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Abstract 
In this paper, we develop a new numerical method which is based on an ex-
ponential spline and Shishkin mesh discretization to solve singularly per-
turbed boundary value problems, which contain a small uncertain perturba-
tion parameter. The proposed method uses interval analysis principle to deal 
with the uncertain parameter and the Monte Carlo Simulations (MCS) are 
used to validate the solution and the accuracy of the proposed method. Fur-
thermore, sensitivity analysis has been conducted using different methods to 
assess how much the solution is sensitive to the changes of the perturbation 
parameter. Numerical results are provided to show the applicability and effi-
ciency of the proposed method, which is ε-uniform convergence of almost 
second order. 
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1. Introduction 

In this paper, we consider the following singularly perturbed problem [1]; 

( ) ( ) ( ) [ ], ,y f x y g x y r x x a bµ′′ ′− + + = ∈                (1) 

subject to the following boundary conditions, 
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( ) ( ) 0y a y bα β− = − =                      (2) 

where 0 1<   and 0 1µ< 
 are two small perturbation parameters; 

( ) ( ),f x g x  and ( )r x  are sufficiently smooth functions for [ ],x a b∈ ; a, b, α, 
and β are real constants. In general, the solution ( )y x  may exhibit two 
boundary layers of exponential type at both end points ,x a b= . 

Different applications in science and engineering consider these kinds of 
problems that describe complicated physical and chemical models such as heat 
transfer problems, Navier-Stokes flow with large Reynolds numbers, chemical 
reactor theory, convection-diffusion processes, geophysics, aerodynamics, reac-
tion-diffusion processes, quantum mechanics and optimal control, etc. Its solu-
tion exhibits two layers at the two endpoints of the domain. The nature of the 
two-parameter problem was asymptotically examined by [2]. It was found that 
layer-adapted meshes have been required to obtain a uniformly convergent 
method no matter how small the perturbation parameter see [3] for more details. 

Many numerical methods have been developed for the solution of two layer 
boundary value problems, such as described in [4], [5], [6] and [7] for one pa-
rameter singularly perturbed boundary value problems and with two small pa-
rameters are considered in [1], [3], [8] and [9], but on a Shishkin-type mesh. 
Vulanovic [10] considered Shishkin and Bakhvalov meshes but assumed  

1
2

p
µ

+
=   with p > 0. Dag and Sahin presented a numerical solution of singularly  

perturbed boundary value problems, using finite element method [11]. Their 
collocation method was applied with quadratic and cubic B-spline base functions 
over the geometrically graded mesh of the solution domain. In 2010, Rashidina 
and Mohammadi [12] considered the self-adjoint singularly perturbed two-point 
boundary value problems. Ramadan et al. (2007) [13] developed quintic non-
polynomial spline methods for the numerical solution of fourth order two-point 
boundary value problems. A second order monotone numerical method was 
constructed by Gracia et al. in 2006 [14] for a singularly perturbed ordinary dif-
ferential equation with two small parameters affecting the convection and diffu-
sion terms. The monotone operator was combined with a piecewise uniform 
Shishkin mesh. Kadalbajoo and Yadaw [15] presented a B-spline collocation 
method for solving a class of two-parameter singularly perturbed boundary 
value problems. They used B-spline collocation method on piecewise-uniform 
Shishkin mesh, which leads to a tridiagonal linear system. Their method was 
shown to have a uniform convergence of second order. 

For a more reasonable analysis of the system response, uncertainty should be 
involved. When the exact value of a quantity is unknown, its approximation and 
corresponding degree of uncertainty can be conveyed via an interval, which es-
timates a range of possible values expected to include, firstly suggested by several 
mathematicians for bounding round-off errors, the interval analysis is fully de-
veloped by Moore [16]. We are going to use MCS as a validating tool for the 
proposed method. MCS is the simplest method for treating any randomness in a 
system [17]. The method basically depends on generating a set of realization of 
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the random parameter, then a unique solution is defined by carrying out the de-
terministic solver for each of these realizations. In 1967, Stein [18] generalized 
his model which incorporates stochastic effects due to neuronal excitations to 
handle a distribution of post-synaptic potential amplitudes and used the 
Monte-Carlo technique for approximating the solution. David Edwards [19] de-
veloped a multi-region FDM technique for a particular singularly perturbed 
boundary value problem and this method was based on Monte Carlo tech-
niques.  

