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Abstract 
Activity coefficients at infinite dilution, γ ∞ i, were calculated for 12 solutes, with 
organic solutes including linear alcohols (methanol, ethanol, propanol), linear al-
kanes (heptane, octane), benzene, toluene, cyclohexane, 1, 2-dichloroethane, 
trichloroethylene, acetonitrile and carbon tetrachloride. The values of γ ∞ i 
were determined via either thermodynamic or artificial neural network mod-
elling at different temperatures. A comparison between extracted results from 
these two methods confirmed that experimental and predicted results are 
roughly the same. The accuracy of predicted results proves this model is fully 
compatible with a wide range of solutes, and it can readily be used as an al-
ternative to conventional gas-liquid chromatography for the measurements of 
activity coefficient at infinite dilution. 
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1. Introduction 

The measurements of activity coefficient at infinite dilution (γ∞) are crucially 
important for either theoretical or practicing chemistry. This parameter de-
scribes the behavior of a solute completely surrounded by solvent molecules. Ac-
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tivity coefficients at infinite dilution have been widely used for determining 
quantity of solutes’ volatility and also made information about intermolecular 
energy between solvent and solute [1] [2] [3] [4] [5]. Values of γ∞ are decisive 
factors for the calculation of limiting separation factors necessary for the reliable 
design of distillation processes and the selection of solvents for extraction and 
extractive distillation. Moreover, activity coefficients are important for characte-
rizing the behavior of liquid mixtures, predicting the existence of azeotrope, es-
timation of mutual solubility and calculation of Henry constants and partition 
coefficients.  

Several methods were developed for the measurement of γ∞ such as dilutor 
technique (DT) [6] [7], inert gas stripping [6], differential ebulliometry [8], head 
space [9] and dew point techniques [10]. However, there are some drawbacks, in 
terms of time, cost and material, associated with each method. As chromato-
graphic technique needs less than 1 gram of ILs and it can be considered as a 
cost-efficient, rapid and reliable method. 

It is important to have a simple method to estimate all property distributions 
from known bulk properties. Artificial Neural Networks (ANN) has been widely 
applied to an extensive range of chemical engineering such as process modeling, 
optimization and PVT behavior over the last 20 years. In the mathematical algo-
rithm of ANN, it is possible to relate input and output parameters without re-
quiring prior knowledge of relationships between the process parameters [11] 
[12] [13] [14] [15]. 

In this work, values of γ∞ (the activity coefficients at infinite dilution) for 12 
compounds in the following di-cationic ionic liquid with three phase loadings 
(10%, 15% and 20%) have been determined at various temperatures 308, 313, 
318 and 323 K. Regarding the importance of activity coefficient at infinite dilu-
tion in thermodynamic and separation processes, a growing need for gaining ac-
tivity coefficient in a simple and fast way has been felt. Therefore, an artificial 
neural network (ANN) model has been developed to predict the measures of γ∞ 
for an extensive range of solutes. 

2. Experimental 
2.1. Solvents and Solutes 

All solvents were distilled from standard drying agents before use. All used Ionic Liq-
uids were synthesized in CCERI [1]. N-Methyl pyrrolidine, 1, 9-di-bromononane, 
Lithium bis (trifluoromethylsulfonyl) imide and pentaoxide phosphor were 
purchased from Sigma-Aldrich company. 1 H NMR spectra (500 MHz) were 
recorded in deuterated ACN. Since the GLC process separated the solutes from 
any impurities, the solutes were used without further purification.  

Structures of di-cationic ionic liquids C12(mPy)2(NTf2)2 is shown in Figure 1. 
All solutes including linear alcohols (methanol, ethanol, propanol), linear alkanes 

(heptane, octane), benzene, toluene, cyclohexane, 1, 2-dichloroethane, trichloroethy-
lene, acetonitrile and carbon tetra chloride, were supplied from MERCK. 
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Figure 1. Structures of di-cationic ionic liquids C12 (mPy)2(NTf2)2. 

