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Abstract 
In order to assess causality between binary economic outcomes, we consider 
the estimation of a bivariate dynamic probit model on panel data that has the 
particularity to account the initial conditions of the dynamic process. Due to 
the intractable form of the likelihood function that is a two dimensions 
integral, we use an approximation method: The adaptative Gauss-Hermite 
quadrature method. For the accuracy of the method and to reduce computing 
time, we derive the gradient of the log-likelihood and the Hessian of the inte-
grand. The estimation method has been implemented using the d1 method of 
Stata software. We made an empirical validation of our estimation method by 
applying on simulated data set. We also analyze the impact of the number of 
quadrature points on the estimations and on the estimation process duration. 
We then conclude that when exceeding 16 quadrature points on our simu-
lated data set, the relative differences in the estimated coefficients are around 
0.01% but the computing time grows up exponentially. 
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1. Introduction 

Testing Granger causality has generated a large set of paper in the literature. The 
larger part of this literature concerns the case where we have continuous 
dependent variables. For binary outcomes, there is also a way to consider the 
causality problem. As described by [1] for a vector of dependant variables, the 
one order Granger causality can be analyse as a probability conditional indepen- 
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dence given a set of exogenous variables and the first order lagged dependent 
variables. And for a binary outcome in the dependent vector, one can use a 
probit probability that implies the use of latent variable. 

For panel data case, as the one way fix effects model estimated on a finite 
sample has necessarily inconsistent estimators [2], the random effect model is 
used. Due to the fact that we aim to test for one order Granger causality, lagged 
dependent variables are included as explanatory variables. For the first wave of 
the panel, we do not have previous values for the dependent variables, and 
treating them casually or as exogenous leads to inconsistent estimators [2]. So 
we specify an other equation for initial conditions as described by [3]. The 
equation is allowed to have different explanatory variables and different 
idiosyncratic error terms from the dynamic equation. 

This specification leads to a likelihood function with an intractable form that 
is a two dimensions integral with a large set of parameters to be estimated. The 
estimation of this likelihood function requires the use of numerical approxi- 
mation of integral function such as maximum simulated likelihood (see [4] for 
more details) or Gauss-Hermite quadrature (for more details see [5] [6] [7]). 

The main goal of this paper is to propose and to test a method for estimating a 
two equations system where the explanatory variables are binary in a panel data 
framework. To the extent of our knowledge, there is no program to do so, 
especially as we propose the calculation of the Hessian matrix and the gradient 
vector of our maximisation program. 

In this paper, we discuss on the problem of testing Granger causality with a 
bivariate dynamic probit model taking into account the initial conditions. The 
organization of this paper is the following one. In Section 2 we explain the 
causality test method for bivariate probit model with panel data. In Section 3, we 
describe the estimation method available when the likelihood function has an 
intractable form (two dimensions integral in our case). Section 4 presents the 
calculation of the gradient with respect to the model parameters and the 
calculation of the Hessian matrix with respect to the random effects vector. In 
Section 5, we present a robustness analysis of our selected estimation method by 
doing some simulations1. 

2. Testing Causality with a Bivariate Dynamic Probit Model 

This section aims to describe causality test method in the case of binary variables. 
We start by presenting the general approach in time series before introducing 
panel data case. We end this section by a discussion on the initial conditions 
problem. 

2.1. Testing Causality: General Approach 

Causality concept was introduced by [8] as a better predictability of a variable Y 

 

 

1For each section, specifics notations are down at the beginning of the section. Otherwise, in general 

( )
x a

f x
=

 denote the value of the function or the matrix f at the point a. When not specify, a  de-

note the integer part of the scalar a. 
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by the use of it lag values, the lag value of an other variable Z and some controls 
X. In his paper, [8] distinguishes instantaneous causality that means Zt is causing 
Yt (if Zt is included in the model it improves the predictability of Yt than if not) 
from lag causality that means lag values of Z improve the predictability of Yt. In 
this section, we rule out the instantaneous causality and deal with lag causality of 
one period.  

The one period Granger causality can be rephrase in terms of conditional 
independence. Without lost of generality, we present the univariate case for time 
series. Let’s Yt and Zt denote some dependent variables and Xt denote a set of 
controls variables. One period Granger non-causality from Z to Y is the 
conditional independence of Yt from 1tZ −  conditionally to Xt and 1tY − . More 
clearly, Granger non-causality from Z to Y is: 

( ) ( )1 1 1| , , | ,t t t t t t tf Y Y X Z f Y Y X− − −=                 (1) 

Note that the same kind of relationship can be written for Granger 
non-causality from Y to Z. As Yt and Zt are binary outcome variables, we can use 
latent variables ( *Y  and *Z  respectively) and make the assumption that Y and 
Z have positive outcomes (equals to 1) if their latent variables are positive. The 
latent variables are defined as follows: 

For the left side of the Equation (1) ( ( )1 1| , ,t t t tf Y Y X Z− − ): 
* 1

1 11 1 12 1t t t t tY X Y Zβ δ δ− −= + + +                    (2) 
* 2

2 21 1 22 1t t t t tZ X Y Zβ δ δ− −= + + +                   (3) 

For the right side of the Equation (1) ( ( )1| ,t t tf Y Y X− ): 
* 1

1 11 1t t t tY X Yβ δ −= + +                        (4) 
* 2

2 21 1t t t tZ X Zβ δ −= + +                        (5) 

where 

( )
1

2

1
0, with

1
N

ρ
ρ

   
Σ Σ =   

  


 







 

To fit the joint distribution of Y and Z conditionally to X (meaning that we 
estimate a bivariate model), we need to analyze four available situations that are 
( )1Y Z= = , ( )0Y Z= = , ( )1; 0Y Z= =  and ( )0; 1Y Z= = . For each of these 
situations, we have: 

( )
( )1 2

1 11 1 12 1 2 21 1 22 1

1, 1 |

,
t t t

t t t t t t t t

P Y Z X

P X Y Z X Y Zβ δ δ β δ δ− − − −

= =

= > − − − > − − − 
 

( )
( )1 2

1 11 1 12 1 2 21 1 22 1

0, 0 |

,
t t t

t t t t t t t t

P Y Z X

P X Y Z X Y Zβ δ δ β δ δ− − − −

= =

= < − − − < − − − 
 

( )
( )1 2

1 11 1 12 1 2 21 1 22 1

1, 0 |

,
t t t

t t t t t t t t

P Y Z X

P X Y Z X Y Zβ δ δ β δ δ− − − −

= =

= > − − − < − − − 
 

( )
( )1 2

1 11 1 12 1 2 21 1 22 1

0, 1 |

,
t t t

t t t t t t t t

P Y Z X

P X Y Z X Y Zβ δ δ β δ δ− − − −

= =

= < − − − > − − − 
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As we can see, by assuming 1 2 1t tq Y= −  and 2 2 1t tq Z= − , we can rewrite the 
probabilities above as: 

( )
( ) ( )( )1 2 1 2

2 1 11 1 12 1 2 21 1 22 1

, |

, ,
t t t

t t t t t t t t t t

P Y Z X

q X Y Z q X Y Z q qβ δ δ β δ δ ρ− − − −= Φ + + + + 

  (6) 

where ( )2Φ  stands for the bivariate normal c.d.f. 
Then testing Granger non-causality in this specification is testing 

120 : 0H δ =  for Z is not causing Y and testing 210 : 0H δ =  for Y is not causing 
Z. 

