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Abstract 

We show that the electron-positron annihilation process resulting with the 
creation of two gamma photons cannot be fully determined without the con-
servation of the angular momentum which has two elements, namely, the 
conservation of the spin angular momentum and the conservation of the 
quantum flux which work as the conservation of the magnetic moments as 
well. The conservation of the quantum flux has never been considered so far 
for any collision process. We show that the missing conservation rule in the 
above process is the conservation of the total quantum flux which is the hid-
den variable of that process. By using the quantum entanglement together 
with the conservation of the quantum flux we show that the initial and the fi-
nal states of this collision are fully determined. We also show that each of the 
gamma photons created in the end carries a quantum flux of 0 hc e±Φ = ±  
with itself along the propagation direction. Here the (+) and (−) signs corres-
pond to the right hand and left circular helicity, respectively.  
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1. Introduction 

Electron-positron annihilation process has been known since the year 1930. 
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After the collision we have two gamma photons with the same energy 
2

0E m c ћω= =  but with different helicities. Here 0m  is the rest mass of the 
electron (e−) and the positron (e+) and ω is the angular frequencies of the created 
photons. The aim of the present work is to show that the electron-positron an-
nihilation process resulting with the creation of two gamma photons cannot be 
fully determined without the conservation of the angular momentum which has 
two elements, namely, the conservation of the spin angular momentum and the 
conservation of the quantum flux. The conservation of the quantum flux has 
never been considered so far for any collision process. We show that the missing 
conservation rule in the above process is the conservation of the total quantum 
flux which corresponds to the hidden variable in that process. By using the 
quantum entanglement together with the conservation of the quantum flux we 
show that the initial and the final states of this collision are fully determined. We 
also show that each of the gamma photons created in the end carries a quantum 
flux of 0 hc e±Φ = ±  with itself along the propagation direction. Here the (+) 
and (−) signs correspond to the right hand and left circular helicity, respectively. 
Since the quantum flux is essential for the hidden variables, we give a summary 
of related works so far. Magnetic flux quantization has been known since Lon-
don [1] and Onsager [2]. Recently Saglam and Boyacioglu [3] calculated semic-
lassically, the quantized magnetic flux through the Landau orbits of an electron 
including the effect of the spinning motion. They showed that the spin  

contribution to the quantized flux is equal to ( 0
1
2

± Φ ) depending on the spin  

orientation. Here 7 2
0 4.14 10 G cmhc e −Φ = = × ⋅ . Wan and Saglam [4] calcu-

lated quantum mechanically the intrinsic magnetic flux of an electron due to its 
orbital motion in a non-relativistic hydrogen atom by using the Schödinger equ-
ation and then extended their result to incorporate the spin angular momentum 
as well. They showed that the intrinsic magnetic flux quanta coming from the 
quantum numbers ml and ms are (−mlΦ0) and (−msΦ0) respectively. It was first 
time pointed out by Wan [5] that the intrinsic quantum flux of electron must be 
related to the hidden variables in quantum mechanics. In Appendix I we show 
that the conservation of the angular momentum has two elements, namely, the 
conservation of the spin angular momentum and the conservation of the quan-
tum flux. Since later one has not been considered so far in any collision, we ar-
gue that the conservation of the quantum flux in any collision must be related to 
the hidden variables in quantum mechanics. In Appendix II we show that the 
conservation of the quantum flux can be replaced by the conservation of the 
magnetic moments as well. As the subject of present study is related to the in-
trinsic fluxes of (e−) and (e+) we need to calculate these fluxes in the relativistic 
sense. Although Wan and Saglam [4] estimated the intrinsic magnetic flux of an  

electron to be ( 0
1
2

± Φ ) by using the non-relativistic Schödinger equation, a  

rigorous proof has been needed also. In Appendix III we calculate the intrinsic 
fluxes of (e−) and (e+) by the spin dependent solutions [6] of the Dirac equation 

https://doi.org/10.4236/jmp.2018.95061


M. Saglam et al. 
 

 

DOI: 10.4236/jmp.2018.95061 987 Journal of Modern Physics 

 

for free electron (or positron) in a uniform magnetic field. We then prove that  

the intrinsic fluxes of (e−) and (e+) are ( 0
1
2

± Φ ) depending on the spin  

orientation. The outline of this paper is as follows: In Section 2 we explain the 
need for hidden variables in quantum mechanics. In Section 3 we find the exact 
initial and final state wave functions of the electron-positron annihilation 
process by using the conservation of the spin angular momentum and the con-
servation of quantum flux which can be replaced by the conservation of the 
magnetic moments. In Section 4 we give the conclusions. 