The main contribution of this paper is to develop a new spline method based 
on a Shishkin mesh discretization for obtaining an approximation for the solu-
tion of two-layer boundary value problems. As the perturbation parameter is not 
deterministic, therefore the interval analysis is considered to estimate the solu-
tion range. The validation of the developed solver will be done by comparing the 
exact and the approximate solutions of the proposed method and the MCS re-
sults. The convergence analysis also is presented numerically and shows that the 
presented method is almost second-order. 

The paper is organized as follows: In Section 2, we derive our spline scheme. 
Mesh strategy based on a Shishkin mesh is presented in Section 3. In Section 4, 
we present interval analysis and sensitivity measures. Numerical results are dis-
cussed in Section 5. Section 6 is devoted to the final conclusions, while future 
work is provided in section 7. Finally, Section 8 is dedicated to references.  

2. Derivation of Exponential Spline 

We discretize the solution region [ ],a bΩ =  such that 

0 1 2 1N Na x x x x x b−= < < < < < = . Where N is the number of mesh points. Let 

1 1, 2,3, , ,j j jh x x j N+= − =   be the mesh size and the mesh ratio  
1 0, 1, 2,3, , 1j

j
j

h
j N

h
σ += > = − . When 1σ =  the mesh reduces to a uniform 

mesh, 1j jh h h+ = = . The interpolating exponential spline approximation func-
tion can be defined as [20]: 

( ) ( ) , 0,1, , 1j j
j j j j j j j

j j

x x x x
S x a b x x c d j N

h h
ξ ζ
   − −

= + − + + = −      
   


  (3) 

where ( ) ( )22 cosh 1j x xξ τ τ= −   , ( )36 sinhj x xζ τ τ τ= −   , , , ,j j j ja b c d  
are constants and τ is a free parameter such that the non-polynomial spline (3) 
reduces to usual cubic spline when τ approaches to zero [21], which satisfies the 
following conditions: 

1) ( ) [ ]2 ,jS x C a b∈ , 

2) ( ) ( ) ( ),j j j jS x y x S x M′′= = .                                   (4) 

The algebraic manipulations of Equations (3) and (4) yield the following ex-
pressions: 

1) j ja y= , 
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2) ( )1 12 2

1 coth
sinh

j j j j
j j j j j

j

h h h h
b y y M M

h
τ

τ τ ττ τ+ +

   
= − + − + −   

   
, 

3) 
2

2
j

j j

h
c M= , 

4) ( )
2

1 cosh
6sinh

j
j j j

h
d M M

τ
τ

τ += − .                                (5) 

From the aspect of the first derivative continuity at the mesh points yields the 
expression for the determination of ( )jS x′′  where 0, ,i N=  . We can get the 
following exponential spline identity relation: 

( ) ( )1 1 1 1 11 1j j j j j j j j j j j j j jy y y h h M M Mσ σ α σ β γ+ − − + −
 − + + = + + +       (6) 

where  

( )

2

2

coth1 1 1, ,
sinh

1 1 sinh coth cosh , 1,2,

j
j j

j j j jj

j j j j
jj

j

τ
α β

τ τ τ ττ

γ τ τ τ
ττ

= − = −

= + − = 

             (7) 

Note that, the exponential spline relation (6) is consistent with the standard 

variable-mesh cubic spline if 0τ → , hence 1 1,
6 3

α γ β= = =  [22]. If we 

choose 1 5,
12 12

α γ β= = = , this method is known as the Numerov method [23]. 