2.2. Testing Causality: Panel Data Case 

For panel data case, two major approaches can be used. The first one is to 
consider that causal effect is not the same for all individuals in the panel ([9]). 
This approach is useful when individuals are heterogeneous or when the causal 
effect is not homogeneous. The specification for latent variables are: 

* 1 1 1
1 11, , 1 12, , 1it t i i t i i t i itY X Y Zβ δ δ η ζ− −= + + + +                (7) 

* 2 2 2
2 21, , 1 22, , 1it t i i t i i t i itZ X Y Zβ δ δ η ζ− −= + + + +               (8) 

where ( )1 2,i iη η ′  denotes the individual random effects which are zero mean and 
covariance matrix ηΣ  and ( )1 2,it itζ ζ ′  denote the idiosyncratic shocks which 
are zero mean and covariance matrix ζΣ  with 

2
1 1 2

2
1 2 2

1
and

1
ζη

η ζ
ζη

ρσ σ σ ρ
ρσ σ ρ σ

   
Σ = Σ =       

 

In this approach, testing Granger non-causality is equivalent to test 

12, 0, 1, ,i i Nδ = =   for Z is not causing Y and to test 21, 0, 1, ,i i Nδ = =   for Y 
is not causing Z. 

The second approach (that is used in this paper) is to assume the causal effects, 
if they exist, are the same for all individuals in the panel. With the same notation 
that the previous case, the latent variables are: 

* 1 1 1
1 11 , 1 12 , 1it t i t i t i itY X Y Zβ δ δ η ζ− −= + + + +                 (9) 

* 2 2 2
2 21 , 1 22 , 1it t i t i t i itZ X Y Zβ δ δ η ζ− −= + + + +               (10) 

Then testing Granger non-causality is equivalent to test 120 : 0H δ =  for Z is 
not causing Y and to test 210 : 0H δ =  for Y is not causing Z. 

Finally, Equations (9) and (10) are the core of our problem. Since Y and Z are 
binary panel outcomes and each equation includes lag dependent variables, 
estimating jointly these two equations can be viewed as the estimation of a 
bivariate dynamic probit model. 

2.3. Dealing with Initial Conditions 

For the first wave of the panel (initial conditions), due to the fact that we do not 
have data for the previous state on Y and Z (no values for ,0iY  and ,0iZ ) we are 
not able to evaluate ( )1 1 ,0 ,0, | , ,i i i i iP Y Z Y Z X . By ignoring it in the individual 
likelihood, researchers also ignore the data generation process for the first wage 
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of the panel. This means that they assume the data generating process of the first 
wave of the panel to be exogenous or to be in equilibrium. These assumptions 
hold only if the individual random effects are degenerated. If this assumption is 
not fulfilled, the initial conditions (the first wave of the panel) are explained by 
the individual random effects and ignoring them leads to inconsistent parameter 
estimates [2]. 

The solution proposed by [2] for the univariate case and generalized by [3] is 
to estimate a static equation for the first wave of the panel (meaning that we do 
not introduce lagged dependent variables). In this static equation, the random 
effects are a linear combination of the random effects in the next wave of the 
panel and idiosyncratic error terms may have different structure from the 
idiosyncratic error terms in the dynamic equation. Formally, the latent variables 
for the first wave of the panel are defined as follows: 

* 1 1 2 1
,1 1 11 12i i i i iY X γ λ η λ η= + + +                     (11) 
* 2 1 2 2
,1 2 21 22i i i i iZ X γ λ η λ η= + + +                    (12) 

where ( )1 2,i i
′   denotes the vector of idiosyncratic shocks which are zero mean 

and covariance matrix Σ  with 
1

1
ρ

ρ
 

Σ =  
 






. 

As 1η  and 2η  are individual random effects respectively on Y and Z, 12λ  
and 21λ  can be interpreted as the influence of the Y random individual effects 
(respectively Z random individual effects) on Z (respectively on Y) at the first 
wave of the panel. 

3. Estimation Methods 
Due to the fact that the likelihood function has an intractable form (an integral 
function), it is impossible to estimate this likelihood by usual methods. We then 
deal with numerical integration methods that are numerical approximation 
method for an integral. In this section we describe two major methods and argue 
for one of them to estimate our likelihood function. 

3.1. Gauss-Hermite Quadrature Method 

The Gauss-Hermite quadrature is a numerical approximation method use to 
close the value of an integral function. The default approach is related to an 
univariate integral of the form: 

( ) ( )2exp df x x x−∫


                         (13) 

where ( )2exp x−  denotes the Gaussian factor2. Then the integral above can be 
approximated using: 

( ) ( ) ( )2

1
exp d

Q

q q
q

f x x x w f x
=

− = ∗∑∫


               (14) 

 

 

2Notice that even without this factor, one can use the Gauss-Hermite quadrature by using a 
straightforward transformation that is to multiply and divide the integrand ( )f x  by a Gaussian 

factor ( )2exp x− . 
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where , 1, ,qx q Q=   are nodes from the Hermite polynomial and 
, 1, ,qw q Q=   are corresponding weights. 

This approximation supposes that the integrand can be well approximated by 
an 2 1Q +  order polynomial and that the integrand is sampled on a symmetric 
range centered on zero. So, for suitable results, these two assumptions must be 
taken into account. 

We first assume that finding the optimal number of quadrature points can be 
achieved numerically. For the accuracy of the approximation, it is required to 
choose the optimal number of quadrature points. To do this, one can start with a 
number q  of quadrature points and increase it to assess if it significantly 
changes the result, and repeat this process until convergence in terms of overall 
likelihood value variation and estimated coefficients variation. But, it is also 
important to take into account the fact that increasing number of quadrature 
points also increases the computing time. An example of the impact of number 
of quadrature points on estimated results is given in Section 5. 

For the problem of suitable sampling range, the solution of using the 
adaptative Gauss-Hermite quadrature was proposed by [5] and [6]. In this 
approach, instead of using ( )2exp x−  as a Gaussian factor, they use a Gaussian 
density ( )2,φ µ σ  of mean μ and variance σ2. That means (see [5]): 

( ) ( )*

1
d

Q

q q
q

f x x w f x∗

=

= ∑∫                     (15) 

Then the sampling range is transformed and the new nodes are 
* 2q qx xµ σ= +  and weights are ( )* 22 expq q qw w xσ= . For [5], one can choose 

the normal density with posterior mean and variance equal respectively to μ and 
σ2. For the implementation, we can start with 0µ =  and 1σ =  and at each 
iteration of the likelihood maximization process, calculate the posterior 
weighted mean and variance of the quadrature points and use them to calculate 
the nodes and weights for the next iteration. For [6], one can choose μ to be the 
mode of the integrand ( )f x  and σ to be the square of the Hessian of the log of 
integrand taken in the mode. 