2. The Need for Hidden Variables in the Electron-Positron 
Annihilation Process 

The electron-positron annihilation occurs when an electron (e−) and a positron 
(e+) collide. 

After the collision we have two gamma photons with the same energy, 
2

0E m c ћω= = . Here 0m  is the rest mass of both (e− and e+) and ω is the angu-
lar frequencies of the gamma photons. In this collision we have the conservation 
of charge, energy, linear momentum and the angular momentum. It has been 
known that the above conservation rules are not adequate to determine the final 
state quantum mechanically. Therefore an extra conservation rule which is the 
hidden variables in this case, is needed. We will show that the missing conserva-
tion rule has been the conservation of the total quantum flux which is essentially 
a component of the angular momentum conservation law (Appendix I). 

To proceed further, we will assume that electron and positron collide at the 
origin of the coordinate system. After the collision we will have two photons 
with the same energy: 

2
0m c ћ ћkc hE cω λ= = = =                    (1) 

Here 2
0m c  is the rest mass energy of both e− and e+ and ћω is energy of the 

each gamma photon with the angular frequency ω. Just before the collision the 
relative spin orientation of e− and e+ will be controlled by the Heisenberg ex-
change Hamiltonian [7] [8]. If we had two electrons instead, the exchange ener-
gy would have the form: 

( ) ( ) 1 2, 2 ,excU e e J e e− + − += − ⋅S S                   (2) 

where 1S  and 2S  are the spin vectors of these two electrons and ( ),J e e− −  
is the exchange integral which is a positive quantity for the repulsive Coulomb 
potentials [8] resulting that Heisenberg Exchange Hamiltonian excU  has a mi-
numum eigenvalue for opposite spins. But for an electron-positron ( ),e e− +  
pair the exchange Hamiltonian has the opposite sign: 

( ) ( ) 1 2, 2 ,excU e e J e e− + − += ⋅S S                   (3) 

where 1S  and 2S  are the spin vectors of electron’s and positron’s respectively. 
This time because of the attractive Coulomb potential between e− and e+ the ex-
change integral ( ),J J e e− +=  will be a negative quantity: J J= −  resulting 
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1 22excU J= − ⋅S S  which has a minimum energy eigenvalue for parallel spins. 
Therefore just before the collision the total z-component of the spin of the col-
liding ( ),e e− +  system will be ±1. That means there are two possibilities: 

1) electron is in spin-down state and positron is in spin-down state. 
2) electron is in spin-up state and positron is in spin-up state. 
In Dirac notation the eigenstates (a) and (b) can be defined as: 

a e eφ − += ↓ ↓                           (4a) 

b e eφ − += ↑ ↑ .                         (4b) 

The z-components of the spin for the eigenstates (a) and (b) given in Equa-
tions (4a) (4b) are: 

( ) 1 1 1
2 2z a

S = − − = −∑                      (5a) 

( ) 1 1 1
2 2z b

S = + =∑ .                       (5b) 

Since the states (a) and (b) are equally probable, the total initial wave function 

iΨ  before the collision can be written as in two forms; Namely: 

( ) ( )initial-1
1 1
2 2a b e e e eφ φ − + − +Ψ = + = ↓ ↓ + ↑ ↑    (6a) 

( ) ( )initial-2
1 1
2 2a b e e e eφ φ − + − +Ψ = − = ↓ ↓ − ↑ ↑     (6b) 

which are the quantum entanglement of the states e− ↓ , e+ ↓ , e− ↑  and
e+ ↑ . The expectation value of zS∑  (the total z-component of the spin) for 

the initial states in Equations (6a) and (6b) are: 

( ) ( ) ( )initial-1

1 1 1 1 0
2 2z z za b

S S S= + = − + =∑ ∑ ∑       (7a) 

( ) ( ) ( )initial-2

1 1 1 1 1
2 2z z za b

S S S = − = − − = − ∑ ∑ ∑     (7b) 

The total wave function, fΨ  of the system after collision, will correspond to 
another entanglement of the states e− ↓ , e+ ↓ , e− ↑  and e+ ↑  pro-
vided that all the conservation rules are met. Again there are two possibilities for 
the final wave function. These are: 