2.2. Analysis Method 

Gas chromatography experiments were performed using a Varian CP-3800 gas 
chromatograph equipped with a heated 1041 injector and a thermal conductivity 
detector (TCD). The injector and detector temperatures were kept constant at 
473 K during all experiments. The flow rate of helium was adjusted to obtain 
adequate retention times. The dead time was determined by injection of air with 
each solute. A personal computer equipped software as used for recording de-
tector signals and corresponding chromatograms were obtained by Galaxie 
software. 

2.3. Stationary Phase Preparation and Sample Injection Condition 

Column packing, containing from 10%, 15% and 20% of stationary phase (IL) 
on Chromosorb W-AW (80 - 100 mesh), was prepared using the rotary evapo-
rator technique. After evaporation of the dichloromethane under vacuum, the 
support was equilibrated at 323 K for 18 hours. The solid support material with 
the stationary phase was filled in a stainless steel column with an inner diameter 
of 3 mm and a length of 1 m. The weight of the packing material was calculated 
from the weights of the packed and empty column. A volume of the headspace 
vapor of samples of 0.1 - 0.5 micro liter was introduced to be in infinite dilution 
conditions. No differences in retention times tr were found by injecting individ-
ual pure components or their mixtures. The measurements were carried out at 
temperatures between 308 and 323 K. At a given temperature, each experiment 
was repeated at least three times to verify the reproducibility. The difference of 
the retention times of the three measurements was ordinarily reproducible 
within (0.01 to 0.1) min. 

Under aforementioned condition, the retention data for 12 solutes in 3 
gas-chromatography columns with different phase load (10%, 15%, and 20%) 
and in different temperature (308, 313, and 318 K) have been obtained and used 
for calculating of activity coefficients at infinite dilution. 

3. Modeling  
3.1. Thermodynamic Modeling  

Equation (1) suggested by Everett and Cruickshank et al. [16] [17] shown below, 
was used for determining of iγ

∞  values for the solute eluting in a carrier gas. 
1211 2s

s
i n s

B VnRT B VLn Ln P JP
RT RTV P

ογ ∞ ∞−− = − + 
 

           (1) 
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where n is the mole number of the stationary phase component inside the col-
umn, R is the ideal gas constant, T is the temperature of the oven, VN is the 
standardized retention volume of the solute, P˚ is the column outlet pressure 
(equal to atmospheric pressure), VS the saturated liquid molar volume of the so-
lute at T and V∞ is the partial molar volume of the solute at infinite dilution in 
the solvent. B11 the second Virial coefficient of the solute in the gaseous state at 
temperature T, B12 the mutual Virial coefficient between the solute 1 and the 
carrier gas helium 2 and PS is the probe vapor pressure at temperature T. The 
second and third terms in Equation (1) are correction terms that result from the 
non-ideality of the mobile gaseous phase. The molar volume of the solute VS was 
determined from experimental densities, and the partial molar volumes of the 
solutes at infinite dilution V∞ were assumed to be equal to VS. The vapor pres-
sure values were calculated using the Antoine equation [18] [19]. The standar-
dized retention volume, VN, can be calculated with the following relationship: 

N rV JU tο ′=                           (2) 

The adjusted retention time, rt′  calculated from the difference between the 
retention times of a solute and that of air. U0, the flow rate of the carrier gas, 
measured at the room temperature. The factor J corrects for the influence of the 
pressure drop along the column. Among of J relies on the pressure at the column 
outlet and inlet. This factor is defined by Equation (3). 

( )
( )

2

3

13
2 1

i o

i o

p p
J

p p

− −
=

− −
                       (3) 

The values of B11 and B12 were calculated using the McGlashan and Potter 
[20]. 

The critical properties of the pure component ( 11
cT  and 11

cV ) was extracted 
from the literature [21] [22] and the mutual critical data 12 12,c cT V  were calcu-
lated using the combining rule presented by Hudson and McCoubrey [23]. 

Activity coefficients at infinite dilution of various types of solutes were com-
puted in the di-cationic stationary phase with different phase load (10%, 15%, 
and 20%) in four temperatures (308, 313, 318, and 323 K). The obtained results 
of activity coefficients at infinite dilution for 12 solutes are presented in Table 1. 

