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Abstract 
 
An alternative option pricing model is proposed, in which the asset prices follow the jump-diffusion model 
with square root stochastic volatility. The stochastic volatility follows the jump-diffusion with square root 
and mean reverting. We find a formulation for the European-style option in terms of characteristic functions 
of tail probabilities. 
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1. Introduction 
 

Let  be a probability space with filtration  

. All processes that we shall consider in this 

section will be defined in this space. An asset price 
model with stochastic volatility has been defined by 
Heston [1] which has the following dynamics: 

 , , P 

 
0t t T 

 




d d dt t t t
SS S t v W   ,           (1) 
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where t  is the asset price, S   is the rate of return of 
the asset, t  is the volatility of asset returns, v 0   is 
a mean-reverting rate,    is the long term variance, 

0   is the volatility of volatility,  and  are 
standard Brownian motions corresponding to the proc- 
esses t  and t , respectively, with constant correlation 

S
tW v

tW

S v
 . In 1996, Bate [2] introduced the jump-diffusion sto- 
chastic volatility model by adding log normal jump t  
to the Heston stochastic volatility model. In the original 
formulation of Bate, the model has the following form: 

Y

 d d dS
t t t t t t tS S t v dW S Y N    S ,      (2) 

 d d     v
t t tv v t v d tW , 

where  is the Poisson process which corresponds to the 
underlying asset t , t  is the jump size of asset price 
return with log normal distribution and t  means that 
there is a jump the value of the process before the jump 
is used on the left-hand side of the formula. Moreover, in 
2003, Eraker Johannes and Polson [3] extended Bate’s 

work by incorporating jumps in volatility and their 
model is given by 

S
tN

S Y
S

 d d d S
t t t t t tS S t v W S Y N    d S
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 d d d v v
t t t t vv v t v W Z      d tN . 

Eraker et al. [3] developed a likelihood-based estima- 
tion strategy and provided estimates of parameters, spot 
volatility, jump times, and jump sizes using S&P 500 and 
Nasdaq 100 index returns. Moreover, they examined the 
volatility structure of the S&P and Nasdaq indices and 
indicated that models with jumps in volatility are pre- 
ferred over those without jumps in volatility. But they 
did not provide a closed-form formula for the price of a 
European call option.  

In this paper, we would like to consider the problem of 
finding a closed-form formula for a European call option 
where the underlying asset and volatility follow the Model 
(3). This formula will be useful for option pricing rather 
than an estimation of it as appeared in Eraker’s work. 

The rest of the paper is organized as follows. In Sec- 
tion 2, we briefly discuss the model descriptions for the 
option pricing. The relationship between stochastic dif- 
ferential equations and partial differential equations for 
the jump-diffusion process with jump stochastic volatil-
ity is presented in Section 3. Finally, a closed-form for- 
mula for a European call option in terms of characteristic 
functions is presented. 
 
2. Model Descriptions 
 
It is assumed that a risk-neutral probability measure  
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exists, the asset price t  under this measure follows a jump- 
diffusion process, and the volatility t  follows a pure mean 
reverting and square root diffusion process with jump, i.e. 
our models are governed by the following dynamics: 

S
v

  d d dS S
t t d S

t t t tS S r m t v S Y N   t W

 

,   (4) 

d d d dv v
t t t t tv v t W Z N     tv ,           

where t , t , , S v   ,  ,  and  are defined as 
in Bate’s model,  is the risk-free interest rate,  and 

 are independent Poisson processes with constant in- 
tensities 

S
tW v

tW
r S

tN
v
tN

S  and v  respectively.  is the jump size 
of the asset price return with density 

tY
Y y  and  

  : mt  and tE Y    Z  is the jump size of the volatility 
with density Z . Moreover, we assume that the jump 
processes  and  are independent of standard 
Brownian motions  and . 

 z 
tN

S
tW

X


S
tN v

v
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3. Partial Integro-Differential Equations 
 
Consider the process  where   1 2,t t tX X     1

tX  

and  2
tX  are processes in   and satisfy the following 

equations: 
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where 1 1 2, ,f g f  and 2g  are all continuously differenti- 
able,  and  are standard Brownian motions  1

tW  2

d
tW

 with  1 2d ,    Corr Wt tW ,   and  are  1
tN  2

tN

independent Poisson processes with constant intensities 
 1  and  2  respectively. 
Since every compound Poisson process can be repre- 

sented as an integral form of a Poisson random measure 
[4] then the last term on the right hand side of (5) can be 
written as follows:  

         1 1 1 1
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where n  are i.i.d. random variables with density Y  Y y  
and QJ  is a Poisson random measure of the process   1

t


1

t n
n

with intensity measure , 
N

Q Y  d dq t   1
Y nZ  are 

i.i.d. random variables with density  and   ,zZ RJ  is a  

Poisson random measure of the process  with  
 2

1
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t
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  nZ

intensity measure .     2 d dZ r t 
Let  1 2,U x x  be a bounded real-valued function and 

twice continuously differentiable with respect to 1x  and 

2x  and 

          1 2 1 2
1 2 1 2, , , ,T T t tu x x t E U X X X x X x     (6) 

By the two dimensional Dynkin formula [5],  is a 
solution of the partial integro-differential equation (PIDE) 
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subject to the final condition    1 2 1 2, , ,u x x T U x x . 