( ) ( )final-1
1 1
2 2a b e e e eφ φ − + − +′ ′Ψ = + = ↓ ↑ + ↑ ↓     (8a) 

( ) ( )final-2
1 1
2 2a b e e e eφ φ − + − +′ ′Ψ = − = ↓ ↑ − ↑ ↓     (8b) 

where 

a e eφ − +′ = ↓ ↑ ; b e eφ − +′ = ↑ ↓ .                (8c) 

The z-components of the spin for the eigenstates aφ′  and bφ′  of Equation  

(8c) are: ( ) 0z a
S ′ =∑  ( ) 0z b

S ′ =∑  respectively. Therefore the expectation  
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value of zS∑  for the final states given in Equations (8a) and (8b) are: 

( )final-1

1 0 0 0
2zS = + =∑                   (9a) 

( )final-2

1 0 0 0
2zS = − =∑ .                  (9b) 

If we compare the total z-component of the spin before and after the collision, 
Equations (7a) (7b) and Equations (9a) (9b), we see that the conservation of the 
spin angular momentum excludes the initial wave function ( initial-2Ψ ) given in 
Equation (6b) as it has total z-component of spin equal to (−1) but not zero. 
However the conservation of the spin angular momentum does not distinguish 
the final states given in Equation (8a) and (8b) as they have the same 
z-component of spin given in Equations (9a) (9b). Therefore there must be 
another conservation rule (besides the conservation of charge, energy, linear and 
spin angular momentum) that fully determines the final state. In Appendix I we 
will show that the conservation of the angular momentum requires also the con-
servation of the flux quantum as well. Namely: 

Total flux quanta before the collision = Total flux quanta after the colli-
sion 

Therefore in all the collisions that the conservation of the spin and the orbital 
angular momentums are involved, the conservation of the quantum flux is a ne-
cessary condition to find the exact wave functions before and after the collision. 
Therefore the statement given above must contain the hidden variables to de-
termine the final state exactly. In the following section we will show that the 
conservation of the quantum flux excludes the final wave function ( final-2Ψ ) giv-
en in Equation (8b). So the collision of the electron and the positron resulting 
with the creation of two gamma photons simply corresponds to the transition 
from the initial entangled state ( initial-1Ψ ) to the final entangled state ( final-1Ψ ); 
Namely: 

( ) ( )1 1
2 2

e e e e e e e e− + − + − + − +↓ ↓ + ↑ ↑ → ↓ ↑ + ↑ ↓   (10) 

3. Finding the Exact Initial and Final State Wave Functions of 
the Electron-Positron Annihilation Process by Using Spin 
Angular Momentum and the Quantum Flux Conservation 

As was stated in the introduction section and calculated rigorously in Appendix 
II the intrinsic quantum fluxes that a free electron (or a positron) carries with 
itself are: 

( ) 0

2 2
hce

e
− Φ

Φ ↓ = =                        (11) 

( ) 0

2 2
hce

e
− Φ

Φ ↑ = − = −                     (12) 

( ) 0

2 2
hce

e
+ Φ

Φ ↓ = − = −                     (13) 
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( ) 0

2 2
hce

e
+ Φ

Φ ↑ = = .                     (14) 

Next by using Equations (11)-(14) we can calculate the quantum fluxes of the 
eigenstates aφ  and bφ  given in Equations (4a) (4 b): 

( ) ( ) ( ), 0
2 2a

hc hce e e e
e e

− + − +Φ = Φ ↓ +Φ ↓ = − =       (15a) 

( ) ( ) ( ), 0
2 2b

hc hce e e e
e e

− + − +Φ = Φ ↑ +Φ ↑ = − + =      (15b) 

By using Equations (15a) and (15b), the expectation value of the total quan-
tum fluxes for the suggested initial states of Equations (6a) and (6b) are: 

( ) ( ) ( )initial-1

1 1, , 0 0 0
2 2a b

e e e e− + − + Φ = Φ +Φ = + = ∑     (16a) 

( ) ( ) ( )initial-2

1 1, , 0 0 0
2 2a b

e e e e− + − + Φ = Φ −Φ = − = ∑ .    (16b) 

Next we calculate quantum fluxes of the eigenstates aφ′  and bφ′  after the col-
lision. By using Equations (11)-(14) and Equation (8c), the related fluxes are: 

( ) ( ) ( ) 0,
2 2a

hc hc hce e e e
e e e

− + − +′Φ = Φ ↓ +Φ ↑ = + = = Φ       (17a) 