3.2. Artificial Intelligent Modeling 

An artificial neural network was applied to model the system in order to predict 
activity coefficient of dilute solution for lots of chemical compounds. 144 data 
sets were used for training and testing. 70% of these data have been used for 
training, test data and validate data used the equal percentage of 15. 

One of the most popular and commonly used networks is the multilayer per-
ceptron network (MLP). The MLP configuration has gained a widespread use in 
static regression applications [24]-[29]. It can have one or more hidden 
layer(s).Whereas Cybenko [30] and Huang et al. [31] had proved that a one 
hidden layer network is suitable to represent any type of multidimensional  
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Table 1. Activity coefficient of solutes at infinite dilute solution. 

Solutes T/K 10 15 20 

Benzene 308 0.2653 0.3249 0.2644 

 
313 0.2778 0.3322 0.2597 

 
318 0.2751 0.4048 0.2744 

 
323 0.3020 0.4219 0.3101 

Methanol 308 0.3905 0.4311 0.4185 

 
313 0.3656 0.4528 0.3859 

 
318 0.3571 0.4696 0.4092 

 
323 0.4426 0.5885 0.4454 

Ethanol 308 0.4968 0.5988 0.5385 

 
313 0.4626 0.5990 0.4967 

 
318 0.4373 0.6220 0.5130 

 
323 0.5625 0.7060 0.5372 

Propanol 308 0.6000 0.7150 0.6612 

 
313 0.6142 0.7967 0.6564 

 
318 0.5975 0.6890 0.6201 

 
323 0.6716 0.8444 0.6473 

Acetonitrile 308 0.1529 0.1838 0.1596 

 
313 0.1594 0.1968 0.1565 

 
318 0.1620 0.2021 0.1591 

 
323 0.1991 0.2310 0.1796 

Cyclohexane 308 2.4003 2.6037 2.3272 

 
313 2.3132 2.7101 2.2169 

 
318 2.2900 2.7948 2.2222 

 
323 2.3168 3.9487 2.4903 

Toluene 308 0.3538 0.4473 0.3446 

 
313 0.3732 0.4436 0.3468 

 
318 0.3726 0.4538 0.3705 

 
323 0.3753 0.4306 0.4171 

Heptane 308 4.5788 5.5034 5.0667 

 
313 5.3570 5.5809 4.7640 

 
318 4.6549 5.5048 4.8457 

 
323 5.7666 5.8925 5.6490 

Octane 308 7.0796 7.9705 7.6836 

 
313 5.9958 7.4999 6.6670 

 
318 5.7462 7.3969 6.8222 

 
323 6.3740 9.2261 9.1810 

Dichloroethane 308 0.1622 0.2034 0.1712 

 
313 0.2052 0.2481 0.1670 

 
318 0.2362 0.2919 0.1976 

 
323 0.3322 0.4202 0.2465 

Carbontetrachloride 308 0.4863 0.5602 0.4735 

 

DOI: 10.4236/ajac.2018.94020 261 American Journal of Analytical Chemistry 
 

https://doi.org/10.4236/ajac.2018.94020


A. Yahyaee et al. 
 

Continued 

 
313 0.5864 0.6787 0.4642 

 
318 0.7309 0.8205 0.5208 

 
323 0.8610 1.1592 0.6568 

Trichloroethylene 308 0.2722 0.3176 0.2680 

 
313 0.3210 0.3880 0.2615 

 
318 0.3823 0.4747 0.2560 

 
323 0.5137 0.6638 0.3002 

 

 

Figure 2. The selected structure for the artificial neural network (Ann). 
 

non-linear function with sufficient number of neurons and more hidden layers 
may result in over-fitting, therefore, in this work, one hidden layer was applied 
as displayed in Figure 2. In addition, a procedure modified at our last works 
[32] [33] was selected to design a relatively small and entirely accurate network. 
The procedure flowchart is shown in Figure 3. At the first step of the procedure, 
a training method was randomly applied to find the number of neurons in the 
hidden layer that minimizes the mean squared normalized error (MSE) (defined 
by Equation (4)) of the network.  

