two methods. Having meas-
ured the contrast improvement factor on the fundus im-
age model, the proposed algorithm consistently shows 
better visualization and enhancement compared to that 
of the CLAHE, which is commonly used as pre-proce- 
ssing for segmentation of retinal vasculature in fundus 
images. This improvement can be beneficial to improve 
the accuracy of retinal vasculature segmentation and re- 
duce the need for injecting contrasting agent to the pa-
tients. 

4. CONCLUSIONS  

Analyzing retinal fundus images is usually difficult as 
they are of very low contrast. Low contrast between 
blood vessels and the background makes it difficult to 
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accurately determine retinal vasculature. Retinal vascu-
lature can be used to determine existence of pathology, 
macular area and foveal avascular zone. Typical contrast 
enhancement methods usually create artefacts or intro-
duce noise. Even though fluorescein angiography pro-
duces better contrast enhancement, it is not preferable 
due to its invasive nature of injecting contrasting agent. 

 JBiSE 

In this work, the developed method based on the spec- 
tral absorbance model and independent component ana- 
lysis enables us to determine the retinal pigments, name- 
ly haemoglobin, melanin and macular pigment. A fundus 
image model has been developed to test the performance 
of the proposed algorithm. As a result, retinal vascula-
ture, macular pigment and melanin distribution can be 
determined from digital fundus image. Results show that 
this approach outperforms other non-invasive enhance-
ment methods, such as contrast stretching, histogram 
equalization and CLAHE and can be beneficial for ves-
sel segmentation. The algorithm produces no artefacts in 
the process. Using the haemoglobin component, the con-
trast between retinal blood vessels and the background 
can be enhanced with contrast enhancement factor up to 
2.62 for a model of fundus image. This improvement in 
contrast reduces the need of applying contrasting agent 
on patients. 
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