( ) ( ) ( ) 0,
2 2b

hc hc hce e e e
e e e

− + − +′Φ = Φ ↑ +Φ ↓ = − − = − = −Φ    (17b) 

Similarly from Equations (17a) (17b), the expectation value of the total quan-
tum fluxes for the suggested final states of Equations (8a) and (8b) are: 

( ) ( ) ( )0 0final-1

1 1, , 0
2 2a b

e e e e− + − + ′ ′Φ = Φ +Φ = Φ −Φ =  
∑   (18a) 

( ) ( ) ( )0 0 0final-2

1 1, ,
2 2a b

e e e e− + − + ′ ′Φ = Φ −Φ = Φ +Φ = Φ  
∑ . (18b) 

As was done in section II, If we compare the total quantum fluxes before and 
after the collision we see that this time, conservation of the flux quanta excludes 
the suggested final wave function ( final-2Ψ ) given in Equation (8b) as the total 
quantum flux is equal to ( 0Φ ) but not zero as it should be. 

In summary, conservation of the spin angular momentum excludes the sug-
gested initial wave function, ( initial-2Ψ ) given in Equation (6b) while the conser-
vation of the quantum flux excludes the suggested final wave function ( final-2Ψ ) 
given in Equation (8b). Therefore as was stated in Equation (10), the collision of 
the electron and the positron resulting with the creation of two gamma photons 
simply corresponds to the transition from the initial entangled state ( initial-1Ψ ) to 
the final entangled state ( final-1Ψ ). 

4. Conclusions 

We have shown that the electron-positron annihilation process resulting with 
the creation of two gamma photons cannot be fully determined without the 
conservation of the angular momentum which has two elements, namely, the 
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conservation of the spin angular momentum and the conservation of the quan-
tum flux. The conservation of the quantum flux has never been considered so far 
for any collision process. We show that the missing conservation rule in the 
above process is the conservation of the total quantum flux which is the hidden 
variable of that process. By using the quantum entanglement together with the 
conservation of the quantum flux we show that the initial and the final states of 
this collision are fully determined. 

The additional results of the present work can be summarized as follows: 
1) From Equations (17a) (17b), each of the gamma photons carries a quantum 

flux of 0 hc e±Φ = ±  with itself along the propagation direction. Here the (+) 
and (−) signs correspond to the right hand and left circular helicity, respectively. 

2) The spin of each gamma photon is equal to zero but not unity. 
3) The magnetic moment of each gamma photon is 2 Bµ±  depending on the 

helicity. 
4) Since the above results 1)-3) do not depend on the angular frequency, ω of 

the gamma photons, we then expect them to be valid for any photon as well. 
A more complete work will be presented in the future. 
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Appendix I. Conservation of the Quantum Flux 

The Lagrangian of an electron with mass 0m  and electric charge (−e) moving in 
a uniform magnetic field in z direction ˆBz=B  is given by,  

( )2
0

1
2

eL m r
c

= − ⋅v v A  where ( ),x y=r r  is the position vector in two dimen-

sions, v  is the velocity and A  is the vector potential. The quantum flux in 
terms of radius and the magnetic field can be written as 

( ) dd d
2 2 d

t
t

 = ⋅ × = ⋅Φ × 
 ∫ ∫

B B rr r r
 

             (AI-1) 

For an electron moving in the x-y plane in the counter clockwise direction  

with the angular frequency 
0

c
eB
m c

ω = , we get ( )2 2π x y BΦ = + , where the time 

integral has been taken over one cyclic period 
2π

c
c

T
ω

= . The vector potential,  

A  is now related to the magnetic flux Φ given in Equation (AI-1) by 

( ) 2 2 2 2

Φ
2π

ˆ ˆx yy xr
x y x y

 
+ 



−
=

+ + 
A               (AI-2) 

Let us consider the z-component of the conserved canonical angular momen-
tum Jc is given [9] by 

( ) 0 2πc z
z

JeJ m e c
c

  = × = × − Φ  
= −

 
r p r v A          (AI-3) 

where J is the gauge invariant kinetic angular momentum. The difference be-
tween Jc and J is due to presence of the magnetic flux and hence the magnetic 
field B. Both in the absence and the presence of the magnetic field B, the canon-
ical angular momentum is always represented by cJ iћ ϕ= − ∂ ∂  and its eigen-
values are mћ (m ∈ Z). So the spectrum of kinetic angular momentum operator 
J consists of integers shifted by ( e hcΦ ). Therefore Equation (AI-3) simply 
states that the conservation of the angular momentum requires also the conser-
vation of the flux quantum as well. Namely: 