2
1

1MSE N
ii e

N =
= ∑                         (4) 

where ei is the differences between experimental and predicted data. 
In order to improve the model generalization and prevent over-fitting, the 

number of neurons has to be chosen so that the number of internal parameters 
in the network does not exceed the number of training data sets [34]. The num-
ber of internal parameters was calculated according to the following equation 
[35]:  

( ) ( ) ( )1 1 21 1 1tot i h h h hn on n n n n n n= + × + + × + + + ×          (5) 
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Figure 3. The procedure to design artificial neural network. 
 

where, totn  is the total number of network parameters, on  is the number of 
outputs and hin  is the number of the neurons in the ith hidden layer. In this 
work, the maximum number of neurons that can be used in hidden layer in this 
system to prevent over-fitting was calculated to be seven. Thus, the choice of 
neuron number was limited in the range of 1 - 7 neurons for the hidden layer. At 
the second step, the network with the neuron number of the last step was used to 
find a training method that leads to minimum MSE of the network. If the net-
work MSE was less than the desirable MSE the third step was started. Otherwise, 
the last two steps were repeated till the desirable MSE value was reached.  

The applied training methods consist of Bayesian Regularization (BR), BFGS1 Qua-
si-Newton (BFG), Resilient Backpropagation (RP), Scaled Conjugate Gradient (SCG), 
Conjugate Gradient with Powell/Beale Restarts (CGB), Levenberg-Marquardt (LM), 
Fletcher-Powell Conjugate Gradient (CGF), Polak-Ribiére Conjugate Gradient 
(CGP), One Step Secant (OSS), Variable Learning Rate Gradient Descent (GDX), 
Gradient Descent with Momentum (GDM), and Gradient Descent (GD). 

At the third step, the selected training method was applied to train the net-
work using a number of neurons (1 - 8). Each of these trainings was repeated 
1000 time and the means of MSEs for the repeated trainings were recorded. 

In addition to MSE, correlation coefficients (R) are commonly used to verify 
ANN models. In this work R has also been applied as defined by Equation (6). 

( )( )
( ) ( )2 2

i i

i i

R
α α τ τ

α α τ τ

− −
=

− −

∑
∑ ∑

                  (6) 

 

 

1Hesian updating methods of Broyden, Fletcher, Goldfarb, Shanno (BFGS). 
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where, τi is the target and αi is the network output and ,τ α  are the mean 
amount of the data. 

4. Results 

The ANN model was also employed to predict activity coefficient at infinite di-
lution of different solutes. The procedure described in section 3 was applied to 
design the model. Temperature, Ionization energy, Molecular weight and sta-
tionary phase loading were chosen as the input data of network and Activity 
coefficient, Saturated pressure, Saturated volume, Adjusted retention time and 
the correction factor (J) were chosen as the output data. 

Levenberg-Marquardt (LM) method was found to have the minimum error as 
shown in Table 2. Mean squared normalized error of the ANN model is indi-
cated in Figure 4. This figure shows that using seven neurons has resulted in a 
minimum error. Therefore, this structure (144:7:1) was selected as the best net-
work to model this system. Hence, a network with seven neurons in the hidden 
layer which trained by Levenberg-Marquardt (LM) method, selected as the best 
network. Optimal network structure can be seen in Figure 2. This network con-
sists of 144 input data that divided to train, test and validation data. 

The results of ANN model and experimental data are depicted in Figure 5 and 
Figure 6. Figure 5, the regression plot of the ANN model and experimental da-
ta, shows an accurate prediction for the model. The error histogram with twenty  

 
Table 2. The results of different training methods; Mean squared normalized error of the 
data. 