3. Mesh Selection Strategy 

We consider the simplest possible non-uniform mesh, namely a piecewise-uniform 
mesh proposed by Shishkin [24]. The domain is [ ],a bΩ =  into three 
sub-domains 

[ ] [ ] [ ]1 1 2 2, , , , ,l c ra a a b b bω ω ω ωΩ = + Ω = + − Ω = −  

where the transition parameters are given by: 

[ ] ( ) [ ] ( )

1 2
1 2

1 1 2 2, ,

1 2 1 2min , ln , min , ln
4 4

and max , minx a b x a b

N N

x x

ω ω
ϕ ϕ

ϕ λ ϕ λ∈ ∈

   
= =   

   
= − =

           (8) 

where ( )1 xλ  and ( )2 xλ  are two solutions of the characteristic equation: 

( ) ( ) ( ) ( )2 0x f x x g xλ µ λ− + + =                 (9) 

The quantity 1 0λ <  describes the boundary layer at x a= , while 2 0λ >  
characterizes the layer at x b= , and  

[ ] ( )
2 2 2 2

1 2 ,
4 4, ,  where max

2 2 x a b
B B C B B C B f xµ µ µ µ

λ λ ∈

− + + +
= = =

 
 

  (1

0) 

We take N/4, N/2 and N/4 mesh points, respectively in ,l cΩ Ω  and rΩ . De-
note the step sizes in each subinterval by 1 14h Nω= , ( )2 1 22h b a Nω ω= − − −  
and 3 24h Nω= , respectively. Accordingly, the resulting piecewise-uniform 
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Shishkin mesh is represented by: 

( )

1
1 1 1

1 2
2 1 1

2
3 1 1

4 ; for 1,2, , 4,

2
; for 1, ,3 4,

4
4 3; for , , .

4

j j

j j

j j

h x x h j N
N

b a Nh h x x h j N
N

Nh x x h j N
N

ω

ω ω

ω

∨

−

−

−

 = = + =


− − −= = = + = +



= = + =








 (11) 

4. Interval and Sensitivity Analysis 

Since uncertainty will be considered, the interval analysis can be used as descrip-
tive measures of uncertainty in quantitative values. Hence, the perturbation pa-
rameter is not deterministic, the solution has to be defined as a range based on 
the interval of the parameter. Therefore, the upper and lower bounds of the per-
turbation parameter can be written as: 

,c c= + ∆ = − ∆                          (12) 

where   is the upper value,   is the lower value and c  is the central value. 
Then the fluctuation range of solution could be estimated.  

Sensitivity measures can be conducted using different techniques for example 
One-at-a-Time Sensitivity Measures (±SD), the Sensitivity Index (SI), the Im-
portance Index (II), Differential Sensitivity Analysis (PD), etc. We estimated the 
sensitivity measures using the following methods One-at-a-Time Sensitivity 
Measures (±SD), the Sensitivity Index, and the Differential Sensitivity Analysis. 
One-at-a-Time Sensitivity Measures (±SD) is considered the simplest—but pow-
erful—method for conducting sensitivity analysis, which estimates the variation of 
the solution as the perturbation parameter is increased by a factor of its standard 
deviation or in other words a percentage of its mean value [25]. 

The Sensitivity Index (SI), another simple method of estimating the sensitivity 
measure is to calculate the relative solution difference when varying one input 
parameter from its minimum value to its maximum value, which provides a 
good indication of parameter and model variability. The SI is calculated using, 

( )SI Ymax Ymin Ymax= − , where Ymin and Ymax represent the minimum 
and maximum solution values, respectively, resulting from varying the perturba-
tion parameter over its entire range [26]. 

Differential Sensitivity Analysis (PD) method considers all random parame-
ters equal to their mean values and partial differentiation of the system with re-
spect to the random parameters should be done. The sensitivity coefficient for a 
specific parameter –perturbation parameter can be measured from the partial 
derivative relation y∂ ∂ . The results are normalized by multiplying the deriva-
tives by the ratio of the parameter value to the solution for the mean value, sen-
sitivity coefficient ( )y y= ∂ ∂ ∗   [25]. 