Total flux quanta before the collision = Total flux quanta after the colli-
sion 

Therefore in all the collisions that the conservation of the spin and the orbital 
angular momentums are involved, the conservation of the quantum flux is a ne-
cessary condition to find the exact wave functions before and after the collision. 
In the process of electron-positron collision resulting with the creation of two 
gamma photons, the total flux quanta before the collision must be equal to the 
total flux quanta after the collision. In Appendix II we will show that the con-
servation of the quantum flux can be replaced by the conservation of the mag-
netic moments as well. 
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Appendix II: Magnetic Moments of the System before and 
after the Collision 

We first give the definition of the spin magnetic moment vector, µ  for a free 
electron (e−) and a positron (e+) respectively: 

Be
gµ− = − Sµ                          (AII-1) 

Be
gµ+ = Sµ                           (AII-2) 

Here S  is the spin angular momentum of both electron and positron, g is 
the Lande factor which is equal to 2 for a free electron (or positron) and Bµ  is 
the Bohr magneton defined as: 

02B
eћ
m c

µ = .                          (AII-3) 

Now we calculate the expectation value of zµ∑  (the total z-component of 
the magnetic moment) for the initial states given in Equations (6a) and (6b) are: 

( ) ( )initial-1

1 0
2z z za b

µ µ µ = + = ∑ ∑ ∑     (AII-4a) 

( ) ( )initial-2

1 0
2z z za b

µ µ µ = − = ∑ ∑ ∑     (AII-4b) 

The expectation value of zµ∑  for the final states given in Equations (8a) 
and (8b) are: 

( )final-1

1 2 2 0
2z B Bµ µ µ= − =∑              (AII-5a) 

( )final-2

1 2 2 2
2z B B Bµ µ µ µ= + =∑            (AII-5b) 

As was done in section III, if we compare the expectation value of zµ∑  for 
the initial states Equations (6a) (6b) and the final states Equations (8a) (8b), we 
see that conservation of the total magnetic moment works just as the conserva-
tion of the flux quantum. Namely both of them excludes the suggested final wave 
function ( final-2Ψ ) given in Equation (8b). Therefore the collision of the electron 
and the positron resulting with the creation of two gamma photons simply cor-
responds to the transition from the initial entangled state ( initial-1Ψ ) to the final 
entangled state ( 1final−Ψ ); Namely: 

( ) ( )1 1
2 2

e e e e e e e e− + − + − + − +↓ ↓ + ↑ ↑ → ↓ ↑ + ↑ ↓  (10) 

From the final state ( 1final−Ψ ) given in Equation (10) z-component of the 
magnetic moment of each eigenstates (the gamma photons with the right hand 
( rh ) and the left hand ( lh ) circular helicity) are: 

( )
0

2z B
eћrh

m c
µ µ= = .                  (AII-6a) 

( )
0

2z B
eћlh

m c
µ µ= − = −                  (AII-6b) 
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respectively. We note that the z-components of the magnetic moment of the 
gamma photons do not depend on the angular frequency, ω. Therefore we ex-
pect that the present result must be valid not only for gamma photons but also 
for any photon as well. 

Appendix III: Calculation of the Intrinsic Quantum Fluxes of 
Electron and Positron by Dirac Equation 

Solution of Dirac Equation for a free electron moving in a homegeneous mag-
netic field was given by Saglam et al. [6]: 

( )

( )

( )

( )( ) ( )

, 1,
0

, 1,, ,

2 e 1, 2,
1

z

n

i

n

F n m t

p F n m te Nf t z E M

ni F n m t
E M m

ϕ

ϕ

κη

−

 − + 
 
 
 

− + ↑ =
+ 

 
 − + + + + 

 (AIII-1) 

( ) ( ) ( )

( )

0
( , 1, )

2 e, , 1, ,

, 1,

i

n

z

n

F n m t

mie Nf t z F n m t
E M

p F n m t
E M

ϕκϕ
η

−
−

 
 − + 
 − ↓ = − −

+ 
 − − + + 

   (AIII-2) 

where we used the SI units in which 1c =  (i.e. M stands for the rest mass ener-
gy of the electron 2

0m c ) The normalization constant, N is given by: 