( )( )
1 2

2

2
ˆ

log
x x

f x
x

σ
−

=

 ∂
= −  ∂ 

                  (16) 

For the multivariate integral case, the same approach is used. Without lost of 
generality, we discuss the bivariate case that can be apply to others multivariate 
cases. The function to approximate is written as follows: 

( )2 , d df x y x y∫                         (17) 

With the assumption of independence between x and y (that can be overcome 
by using a Cholesky decomposition x x′ =  and y x yρ′ ′= + , see [5] or [7] for 
more precision on these Cholesky transformation or other transformations that 
can lead to similar results) the integral above can be approximated by: 

( ) ( )2 1 2 1 1
1 2

* * * *

1, 1
, d d ,

Q

q q q q
q q

f x y x y w w f x y
= =

= ∑∫               (18) 
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And in this case, the nodes and weights are derived as follows: 

( )( ) 11

11

1 2* 2

2*
ˆ,

ˆ 2 log , qq

qq x y x

xx
x f x y

yxy

−

=

    ∂   = + ∗ − ∗     ∂     
          (19) 

and 

( )( )
( )

( )
( )

1 11

2 2 2

1 2 2* 2

2* 2
ˆ,

exp
2 log ,

exp

q qq

q x y x q q

w xw
f x y

xw w x

−

=

   ∂    = ∗ − ∗
   ∂   

        (20) 

where A  denotes the determinant of matrix A, and x̂  denotes the mode of 
the integrand ( ),f x y . 

Jackel (2005) also suggests that for the nodes with low weights (when 
contributions to the integral value are not significant) we can prune the range 
from those nodes in order to save calculation time. That means to set a scalar  

( )1 1 2Qw w

Q
τ +
=  and drop all nodes with weights lower than this scalar. 

3.2. Maximum Simulated Likelihood Method 

Maximum Simulated Likelihood method was introduced by [4] as a solution to 
maximization problems that have an integral as objective function. In this 
approach, the likelihood function is supposed to be defined as: 

( ) ( ) ( )2
*

1 2 1 2 1 2, , , , , d df x y f x y u u g u u u u= ∫              (21) 

where ( )1 2,g u u  is a probability distribution function, ( )*
1 2, , ,f x y u u  is called 

simulator and denotes the function from which the mean value at some draws u1 
and u2 gives an approximation of the overall likelihood. Without lost of 
generality, we only define the two dimensions case that can be generalized to 
fewer or larger dimensions integral. For this kind of likelihood function, [4] 
proposed as simulator the function ( )*

1 2, , ,f x y u u  with u1 and u2 drawn from 
the same probability distribution function g (the probability distribution 
function of the individual random effects). Then the overall likelihood function 
can be approximated by (u1d denotes the dth draw from u1; the same definition 
holds for u2d): 

( ) ( )*
1 2

1

1, , , ,
D

d d
d

f x y f x y u u
D =

= ∑                 (22) 

where D denotes the number of draws. 
To implement this method, we start by simulating a bivariate normal draw 
( )20,N I  and we give them the ( )1 2,u u  covariance matrix structure. Then we 

calculate the value of the simulator at these transformed draws and we repeat D 
times. The overall likelihood is the mean of the simulator value at each 
transformed draw. At each iteration, once the random effects covariance matrix 
is calculated, we apply it to the simulated first normal draws to transform them 
in draws of the random effects and use them to calculate the likelihood. This 
process is repeated until convergence. 

https://doi.org/10.4236/tel.2018.86083


R. Moussa, E. Delattre   
 

 

DOI: 10.4236/tel.2018.86083 1264 Theoretical Economics Letters  
 

The simulated likelihood estimator is consistent and asymptotically equivalent 
to the likelihood estimator ([4]) if the number of draws tend to infinity faster 
than N . 

3.3. GHQ or MSL: What Method to Choose? 

As described above, they are two main methods to estimate our likelihood 
function. To choose which method to implement, we deal with the accuracy and 
the computing time requirement. 

For our estimations, we choose the adaptative Gauss-Hermite quadrature 
proposed by [7] for three main reasons. 
 Our dataset is an unbalanced panel data with 10,569 individuals observed in 

mean over 26 years, that leads 255,206 observations. Due to the fact that the 
simulated likelihood method requires that the number of draw D be larger 
than the square of the number of observations, we do not use it to avoid 
waste of time in computing process. 

 The Gauss-Hermite quadrature requires that we find the best number of 
quadrature Q that is the one for whom the integrand can be well 
approximated by an 2 1Q +  order polynomial. If Q is small, that reduces 
computing time. Our estimations are achieved in general for Q between 8 
and 14. It means that at each iteration, for the likelihood value calculation, 
we do a weighted sum of between 28 64=  and 214 196=  terms. 

 Using the Gauss-Hermite quadrature method reduces computing time but 
this computing time remains very long if the integrand is not sampled at the 
suitable range (meaning that the adaptative method has not been used). And 
in this case, the maximization process spends between two and three weeks 
before achieving convergence on an Intel Core i7 computer at 3.4 GHz with 8 
GB of RAM memory. By applying the adaptative Gauss-Hermite quadrature, 
the computing time is significantly reduced and then, we spend between two 
and three days for achieving convergence on the same computer. 

Note that the reduced convergence time mentioned above is in part due to the 
implementation of the first order derivatives of the likelihood function. Using 
the overall log-likelihood approximated by the Liu and Pierce adaptative 
Gauss-Hermite quadrature method, we can get derivatives with respect of all 
model parameters. The implementation of these derivative in the maximization 
process allows us to used the Stata’s d1 method. The convergence time saved by 
this method is clearly huge. On our overall data set, with 8 quadratures points, 
when we use a non adaptative quadrature method, the convergence is not 
achieved: after 3 weeks of computation, the model underflows. When we use the 
[6] adaptative Gauss-Hermite quadrature, but without implementing the first 
order derivatives, the estimation process takes 11 days and 10 hours to achieve 
convergence. When we use the adaptative Gauss-Hermite quadrature in [6] with 
implemented the first order derivatives, the estimation process achieve convergence 
only after 1 day and 17 hours. 
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4. Chosen Method Requirements 

In this section we describe some requirements of the selected method that is the 
adaptative Gauss-Hermite Quadrature. The first one is the fact that the 
adaptative Gauss-Hermite quadrature requires to derive the Hessian of the log of 
the integrand ([6]). The second one is that we derive the gradient of the overall 
likelihood function in order to use Stata’s d1 method (see [10]) for more 
accuracy and more speed in the calculations. 

4.1. Gradient Vector Calculation 

The gradient of the overall log-likelihood function has been calculated to speed 
up the maximization process. This will allow us to use the Stata’s d1 method that 
requires the implementation of the gradient vector in addition to the 
log-likelihood. The likelihood function for an individual i is: 

( ) ( ) ( )2
1 0 2 0 1 2 1 2 1 2 1 2

2 0 0 0 0 2
2

, , , , , d d
iT

i i i i i i i it it it it it it i i i
t

L q h q w q q q h q w q q ζ ηρ ρ φ η η η
=

= Φ Φ Σ∏∫


 (23) 

where  
1 12 1 ,it itq y i t= − ∀  
2 22 1 ,it itq y i t= − ∀  

0 1 1 2
1 11 12i i i ih Z γ λ η λ η= + +  

0 2 1 2
2 21 22i i i iw Z γ λ η λ η= + +  

1 1
1 11 , 1 12 , 1it it i t i t ih X h wβ δ δ η− −= + + +  

2 2
2 21 , 1 22 , 1it it i t i t iw X h wβ δ δ η− −= + + +  

Using the adaptative Gauss-Hermite quadrature method by [6], the overall 
likelihood function is given by (we use the same notation that those used in 
Section 3): 