 
Overall data Train data Validate data Test data 

Trainb 1714.857 1752.72 1070.62 2186.99 

trainbfg 63.4526 50.5515 63.4818 122.065 

Trainbr 16.33893 16.3389 1450277 2450.28 

Trainc 572.8554 571.264 793.043 359.9 

traincgb 297.3109 277.746 368.5 315.055 

traincgf 283.4068 276.4 279.52 319.142 

traincgp 270.6267 213.914 391.736 407.301 

Traingd 270.6267 261.347 350.299 233.134 

traingda 270.6267 266.085 159.743 402.153 

traingdm 270.6267 298.904 215.837 196.885 

Traingd 270.6267 282.871 165.608 319.99 

Trainlm 0.111587 0.08726 0.16761 0.16613 

trainoss 26.00845 28.9234 25.3603 13.4069 

Trainr 162.3016 177.837 172.875 81.1113 

Trainrp 80.94391 87.1408 73.3158 60.4043 

Trains 71.17467 74.2786 65.688 62.5527 

trainscg 71.17467 76.5718 54.7914 63.0255 
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Figure 4. The variation of average relative error and R with number of neurons in the 
hidden layer. 

 

 

Figure 5. Comparing of the experimental data and predicted results of network. 
 

bins is shown in Figure 6. According to the Figure 6, it can be seen that the his-
togram has a peak around 0.017. Table 3 reports the errors for training and test 
stages of the ANN model. The weight and biases of this network were reported 
in Table 4 in order to predict resulted data, and also use this model for finding 
directly the precise amount of activity coefficients of other materials without 
carrying out time consuming experiments and using thermodynamic modeling. 

In this work, having calculated the activity coefficients at infinite dilution in 
three different ways, a comparison between their final results has been drawn.  
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Figure 6. Error histogram with 20 bins obtained using the presented model and number 
of pure compounds in each range. 

 
Table 3. Statistical properties of trained ANN. 

Data Number average relative error percent R 

Train 102 0.0873 0.994 

Validate 21 0.1676 0.988 

Test 21 0.1676 0.988 

Overall 144 0.1116 0.993 

 
Table 4. Weights and Biases of the selected artificial neural network. 

Hidden layer  
neuron 

1 2 3 4 5 6 7 

Optimal neural network Output Weights 

Vsat 0.84599 −0.64791 0.041857 −6.46673 −0.74503 0.065056 −0.00501 

Psat −0.43605 −0.60363 −0.67509 1.42567 −2.02872 −0.56282 −1.36424 

t' −0.62664 3.026805 1.83053 4.555867 8.531572 2.544383 3.790702 

J −0.20605 0.29563 0.279518 0.150291 1.031618 0.327164 0.489746 

Γ 1.07002 −1.57239 −0.27529 −8.62001 −1.16475 0.018138 −0.37616 

 
Optimal neural network Biases 

Bias 6.290099 −2.47087 −0.35334 0.533857 −0.31865 3.139325 −0.59779 

 
The first method is based on using experimental data extracted from the ther-
modynamic model. In the second method, data were obtained from ANN model 
and the third method is based on the thermodynamic model used ANN pre-
dicted data. Table 5 presents the results achieved through these methods. In this 
comparison, the first method that used experimental data for calculating activity 
coefficient is chosen as the basis to calculate errors. As it is shown in Table 5, 
that predicted activity coefficient extracted from ANN model has the smallest 
error. The Average Overall error of test data for the second and third method is  

 

DOI: 10.4236/ajac.2018.94020 266 American Journal of Analytical Chemistry 
 

https://doi.org/10.4236/ajac.2018.94020


A. Yahyaee et al. 
 

Table 5. Comparison between activity coefficient of the test data that calculated with 
three different method; Using thermodynamic model that used experimental data; ANN 
output; Using thermodynamic model that used ANN prediction data. 