( )
( )2

!
1

2π ! !n

n mMN
E n m

κ + 
= + 

 
                 (AIII-3) 

and the function ( ), ,f t zϕ  is defined as follows: 

( ) 2 2, , e e e
m t

zip zimf t z t ϕϕ −=                 (AIII-4) 

The corresponding energy eigenvalues are: 

( )2 2 24n zE n M pκ↑ = + +                  (AIII-5) 

( ) ( )2 2 24 1n zE n M pκ↓ = + + +               (AIII-6) 

To calculate the intrinsic quantum flux of a relativistic free electron in a uni-
form magnetic field within the framework of Dirac theory we shall follow a sim-
ilar way that we followed earlier for the solution of Schödinger equation for an 
electron in hydrogen atom [4]: Namely, we shall first calculate the quantum flux 
through the probability current (particle current) density associated with the 
wave function of a free Dirac electron in a uniform magnetic field, then connect 
it to the flux element ( )d ,z ρ φΦ  by the self-inductance Le. The probabilty of 
electric current density for the circular motion along the φ direction is given by: 
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( )
*

*, ,
2
iћeJ z
M

ρ φ
ρ φ ρ φ

 ∂ ∂
= − 

∂ ∂
Ψ Ψ


Ψ Ψ


.            (AIII-7) 

Assuming that electron is moving in xy plane we then write the, surface cur-
rent element coming from the circular ring of radius ρ and the thickness dρ: 

( )
*

* d, d
2
iћeJ
M

ρ
ρ φ ρ

φ φ ρ
 ∂Ψ ∂Ψ

= Ψ − Ψ 
∂ ∂ 

          (AIII-8) 

Our next objective is to establish a quantized magnetic flux coming from the 
above current. A current element circulating around z-axis in a circle of radius ρ 
should enclose an induced magnetic flux element ( )d ,z ρ φΦ  which is propor-
tional to the current given by Equation (AIII-8): 

( ) ( ) ( )d , , dz eL jρ φ ρ ρ φ ρΦ =                (AIII-9) 

where ( )eL ρ  is the self-inductance [4] given by: 

( )
22π

eL M
e
ρρ  =  

 
                 (AIII-10) 

Substitution of Equations (AIII-8) and (AIII-10) into Equation (AIII-9) gives 
the total induced quantized magnetic flux: 

( )
2 *

*
z

2πΦ diћ
e

ind ρ ρ
φ φ

 ∂Ψ ∂Ψ
Ψ − Ψ 

∂ ∂ 
= ∫        (AIII-11) 

To calculate the total induced quantized magnetic fluxex for spin-up and 
spin-down electrons, we substitute the wave functions of e− ↑  and e− ↓  
states separately from Equation (AIII-1) and Equation (AIII-2) in Equation 
(AIII-11): 

( ) ( )2π 1 1 11
1 2 1ind

ћ tt m
e t t

−  −    Φ ↑ = + +    + +    
        (AIII-12) 

( ) ( )2π 1 1 11
1 2 1ind

ћ tt m
e t t

−  −    Φ ↓ = + −    + +    
        (AIII-13) 

here we denote 
n

Mt
E

= . In the relativistic limit since 0t → , then the spin  

dependent induced fluxes take the forms: 

( ) 0
2π 1 1 1

2 2 2ind
ћ hm m m

e e
−      Φ ↑ = + = − + = − + Φ     

     
 (AIII-14a) 

( ) 0
2π 1 1 1

2 2 2ind
ћ hm m m

e e
−      Φ ↓ = − = − − = − − Φ     

     
 (AIII-14b) 

In Equations (AIII-14a) and (AIII-14b) the spin dependent intrinsic fluxes  

correspond to m = 0. Which are 0

2 2
h
e

Φ
± = ± . So far we have used the SI  

units where 1c = . For cgs units the flux quantum is  
7 2

0 4.14 10 G cmhc
e

−Φ = = ⋅ . So in cgs units the intrinsic fluxes that electron  
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and positron possess are: 

( ) 0

2 2
hce

e
− Φ

Φ ↓ = =                    (AIII-15a) 

( ) 0

2 2
hce

e
− Φ

Φ ↑ = − = −                  (AIII-15b) 

( ) 0

2 2
hce

e
+ Φ

Φ ↓ = − = −                  (AIII-15c) 

( ) 0

2 2
hce

e
+ Φ

Φ ↑ = = .                   (AIII-15d) 
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