( )

( ) ( ) 1 * 2 *

* * 1 0 2 0 1 2
2 0 0 0 0

1, 1

1 2 1 2
2 ,2

, ,

, , ,
i

i k i j

Q

i k j i i i i i i
k j

T

it it it it it it i x xt

L w w q h q w q q

q h q w q q ζ η η η

ρ

ρ φ η

= =

= ==

= Φ

× Φ Σ

∑

∏



         (24) 

To get the gradient vector, the log-likelihood above must be derived with 
respect to 13 parameters that are: ( )1 1 11 12, ,β β δ δ ′= , ( )2 2 21 22, ,β β δ δ ′= , 1γ , 2γ , 

11λ , 12λ , 21λ , 22λ , 1σ , 2σ , ηρ , ζρ , and ρ . 
Let’s kjl  denotes: 

( ) ( ) ( ) 1 * 2 *
1 0 2 0 1 2 1 2 1 2

2 0 0 0 0 2 ,2
, , , , ,

i

i k i j

T

kj i i i i i i it it it it it it i x xt
l q h q w q q q h q w q q ζ η η η

ρ ρ φ η
= ==

= Φ Φ Σ∏  

Then, the first order derivatives with respect to each α of the 13 parameters is 
given by: 

( )
1, 1

log Q
kji

k j i

lL
L

α
α = =

∂ ∂∂
=

∂ ∑  
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With respect to 1β  the first order derivative is: 

( )

( )

2 2
1 1

1 2

1 2 1 2
21 2

1

, ,

i

it it it it
it it it

T
kj

kj
t it it it it it it

q w q h
q q h

l
l

q h q w q q

ζ

ζ

ζ

ρ
φ

ρ

β ρ=

 − Φ
 −∂  =

∂ Φ
∑  

With respect to 2β  the first order derivative is: 

( )

( )

1 1
2 2

1 2

1 2 1 2
22 2

1

, ,

i

it it it it
it it it

T
kj

kj
t it it it it it it

q h q w
q q w

l
l

q h q w q q

ζ

ζ

ζ

ρ
φ

ρ

β ρ=

 − Φ
 −∂  =

∂ Φ
∑  

With respect to 1γ  the first order derivative is: 

( )

( )

2 0 2 0
1 1 0 0 0
0 0 1 2

1 0 2 0 1 2
1 2 0 0 0 0

1

, ,

i i i i
i i i

kj
kj

i i i i i i

q w q hq q h
l

l
q h q w q q

ρφ
ρ

γ ρ

 − Φ
 −∂  =

∂ Φ







 

With respect to 2γ  the first order derivative is: 

( )

( )

1 0 1 0
2 2 0 0 0
0 0 1 2

1 0 2 0 1 2
2 2 0 0 0 0

1

, ,

i i i i
i i i

kj
kj

i i i i i i

q h q wq q w
l

l
q h q w q q

ρφ
ρ

γ ρ

 − Φ
 −∂  =

∂ Φ







 

With respect to 11λ  the first order derivative is: 

( )

( )

2 0 2 0
1 * 1 0 0 0
0 0 1 2

1 0 2 0 1 2
11 2 0 0 0 0

1

, ,

i i i i
i k i i

kj
kj

i i i i i i

q w q hq x q h
l

l
q h q w q q

ρφ
ρ

λ ρ

 − Φ
 −∂  =

∂ Φ







 

With respect to 12λ  the first order derivative is:  

( )

( )

2 0 2 0
1 * 1 0 0 0
0 0 1 2

1 0 2 0 1 2
12 2 0 0 0 0

1

, ,

i i i i
i j i i

kj
kj

i i i i i i

q w q hq x q h
l

l
q h q w q q

ρφ
ρ

λ ρ

 − Φ
 −∂  =

∂ Φ







 

With respect to 21λ  the first order derivative is:  

( )

( )

1 0 1 0
2 * 2 0 0 0
0 0 1 2

1 0 2 0 1 2
21 2 0 0 0 0

1

, ,

i i i i
i k i i

kj
kj

i i i i i i

q h q wq x q w
l

l
q h q w q q

ρφ
ρ

λ ρ

 − Φ
 −∂  =

∂ Φ







 

With respect to 22λ  the first order derivative is:  

( )

( )

1 0 1 0
2 * 2 0 0 0
0 0 1 2

1 0 2 0 1 2
22 2 0 0 0 0

1

, ,

i i i i
i j i i

kj
kj

i i i i i i

q h q wq x q w
l

l
q h q w q q

ρφ
ρ

λ ρ

 − Φ
 −∂  =

∂ Φ






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With respect to 1σ  the first order derivative is: 

( )
( ) ( )

2* * *
1 1 2

2
1

1
log 1

k k jkj
kj

x x xl
l η

η

σ ρ σ σ

σ ρ

 −∂  = ∗ − + ∂ − 
 

 

With respect to 2σ  the first order derivative is: 

( )
( ) ( )

2* * *
2 1 2

2
2

1
log 1

j k jkj
kj

x x xl
l η

η

σ ρ σ σ

σ ρ

 −∂  = ∗ − + ∂ − 
 

 

With respect to ηρ  the first order derivative is: 

( ) ( )( ) ( ) ( )
2 2* * 2 * *

1 2 1 2

1 2 2

1

11
log

1

k j k jkj
kj

x x x xl
l

η η

η
ηη

η

ρ σ σ ρ σ σ
ρ

ρρ
ρ

 + − +∂  
= ∗ − − +  

∂     − 

 

With respect to ζρ  the first order derivative is:  

( )
( )

1 2 1 2 1 2

1 2 1 2 1 2
2 2

, ,

, ,1
log

1

iT
it it it it it it it itkj

kj
t it it it it it it

q q q h q w q ql
l

q h q w q q
ζ

ζζ

ζ

φ ρ

ρρ
ρ

=

∂
=

Φ +
∂   − 

∑  

With respect to ρ  the first order derivative is:  

( )
( )

1 2 1 0 2 0 1 2
0 0 0 0 0 0

1 2 1 0 2 0 1 2
2 0 0 0 0

, ,

, ,1log
1

i i i i i i i ikj
kj

i i i i i i

q q q h q w q ql
l

q h q w q q

φ ρ

ρρ
ρ

∂
=

Φ +
∂  − 







 

Remarks: 
• For 1σ , 2σ , ηρ , ζρ , and ρ , we used some transformations on 

parameters to insure that in the maximization process, each σ remains 
positive and each ρ remains between −1 and 1 at all iteration. For σ we use 
exponential transformation then in the derivation, we derive with respect to  

( )log σ . For ρ we use arc-tangency transformation (i.e. ( )
( )

exp 2 1
exp 2 1

ρ
ρ

−
+

) then 

in the derivation, we derive with respect to 
1 2

1log
1

ρ
ρ

 +
 − 

. 

• To easily derive a bivariate normal probability with zero mean, variance one 
and correlation ρ, we can transform it into an integral where the integrand is 
a product of an univariate normal density and an univariate normal 
probability as follows: 

( ) ( ) ( )2 2 2
, , d d .