The notation   is defined by 
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(7) 
 
4. A Closed-Form Formula for the Price of a 

European Call Option 
 
Let C denote the price at time t of a European style call 
option on the current price of the underlying asset  
with strike price  and expiration time . 

tS
K T

The terminal payoff of a European call option on the 
underlying stock  with strike price  is tS K

max  ,0TS K . 

This means that the holder will exercise his right only 
if  and then his gain is T . Otherwise, if TS K S K

TS K , then the holder will buy the underlying asset 
from the market and the value of the option is zero. 

Assuming the risk-free interest rate  is constant 
over the lifetime of the option, the price of the European 
call at time t  is equal to the discounted conditional 
expected payoff 

r
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where  is the expectation with respect to the risk-  E
neutral probability measure,  ,T t t P S S v  is the cor- 

responding conditional density given  and  ,t tS v 
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Note that 1  is the risk-neutral probability that  
(since the integrand is nonnegative and the inte- 

gral over  is one), and finally that 
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is the risk-neutral in-the-money probability. Moreover,  

 , er T t
T t t tE S S v S     for . 0t 

Assume that the asset price t  and the volatility t  
satisfy (4), we would like to compute the price of a 
European call option with strike price 

S v

K  and maturity 
. To do this, we make a change of variable from t  

to , i.e. where  satisfies (4) and its inverse  
T S

lntL
t

tS tS
L

t . Denote  the logarithm of the strike 
price. By the jump-diffusion chain rule,  satisfies 
the SDE 

S e lnk K
ln tS
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2
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Applying the two-dimensional Dynkin formula [5] for 
the price dynamics (9) and volatility t  in system (4), 
we obtain the value of a European-style option, as a 

function of the stock log-return  denoted by 
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Here the operator   as in (7) is defined by 
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In the current state variable, the last line of (8) becomes 

       1 2, , ; , , , ; , , , ; ,l k r T t
C l v t k T e P l v t k T e P l v t k T

      

(11) 

where    , , ; , : , , ; , , 1, 2l k
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The following lemma shows the relationship between  

and  in the option value of (11). 
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value of (11) satisfy the following PIDEs 
1P P

 

 

     

1 1
1

1
1

1

0 , , ; ,

1 , , : ,

S

S y
Y

P P
P l v t k T v

t l

P
v r m P

v

e P l y v t k T y

 

 


      


  



    

 

 



dy

 

and subject to the boundary condition at expiration time 
t T ; 

 1 , , ; , 1l kP l v T k T           (12) 

moreover,  satisfies the equation 2P
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and subject to the boundary condition at expiration time 
; t T

 2 , , ; , 1l kP l v T k T  ,         (13) 

The operator  is defined by 
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Note that  if  and otherwise 1 01l k 1 l k l k  . 

The following lemma shows how to calculate the 
functions  and  as they appeared in Lemma 1. 1P 2P

Lemma 2 The functions  and  can be calculated 

by the inverse Fourier transforms of the characteristic 
function, i.e. 
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a complex number. By letting 
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1) The characteristic function 1f  is given by 
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2) The characteristic function 2f  is given by 
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In summary, we have just proved the following main 
theorem. 

Theorem 3 The value of a European call option of (4) is  

       1 2, , ; , , , ; , , , ; ,l k r T t
C l v t k T e P l v t k T e P l v t k T

      

where   and  are given in Lemma 2. 1P 2P

 
5. Conclusions 
 
This paper has proposed asset price dynamics to accom- 
modate both jump-diffusion and jump stochastic vola- 
tility. Under this proposed model, an analytical solution 
is derived for a European call option via the characteris- 
tic function. 
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Appendix 
 
Proof of Lemma 1. We plan to substitute (11) into (10). 
Firstly, we compute 
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We substitute all terms above into (10) and separate it 

by assumed independent terms of  and . This 

gives two PIDEs for the risk-neutralized probability for 
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subject to the boundary condition at the expiration time 
t T  according to (13). Again, by using the notation in 
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The proof of Lemma 1 is now completed. 
For  the characteristic functions for  1, 2j 
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Proof of Lemma 2 
1) To solve for the characteristic function explicitly, 
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Substituting all the above terms into (17) and after 
canceling the common factor of 1f , we get a simplified 

form as follows: 
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By separating the order  and ordering the remaining 
terms, we can reduce it to two ordinary differential equa-
tion (ODEs), 

v
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Let  1 1ix      and substitute it into (19). We get 
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where  2 2
1 1 1ix ix     . 

By the method of variable separation, we have 
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Using partial fractions, we get  

1
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for 1, 2j  . 

To verify (21), firstly we note that 
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Integrating both sides, we obtain 
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Using boundary condition 1( 0) 0 h  , we get   
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Then 
Solving for , we obtain 1h

 
  

  
1

1

2 2
1 1

1 2
1 1 1 1

1e
h

e








  





 


   
. 

In order to solve  1g   explicitly, we substitute  1h   

into (20) and integrate with respect to   on both sides. 
Then we get 
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Proof of 2). The details of the proof are similar to case 1). 
Hence, we have 
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where    2 2, ,g h    and  are as given in the Lemma. 2

We can thus evaluate the characteristic functions in 
explicit form. However, we are interested in the risk-neu- 
tral probabilities . These can be inverted from 
the characteristic functions by performing the following 
integration 

, 1, 2jP j 
where we have used the Dirichlet formula 
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and the function is defined as  if , 

0 if 
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 sgn 1x  0x

x   and –1 if 0x . 
 