5. Numerical Example 

We consider the following reaction-diffusion problem; see [1] [27] and [28]: 
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[ ] ( ) ( )cos π , 0,1 , 0 1 0y y x x y y′′− + = ∈ = =           (13) 

whose exact solution is given by: 
( )21

2 2

1 2 1 2

1
1 2 3

1 2 1 3 1 1,22

cos π e e

1 1 e 1 e 1, , ,
π 1 1 e 1 e

xxY c x c c

c c c c c

λλ

λ λ

λ λ λ λ λ

− −

−

− −

= + +

+ +
= = − = =

+ − −


 

      (14) 

The estimated maximum error NE  and the rate of convergence Nr  are 
computed by the formulas: 

0 2 2 2max , log logN j N j j N N NE Y y r E E< <= − = −          (15) 

Table 1 shows the maximum absolute error and the order of convergence for 
various values of the perturbation parameter ℇ. The results obtained using the 
current method are very accurate compared with the analytical solution and 
gives the order of convergence 2 even for small values of ℇ, and it is shown in 
Figure 1 that the exact and the approximate solutions are very close. Further-
more, since the problem is singularly perturbed its solution possesses layers 
along the boundary of the domain which is occurred in the form of sharp boun-
dary-layers in Figure 1 at 0,1x = . 

Figures 2-4 show the comparison of the solution between the proposed method 
and the MCS (50000 samples), as the perturbation parameter changes by 20%. 
 
Table 1. Maximum absolute errors and the order of convergence for 10 k−= . 

N 
k = 8 k = 10 k = 12 k = 14 

EN rN EN rN EN rN EN rN 

27 9.51E−04 1.64 8.66E−04 1.80 8.57E−04 1.82 8.56E−04 1.82 

28 3.05E−04 1.57 2.49E−04 1.85 2.43E−04 1.89 2.43E−04 1.89 

29 1.03E−04 1.44 6.91E−05 1.84 6.56E−05 1.93 6.52E−05 1.94 

210 3.78E−05 1.32 1.93E−05 1.77 1.72E−05 1.94 1.70E−05 1.96 

211 1.51E−05 1.26 5.64E−06 1.64 4.48E−06 1.93 4.36E−06 1.98 

 

 
Figure 1. Deterministic Case: exact and approximate solutions for 1410−= , 512N = . 
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Figure 2. Random Case: Mean of the solution of the proposed method and the 
MCS results, 1410−= , 256N = . 

 

 
Figure 3. Random Case: Upper limit of the solution range of the proposed 
method and the MCS results, 1410−= , 256N = . 

 

 
Figure 4. Random Case: limit of the solution range of the proposed method 
and the MCS results, 1410−= , 256N = . 
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The upper, centre and lower solutions of the two methods are very close which 
shows the accuracy and validation of the proposed method. Further sensitivity 
measures have been conducted such as the SI method gives an index of value 
0.0039%, which is very small. The differential method indicates that the sensitiv-
ity coefficient is also very small by value 1.34E−15 at the mid-point of the 
scheme. Therefore, the solution is not sensitive to the changes in the perturba-
tion parameter. 

6. Conclusion 

A numerical method based on exponential spline with Shishkin mesh discretiza-
tion is combined with interval analysis perspective to evaluate the range of the 
solution for the singularly perturbed two-point boundary value problems with 
uncertain parameter. The numerical results show that the present method ap-
proximates the solution very well compared with the exact solution. Therefore, 
the proposed method is almost second-order uniformly convergent with respect 
to the perturbation parameter. MCS are used to prove the validation and the ac-
curacy of the proposed method. Sensitivity analysis has been conducted using 
different methods and it is found that the solution is not sensitive to the pertur-
bation parameter. 

7. Future Work 

This paper proposed a new numerical spline method combined with interval 
analysis to solve singularly perturbed boundary value problems. We used inter-
val analysis to estimate the solution range as the perturbation parameter is not 
deterministic and compared the results with the MCS method to validate the 
proposed method. In the future, we shall use another stochastic method to deal 
with the uncertainty, which appears in the perturbation parameter for example 
polynomial chaos expansion. 
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