1 1

y xx v y ux y v v u uρ ρ
ρ φ φ

ρ ρ−∞ −∞

   − −   Φ = Φ = Φ
   − −   

∫ ∫  

• Given the transformation above, the first order derivatives of ( )2 , ,x y ρΦ  
with respect to x and y are respectively given by: 
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( ) ( )2

2

, ,

1

x y y xx
x

ρ ρ
φ

ρ

 ∂Φ − = Φ
 ∂ − 

 

( ) ( )2

2

, ,

1

x y x yy
y

ρ ρ
φ

ρ

 ∂Φ − = Φ
 ∂ − 

 

4.2. Hessian Matrix Calculation 

For the requirement of the adaptative Gauss-Hermite quadrature method, we 
need to derive the Hessian matrix of the log of the integrand function with 
respect to the random effects vector3. From the individual likelihood function 
defined in Equation 23, the log of the integrand is: 

( )( )
( ) ( ) ( )

1 2

1 0 2 0 1 2 1 2 1 2
2 0 0 0 0 2

2

log ,

log , , , , ,
i

i i

T

i i i i i i it it it it it it i
t

g

q h q w q q q h q w q q ζ η

η η

ρ ρ φ η
=

 
= Φ Φ Σ 

 
∏

   (25) 

We derive from the log of the integrand in Equation (25) the Hessian matrix 
by calculating: 

( )
( )( )

2
1 2

21
log ,i i

i

g η η
η

∂
−
∂

 

( )
( )( )

2
1 2

22
log ,i i

i

g η η
η

∂
−
∂

 

( )( )
2

1 2
1 1 log ,i i
i i

g η η
η η
∂

−
∂ ∂

 

The first order derivatives are given by: 

( )
( )
( )

( )
( )

( )

1 2 1 21 0 2 0 1 2
22 0 0 0 0

1 0 2 0 1 2 1 2 1 2
22 0 0 0 0 2

1 2 2
1 1 2

2

, ,, ,
log

, , , ,

1

iT
it it it it it iti i i i i i

ti i i i i i i it it it it it it

i i

q h q w q qq h q w q q
g

q h q w q q q h q w q q
ζ

ζ

η

ρρ

η ρ ρ

η σ ρη σ σ
ρ

=

′′ ΦΦ∂
− = − −
∂ Φ Φ

−
+

−

∑

  

With respect to 1
iη  we have: 

( ) ( )

( )

1

2 0 2 0
1 0 2 0 1 2 1 1 0 0 0
0 0 0 0 0 11 0 12 2

1 0 1 0
2 2 0 0 0
0 21 0 1 2

, ,
1

1

i

i i i i
i i i i i i i i i

i i i i
i i i

q w q hq h q w q q q q h

q h q wq q w

η

ρ
ρ λ φ

ρ

ρ
λ φ

ρ

 − ′Φ = Φ
 − 
 − + Φ
 − 










 

 

 

3In this section, ( )xφ  denotes the univariate normal density function, ( ), ,x yφ ρ  denote the bi-

variate normal density with correlation ρ, ( )1 xΦ  denote the univariate normal probability func-

tion, and ( )2 , ,x y ρΦ  denote the bivariate normal probability function with correlation ρ. 
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( ) ( )1

2 2
1 2 1 2 1 1

12 2
, ,

1i

it it it it
it it it it it it it it it

q w q h
q h q w q q q q h ζ

ζη
ζ

ρ
ρ φ

ρ

 − ′Φ = Φ
 − 

 

And with respect to 2
iη  we have: 

( ) ( )

( )

2

2 0 2 0
1 0 2 0 1 2 1 1 0 0 0
0 0 0 0 0 12 0 12 2

1 0 1 0
2 2 0 0 0
0 22 0 1 2

, ,
1

1

i

i i i i
i i i i i i i i i

i i i i
i i i

q w q hq h q w q q q q h

q h q wq q w

η

ρ
ρ λ φ

ρ

ρ
λ φ

ρ

 − ′Φ = Φ
 − 
 − + Φ
 − 










 

( ) ( )2

1 1
1 2 1 2 2

12 2
, ,

1i

it it it it
it it it it it it it it

q h q w
q h q w q q q w ζ

ζη
ζ

ρ
ρ φ

ρ

 − ′Φ = Φ
 − 

 

The second order derivatives are given by: 

( )
( )

( ) ( )
( )

( )
( )

1

1

1

1 0 2 0 1 2 1 0 2 0 1 22 0 0 0 0 2 0 0 0 02
2 2 1 0 2 0 1 21

2 0 0 0 0

2 1 0 2 0 1 2
0 0 0 02

2 1 0 2 0 1 2
2 0 0 0 0

1 2
2

2

, , , ,
log

, ,

, ,

, ,

, ,

i

i

i
i

i i i i i i i i i i i i

i i i i i ii

i i i i i i

i i i i i i

T it it it it it

t

q h q w q q q h q w q q
g

q h q w q q

q h q w q q

q h q w q q

q h q w q

η

η

η

ρ ρ

ρη

ρ

ρ

=

′′Φ Φ∂
− = −

Φ∂

′Φ
+

Φ

′′Φ
−∑

 







( ) ( )
( )

( )
( ) ( )

1

1 2 1 2 1 2
2

2 1 2 1 2
2

2 1 2 1 2
2

2 22 1 2 1 2
12

, ,

, ,

, , 1
1, ,

i

it it it it it it it

it it it it it it

it it it it it it

it it it it it it

q q h q w q q

q h q w q q

q h q w q q

q h q w q q

ζ ζ

ζ

ζη

ηζ

ρ ρ

ρ

ρ

σ ρρ

 Φ

 Φ

′Φ
− +
 −Φ 

(26) 

( )
( )

( ) ( )
( )

( )
( )

1
2

2

2

1 0 2 0 1 2 1 0 2 0 1 22 0 0 0 0 2 0 0 0 02
2 2 1 0 2 0 1 22

2 0 0 0 0

2 1 0 2 0 1 2
0 0 0 02

2 1 0 2 0 1 2
2 0 0 0 0

1 2
2

2

, , , ,
log

, ,

, ,

, ,

, ,

i

i
i

i i i i i i i i i i i i

i i i i i ii

i i i i i i

i i i i i i

T it it it it it

t

q h q w q q q h q w q q
g

q h q w q q

q h q w q q

q h q w q q

q h q w q

η

η

η

ρ ρ

ρη

ρ

ρ

=

′′Φ Φ∂
− = −

Φ∂

′Φ
+

Φ

′′Φ
−∑

 







( ) ( )
( )

( )
( ) ( )

2

1 2 1 2 1 2
2

2 1 2 1 2
2

2 1 2 1 2
2

2 1 2 1 2 2 2
2 1

, ,

, ,

, , 1
, , 1

i

it it it it it it it

it it it it it it

it it it it it it

it it it it it it

q q h q w q q

q h q w q q

q h q w q q

q h q w q q

ζ ζ

ζ

ζη

ζ η

ρ ρ

ρ

ρ

ρ σ ρ

 Φ

 Φ

′Φ
− +
Φ −

(27) 

( )
( ) ( )

( )
( ) ( )