Calculated test  
data using  

thermodynamic model 

Output 

Predicted gama 
using ANN 

calculated  
by ANN data 

error of the 
ANN 

predictions 

error of the thermodynamic 
predictions by use of ANN 

outputs 

0.302 0.23 0.4615 0.072 0.1595 

2.3168 2.587 3.5023 0.2702 1.1855 

0.3726 0.5664 0.3205 0.1938 0.0521 

5.357 5.60408 12.638 0.24708 7.281 

0.2362 0.2451 0.2613 0.0089 0.0251 

0.4863 0.6772 1.079 0.1909 0.5927 

0.5237 0.6686 0.3 0.1449 0.2237 

0.4219 0.21254 0.70601 0.20936 0.28411 

0.4311 0.351215 0.4143 0.079885 0.0168 

2.7947 2.8557 9.1918 0.061 6.3971 

0.4306 0.98219 0.40056 0.55159 0.03004 

5.5809 6.06188 7.2775 0.48098 1.6966 

5.8924 6.3578 7.92725 0.4654 2.03485 

0.6637 0.6582 0.42118 0.0055 0.24252 

0.4967 0.55293 0.36778 0.05623 0.12892 

0.6564 0.836017 0.26141 0.179617 0.39499 

2.3271 2.7655 0.8657 0.4384 1.4614 

0.3704 0.515176 0.67011 0.144776 0.29971 

7.6835 6.57 1.82817 1.1135 5.85533 
0.17117 0.27 0.18824 0.0988 0.0818 

0.24652 0.1968 0.28503 0.04972 0.03851 

Average Overall error of test data 0.24113 1.353213 

 
0.24 and 1.35, respectively. 

5. Discussion 

The chromatographic data has been used in order to determine the values of ac-
tivity coefficients at infinite dilution by either thermodynamic or ANN model. 
In the thermodynamic model, the values of activity coefficients at infinite dilu-
tion have been calculated for 12 solutes at different temperatures (308, 313, 318 
and 323 K) in three columns with different stationary phase loadings (10%, 15% 
and 20%). It can be seen that the results obtained from two models come from a 
broadly similar direction. As a result, ANN can be efficiently used to measure 
the values of activity coefficients at infinite dilution in different temperatures. A 
great advantage associated with ANN model is that the values of activity coeffi-
cients at infinite dilution can be directly obtained through retention time (tr), the 
saturated liquid molar volume (Vᶳ), the probe vapor pressure (Pᶳ) and the ioni-
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zation energy (I) at T, without getting involved in complicated thermodynamic 
computations. According to the strong similarity between the results of two 
models, the range of solutes can be expanded, and the values of activity coeffi-
cients at infinite dilution can be predicted precisely by ANN model for an exten-
sive range of solutes according to their retention time (tr), the saturated liquid 
molar volume (Vᶳ), the probe vapor pressure (Pᶳ) and the ionization energy (I) at 
the wanted temperature (T). As in ANN model all the steps related to the calcu-
lation of physiochemical parameters can be skipped, ANN model can be consi-
dered as a time-saving and cost-efficient technique for determination of activity 
coefficients at infinite dilution, in comparison with the thermodynamic model. 
As it can be seen in Table 1, the Train error in ANN model is 0.087; Validate 
error is 0.167; Test error is 0.166 and the overall error is 0.111. 
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Nomenclature 

α  mean amount of the data Equation (6) 

αi network output Equation (6) 

B11 the second virial coefficient Equation (1) 

B12 the mutual virial coefficient Equation (1) 

iγ
∞

 activity coefficient at infinite dilution Equation (1) 

ei the differences between experimental and predicted data Equation (4) 

J correction factor Equations (1)-(3) 

N mole number of the stationary phase component inside the column Equation (1) 

n0 number of outputs Equation (5) 

ntot total number of network parameters Equation (5) 

nhi number of the neurons in the ith hidden layer Equation (5) 

P˚ outlet pressure Equations ((1), (3)) 

Pi inlet pressure Equation (3) 

Pᶳ probe vapor pressure Equation (1) 

R ideal gas constant Equation (1) 

R correlation coefficient Table 3 

T Temperature Equation (1) 
11

cT  critical temperature Equation (1) 
12

cT  mutual critical temperature Equation (1) 

rt′  adjusted retention time Equation (2) 

τi the target Equation (6) 

τ  mean amount of the data Equation (6) 

U0 flow rate of carrier gas Equation (2) 

Vᶰ standardized retention volume Equations ((1), (2)) 

Vᶳ molar volume of solute Equation (1) 

V∞ partial molar volumes of the solutes at infinite dilution Equation (1) 
11

cV  critical volume Equation (1) 
12

cV  mutual critical volume Equation (1) 
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