1 2

1 2

1 0 2 0 1 2 1 0 2 0 1 22 0 0 0 0 2 0 0 0 02
1 2 2 1 0 2 0 1 2

2 0 0 0 0

1 0 2 0 1 2 1 0 2 0 1 2
0 0 0 0 0 0 0 02 2

2 1 0 2 0 1 2
2 0 0 0 0

, , , ,
log

, ,

, , , ,

, ,

i i
i i i i i i i i i i i i

i i i i i i i i

i i i i i i i i i i i i

i i i i i i

q h q w q q q h q w q q
g

q h q w q q

q h q w q q q h q w q q

q h q w q q

εη η

η η

ρ ρ

η δη ρ

ρ ρ

′′Φ Φ∂
− = −
∂ Φ

′ ′Φ Φ
+

Φ





 
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( ) ( )

( )
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1 2 1 2 1 2 1 2
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2 1 2 1 2
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, , , ,

, ,

i
i i

T it it it it it it it it it it it it

t it it it it it it

q h q w q q q h q w q q
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ζ ζη η

ζ

ρ

ρ ρ
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 ′′Φ Φ
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 Φ
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
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( ) ( )
( )

( )

1 2
1 2 1 2 1 2 1 2

2 2
2 1 2 1 2
2

2
1 2

, , , ,

, ,

1

it it it it it it it it it it it it

it it it it it it

q h q w q q q h q w q q

q h q w q q
ζ ζη η

ζ

η

η

ρ ρ

ρ

ρ

σ σ ρ

′ ′Φ Φ
−
Φ 

−
−

(28) 

where 

( )
( ) ( )

1

1 1

1 2 1 2
2

1 2 1 2 1 2 1 2
2

, ,

, , , ,
i

i i

it it it it it it

it it it it it it it it it it it it it

q h q w q q

h q h q w q q q h q w q q

ζη

ζ ζ ζη η

ρ

ρ ρ φ ρ
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2 1

1 2 1 2
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, , , ,
i
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it it it it it it it it it it it it it
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ζη
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ρ ρ φ ρ

′′Φ

′= − Φ −
 

( ) ( )1 2 1
1 2 1 2 1 2 1 2 1 2

2
, , , ,

i i i
it it it it it it it it it it it it it itq h q w q q q q q h q w q qζ ζη η η

ρ ρζφ ρ′′Φ =  
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
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η η
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λ λ φ
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= + − +

 − − Φ
 − 
 −− Φ
 − 



 












 

Then, the Hessian matrix is given by: 

( )
( ) ( )

( )
( )

( )

2 2

2 1 21

2 2

1 2 22

log log

log log

i ii

i i i

g g

H
g g

η ηη

η δη η

 ∂ ∂
− − ∂ ∂∂ 

=  
∂ ∂ − − ∂ ∂ 

               (29) 
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As described in Section 3.1, after having derived this Hessian matrix, we 
calculate its value at the mode of the integrand and use it to re-sample the 
integrand. 

5. Robustness Analysis Based on Simulations 

This section aims to insure that the implemented method gives suitable results. 
We consider that the implemented method give us suitable results if for a given 
relationship between variables, by applying the estimation method on these 
variables we find approximatively the same coefficients. To reach this goal, we 
perform a robustness analysis on the estimation method. This robustness 
analysis is an empirical one based on simulations. We use two different 
approaches for that. 

The first approach is to simulate bivariate binary variables by specifying a 
relationship between some explanatory variables (it means that we set 
coefficients of explanatory variables) and estimate this relationship with the 
implemented method in order to compare the results with the relationship 
specified before. In the second approach, we introduce new variables (that were 
not used in the data generating process) when estimating the relationship with 
the implemented method and compare the new results with the first ones. The 
implemented method is robust when it is able to correctly estimate the 
relationship specified even if we introduce other variables and also to estimate 
non significant coefficients to those other variables. Finally, the method we make 
use of to check for the robustness is the same that in [11]. 

As the estimation method implemented is a numerical approximation method, 
the results will depend on the selected number of quadrature points. We deal 
with the incidence of number of quadrature points on results in the last part of 
this section. For a better analysis of the results we also add the standard errors of 
each estimated coefficients. 

5.1. Simulated Relationship between Real Variables 

In this section, we use variables from the French SIP (Santé et Itinéraire 
Professionnel) survey data set and we simulate error terms and a relationship 
between some selected variables. The subset of the database use for this section is 
an unbalanced panel of 1202 individuals with total waves per individual between 
5 and 10 waves. 

We set the error terms parameters as 1 2.1σ = , 2 3.1σ = , 0.7ηρ = , 
0.5ζρ =  and 0.4ρ = . 

We simulate idiosyncratic errors vectors ( )1 2,ζ ζ ζ ′=  and ( )1 2, ′=    as 
bivariate normal variables with zero mean, variance equal to 1 and covariances 
respectively equal to ζρ  and ρ . We also simulate individual random effects 
as bivariate normal variables with zero mean, covariance equals to ηρ  and 
variance equals to 2

1σ  for the first component of the random effects vector and 
equals to 2

2σ  for the second component of the random effects vector. It has 
been done as follows: 
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( )1 0,1rnormal=  

( ) 2
2 10,1 1rnormal ρ ρ= ∗ − +    

( )1 0,1rnormalζ =  

( ) 2
2 10,1 1rnormal ζ ζζ ρ ρ ζ= ∗ − +  

where ( ),rnormal µ σ  denote the random normal density with mean μ and 
standard deviation σ. As individuals effects are time invariant, we simulate η as 
follows: 

( )1 10, if 1rnormal tη σ= =  

( ) 2 2
2 2 1

1

0, 1 if 1rnormal tη η
σ

η σ ρ ρ η
σ

= ∗ − + =  

[ ]1 1 1 if 1t tη η= = ≠  

[ ]2 2 1 if 1t tη η= = ≠  

For the initial conditions ( 1t = ), the simulated relationship is the following: 
*
1 1 2 10.2 0.3 0.2 0.4 0.5y ill unemp η η= − + − + − +   

*
2 1 2 22 0.2 0.08 0.3 0.5y ill age η η= − − + + +   

( )*
1 1 0y y= >  

( )*
2 2 0y y= >  

For 1t > , we specify the following relationship: 
*
1 1, 1 2, 1 1 11.9 0.3 0.1 0.05 0.2t t t t t ty y y Male unemp η ζ− −= + + − − + +  

*
2 1, 1 2, 1 2 20.4 0.1 0.4 0.05 0.5t t t t t ty y y Male dens η ζ− −= − − + + − + +  

( )*
1 1 0t ty y= >  

( )*
2 2 0t ty y= >  

The variable ill denotes having an illness episode in the year, unemp denotes 
being out of labour marking during the year, age denotes the age of individual, 
and Male is 1 if individual is male and 0 otherwise. Estimation results for 16 
quadrature points are displayed in Table 1. For all equations, we give the 
coefficients that are used in the DGP and those that are estimated by our 
program. As we can see, all the coefficients from the DGP are very closed from 
the estimates ones. 

5.2. Simulated Relationship with Additional Variables 

In this section, we keep the same DGP than in Section 5.1 and we add other 
variables in the model that we estimate in order to evaluate the robustness of the 
estimation method by the fact that all estimated coefficients for variables in the 
DGP should remain the same and the added variables coefficients should not  
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Table 1. Simulated data set estimation’s results. 

 Equation (1) Equation (2) 

 DGP Estimated coef. DGP Estimated coef. 

 (1) (2) (1’) (2’) 

 Dynamic Equation 

y1 − 1 0.3 ( )0.05
0.2195

∗∗∗  −0.4 ( )0.0567
0.0051−  

y2 − 1 0.1 ( )0.0513
0.1267

∗∗  0.4 ( )

***

0.061
0.4926  

Gender = Male −0.05 
( )0.0521
0.0554−  0.05 ( )0.0594

0.073  

Medical density − − 0.5 ( )1.1111
0.5687  

Unemployment rate −0.2 
( )

***

0.269
0.1682−  − − 

Intercept 1.9 
( )

***

0.2667
2.3113  −0.4 ( )2.122

0.4677−  

 Initial Conditions 

Illness before prof: life 0.3 
( )

***

0.0283
0.3032  −0.2 

( )

***

0.0221
0.1624−  

Age − − −0.08 ( )

***

0.0202
0.093−  

Unemployment rate −0.2 
( )0.057

0.144
∗∗

−  − − 

Intercept −0.2 
( )0.6194
0.7331−  2 ( )

***

0.4591
2.6757  

1λ  0.4 
( )

***

0.0651
0.2581  0.3 ( )

***

0.0463
0.2660  

2λ  −0.5 
( )

***

0.0753
0.5168−  0.5 ( )

***

0.0598
0.7022  

 Covariance matrix structure 

 DGP Estimated coef. 

 (4) (5) 

1σ  2.1 ( )

***

0.1034
2.4399  

2σ  3.1 ( )

***

0.1365
2.7649  

ηρ  0.7 ( )

***

0.0212
0.7188  

ζρ  0.5 ( )

***

0.0419
0.5290  

ερ  0.4 ( )

***

0.1378
0.6972  

Estimated standard deviations for estimated coefficients are given within parenthesis. ***: significant at the 
1% level, **: significant at the 5% level. 

 
significant. We introduce two variables rural and nationality (not French) in the 
dynamic equations of the regression. 

Results are in Table 2. Columns 1 and 2 in Table 2 are the same than 
corresponding columns in Table 1. We provide in Table 2, column 3, the new 
results with the additional variables in order to compare with previous estimates4. 
As we can see in the Table 2, the coefficients estimated (using again 16 
quadrature points) for those variables are not significant and all initial 
coefficients in the model remain approximately the same. 

 

 

4We do the same with columns 1’, 2’ of Table 1 and Table 2 (new results are in column 3’) and with 
columns 4 and 5 of both tables (new results in column 6). 
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Table 2. Simulated data set with added variables estimation’s results. 

 Equation (1) Equation (2) 

 DGP coef: coef: DGP coef: coef: 

 (1) (2) (3) (1’) (2’) (3’) 

 Dynamic Equation 

y1 − 1 0.3 
( )

***

0.05
0.2195  

( )

***

0.05
0.2184  −0.1 

( )0.0567
0.0051−  

( )0.0568
0.0052−  

y2 − 1 0.1 
( )

**

0.0513
0.1267  

( )

**

0.0513
0.1283  0.4 

( )

***

0.061
0.4926  

( )

***

0.0612
0.4944  

Gender = Male −0.05 
( )0.0521
0.0554−  

( )0.0521
0.0571−  0.05 

( )0.0594
0.073  

( )0.0596
0.0751  

Medical density − − − 0.5 
( )1.1111

0.5687  
( )1.1112

0.5567  

Unemployment 
rate 

−0.2 
( )

***

0.0269
0.1682−  

( )

***

0.0269
0.1698−  − − − 

Not French − − 
( )0.0956

0.1246  − − 
( )0.1076

0.0015  

rural − − 
( )0.0628

0.0743  − − 
( )0.0719

0.0283  

Intercept 1.9 
( )

***

0.2667
2.3113  

( )

***

0.2667
2.2994  −0.04 

( )2.122
0.4677−  

( )2.1215
0.4527−  

 Initial Conditions 

Illness before 
prof: life 

0.3 
( )

***

0.0283
0.3032  

( )

***

0.0283
0.3032  −0.2 

( )

***

0.0221
0.1624−  

( )

***

0.0221
0.1627−  

Age − − − −0.08 
( )

***

0.0202
0.093−  

( )

***

0.0202
0.0932−  

Unemployment 
rate 

−0.2 
( )

**

0.057
0.144−  

( )

**

0.057
0.144−  − − − 

Intercept −0.2 
( )0.6194
0.7331−  

( )0.6195
0.7335−  2 

( )

***

0.4591
2.6757  

( )

***

0.4595
2.6803  

1λ  0.4 
( )

***

0.0651
0.2581  

( )

***

0.0653
0.2582  0.3 

( )

***

0.0463
0.266  

( )

***

0.0464
0.267  

2λ  −0.5 
( )

***

0.0753
0.5168−  

( )

***

0.0754
0.5171−  0.5 

( )

***

0.0598
0.7022  

( )

***

0.0599
0.703  

 Covariance matrix structure  

 DGP 
Estimated 

coef: 
Estimated 

coef: 
 

 (4) (5) (6)  

1σ  2.1 
( )

***

0.1034
2.4399  

( )

***

0.1032
2.4353   

2σ  3.1 
( )

***

0.1365
2.7649  

( )

***

0.1366
2.763   

ηρ  0.7 
( )

***

0.0212
0.7188  

( )

***

0.0212
0.7187   

ζρ  0.5 
( )

***

0.0419
0.529  

( )

***

0.0419
0.5301   

ερ  0.4 
( )

***

0.1379
0.6972  

( )

***

0.1378
0.697   

Estimated standard deviations for estimated coefficients are given within parenthesis. ***: significant at the 
1% level. **: significant at the 5% level. 

5.3. Impact of Number of Quadrature Points on Estimated Results 

As the accuracy of the method depends on the number of quadrature points 
used for the likelihood calculation, we propose an assessment of how it affects 
the results when this number increases. For doing so, we fit the same model with 
different numbers of quadrature points and we calculate the relative difference 
in log-likelihood and in estimated parameters. 

We fit some models by using the same simulated relationship between 
variables as in Section 5.1. 
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The results are displayed in the Table 3 for dynamic equations and in the 
Table 4 for initial conditions equations and errors terms covariance matrix 
structure. 

As we can see from Table 3 and Table 4, by increasing the number of 
quadrature points the changes in results decline and the relative differences are 
around 0.01% for significant coefficients and 0.1% or at most 1% for non 
significant coefficients. After 16 quadrature points, the relative differences in 
log-likelihood and in estimated coefficients become fewer as we increase the 
number of quadrature points. The estimations with 22 quadrature points are 
closer to those with 24 quadrature points than the others. So when we increase 
the number of quadrature points the changes in estimated coefficients are not 
significant but the computing time grows up exponentially. For these models, 
estimation time on an i5 core computer at 2.5 GHz with 6 GB of RAM memory 
for the different number of quadrature points are given in Table 5. 

6. Conclusions 

This paper describes the bivariate dynamic probit model with endogenous initial 
conditions starting by justifying the econometric specification of the model, 
giving the estimation method and its requirements and ending by presenting a 
robustness analysis. We calculate the derivatives of the log-likelihood function 
(the gradient) with respect to the 13 parameters in the model. This is the main 
contribution of our research as many programs use numerical computation of 
the gradient vector instead of encoding the mathematically derived expression of 

 
Table 3. Impact of the number of quadrature points on estimation results. Part A. 

 DGP Q = 10 Q = 16 Q = 22 Q = 24 

Log likelihood  −8212.05 −8211.26 −830.71 −8301.27 

y1 Dynamic equation 

y1 − 1 0.3 
( )

***

0.0489
0.2754  

( )

***

0.05
0.2195  

( )

***

0.052
0.2206  

( )

***

0.0527
0.2131  

y2 − 1 0.1 
( )

***

0.0483
0.1376  

( )

**

0.0513
0.1267  

( )

**

0.0554
0.1196  

( )

*

0.0568
0.1010  

Gender = Male −0.05 
( )0.0479
0.0580−  

( )0.0521
0.0554−  

( )0.058
0.0732−  

( )0.0604
0.0599−  

Unemployment rate −0.2 
( )

***

0.0262
0.1509−  

( )

***

0.0269
0.1682−  

( )

***

0.0273
0.1792−  

( )

***

0.0275
0.1810−  

Intercept 1.9 
( )

***

0.2598
2.3270  

( )

***

0.2667
2.3113  

( )

***

0.2726
2.3089  

( )

***

0.2753
2.30  

y2 Dynamic equation 

y1
−1 −0.1 

( )0.0541
0.0224  

( )0.0567
0.0051−  

0.0594
0.0136−  

( )0.0605
0.0191−  

y2
−1 0.4 

( )

***

0.0596
0.5851  

( )

***

0.0610
0.4926  

( )

***

0.0642
0.4846  

( )

***

0.0650
0.4752  

Gender = Male 0.05 
( )0.0542

0.0570  
( )0.0594

0.0730  
( )0.0650

0.0817  
( )0.0673

0.0725  

Medical density 0.5 
( )1.0685

1.3305  
( )1.1111

0.5687  
( )1.1357

0.4874  
( )1.1473

0.3549  

Intercept −0.4 
( )2.040

1.7595−  
( )2.1220
0.4677−  

( )2.1704
0.4064−  

( )2.1936
0.1492−  

Estimated standard deviations for estimated coefficients are given within parenthesis. ***: significant at the 
1% level. **: significant at the 5% level. 
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Table 4. Impact of the number of quadrature points on estimation results. Part B. 

 DGP Q = 10 Q = 16 Q = 22 Q = 24 

y1 Initial conditions 

Illness before 
prof: life 

0.3 
( )

***

0.0278
0.3005  

( )

***

0.0283
0.3032  

( )

***

0.0282
0.3022  

( )

***

0.0284
0.3026  

Unemployment 
rate 

−0.2 
( )

***

0.0573
0.1592−  

( )

**

0.0570
0.1440−  

( )

**

0.0571
0.1437−  

( )

**

0.0572
0.1431−  

Intercept −0.2 
( )0.6197
0.6120−  

( )0.6194
0.7331−  

( )0.6187
0.7065−  

( )0.6188
0.7153−  

11λ  0.4 
( )

***

0.0644
0.2608  

( )

***

0.0651
0.2581  

( )

***

0.0658
0.2584  

( )

***

0.0664
0.2628  

12λ  −0.5 
( )

***

0.0723
0.5076−  

( )

***

0.0753
0.5168−  

( )

***

0.0744
0.5051−  

( )

***

0.0741
0.5019−  

y2 Initial conditions 

Age −0.08 
( )

***

0.0196
0.0859−  

( )

***

0.0202
0.0930−  

( )

***

0.0205
0.0929−  

( )

***

0.0207
0.0943−  

Illness before 
prof: life 

−0.2 
( )

***

0.0221
0.1593−  

( )

***

0.0221
0.1624−  

( )

***

0.0225
0.1648−  

( )

***

0.0226
0.1650−  

Intercept 2 
( )

***

0.4483
2.7329  

( )

***

0.4591
2.6757  

( )

***

0.4644
2.5788  

( )

***

0.4676
2.5904  

21λ  0.3 
( )

***

0.0467
0.2689  

( )

***

0.0463
0.2660  

( )

***

0.0474
0.2691  

( )

***

0.0475
0.2679  

22λ  0.5 
( )

***

0.0607
0.7136  

( )

***

0.0598
0.7022  

( )

***

0.0625
0.7008  

( )

***

0.0626
0.6932  

 Covariance matrix structure 

1σ  2.1 
( )

***

0.1053
2.5202  

( )

***

0.1034
2.4399  

( )

***

0.1047
2.3920  

( )

***

0.1051
2.3898  

2σ  3.1 
( )

***

0.1307
2.7012  

( )

***

0.1365
2.7649  

( )

***

0.1444
2.7928  

( )

***

0.1468
2.8281  

ηρ  0.7 
( )

***

0.0206
0.7380  

( )

***

0.0212
0.7188  

( )

***

0.0219
0.7143  

( )

***

0.0219
0.7162  

ζρ  0.5 
( )

***

0.0411
0.5451  

( )

***

0.0419
0.5290  

( )

***

0.0423
0.5225  

( )

***

0.0424
0.5145  

ερ  0.4 
( )

***

0.1394
0.6550  

( )

***

0.1378
0.6972  

( )

***

0.1381
0.6996  

( )

***

0.1371
0.6944  

Estimated standard deviations for estimated coefficients are given within parenthesis. ***: significant at the 
1% level. **: significant at the 5% level. *: significant at the 10% level. 

 
Table 5. Computing time for different number of quadrature points. 

Quad. points 10 16 22 24 

Comp. time (in min.) 83 190 450 480 

 
the gradient. Furthermore, for the use of the adaptative Gauss-Hermite 
quadrature, we also calculate the Hessian matrix with respect to individual 
random effects vector. 

The implementation has been done using Stata software. We wrote 2 ado-files 
for this purpose. We use Stata’s d1 method for the maximization process. For 
the use of this method, we implement the gradient vector for the 13 parameters 
and we also implement the Hessian matrix with respect the random effects 
vector in order to use the adaptative Gauss-Hermite quadrature. We also wrote 
two others ado-files for the estimation of the bivariate probit for panel data 
and the bivariate dynamic probit without initial conditions for panel data. 
These ado-files are written using the same method (Stata’s d1 method) with 
the adaptative Gauss-Hermite quadrature. These ado-files are available upon 
request. 
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Due to the fact that the integration is bi-dimensional, estimation time is very 
high and stills increasing when the number of quadrature points or the number 
of observation or the number of explanatory variable increase. For an estimated 
model, one should insure that when increasing the number of quadrature point, 
the computed results don’t change significantly before using them. It means that 
the relative difference in the results must be around 0.1% or fewer, and if so, we 
can conclude that the results remain stable when increasing the number of 
quadrature points. And, it means that there is no need to increase the number of 
quadrature points that will increase computing time but will not improve 
significantly the results. However, increasing the number of quadrature points 
also increases the computation time. One way for major improvement of the 
program is the use of multi-core (parallel) computing scheme. This scheme 
allows to make the computation of the contributions to the likelihood (Equation 
(23)) at each quadrature point separately and simultaneously on several cores. It 
has the advantage to save time since the contributions are computed in the same 
time. 

Finally, our method gives reasonable computing durations with real dataset. 
In [12], we make use of the full SIP data set with 10,569 individuals and 255,206 
observations. 
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