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Abstract 
Testing the equality of means of two normally distributed random variables 
when their variances are unequal is known in the statistical literature as the 
“Behrens-Fisher problem”. It is well-known that the posterior distributions of 
the parameters of interest are the primitive of Bayesian statistical inference. 
For routine implementation of statistical procedures based on posterior dis-
tributions, simple and efficient approaches are required. Since the computa-
tion of the exact posterior distribution of the Behrens-Fisher problem is ob-
tained using numerical integration, several approximations are discussed and 
compared. Tests and Bayesian Highest-Posterior Density (H.P.D) intervals 
based upon these approximations are discussed. We extend the proposed ap-
proximations to test of parallelism in simple linear regression models. 
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1. Introduction 

Suppose that x1 and x2 are two independent normal random variables with 
means μ1 and μ2, and variances 2

1σ  and 2
2σ , respectively. Samples of sizes n1 

and n2 drawn from the corresponding populations are denoted by ijx  ( 1,2i =  
and 1,2, , ij n= � ). It is desired to test the hypothesis H0: μ1 = μ2 when it cannot 
be taken as known that the variance ratio 2 2

1 2λ σ σ=  is one. This problem, 
known as the Behrens-Fisher (BF) problem, has been investigated by many au-
thors and each has proposed some particular solution. It is not the purpose of 
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this paper to list or survey these solutions. However, the Bayesian approach to 
this problem, viewed as one of the most fascinating approaches of statistical in-
ference on the means of heterogeneous normal populations, will be the main 
focus of this paper, and we shall also give special attention to the problem of 
testing parallelism of two linear regression lines when the variances of the error 
terms are not equal.  

The exact Bayesian solution to the BF problem was given by Jeffreys [1] which 
was identical to the solution of Behrens [2] and Fisher [3]. The resulting post-
erior distribution of 1 2U µ µ= − , which is the primitive of a valid Bayesian 
procedure, possesses a form requiring an integration that cannot be performed 
analytically, and hence, direct and routine implementation of this test is im-
possible. Although evaluation of such an integral can be achieved numerically, 
using the approaches described by Reilly [4] and Naylor and Smith [5], and by 
Monte-Carlo integration as given in Robert and Casella [6] it is of interest to 
provide expressions for routine applications under the Bayesian approach. 

The paper has two chief objectives. First we present a comparison among sev-
eral approximations to the tails of the posterior distribution of the variate 

1 2U µ µ= − , where μj is the mean of the jth population. Second we extend the 
methodologies to address the question of parallelism or equality of slopes when 
the variances of the error terms of the two regression lines are not equal. Rec-
ommendations will follow the examples in the last sections. 

2. Testing Equality of Normal Means: Posterior Analysis 

Based on the samples outcome, the usual sufficient statistics are defined as fol-
lows: 

1
in

i ij ijx x n
=

= ∑  and ( ) ( )22
11 in

i i i ij ijn s x x
=

Σ = − = −∑ , 1,2i = . 

The likelihood function of the combined data from two samples drawn inde-
pendently from two normal populations with means μ1 and μ2, and variances 

2
1σ  and 2

2σ , respectively, is proportional to:  

( ) ( ) ( ) ( )1 2

2 2
1 1 1 1 2 2 2 2

1 2 2 2
1 2

11 1 exp
2

n n n x n xµ µ
σ σ

σ σ

  Σ + − Σ + − − +  
       

.(2.1) 

Following Lee [7], we use the non-informative prior for the means and the 
standard deviations 

( ) 1 2
1 2 1 2 1 2 1 2 1 2

1 2

d d, , d d d d d d, σ σ
µ µ σ σ µ µ σ σ µ µ

σ σ
Π ∝

         
(2.2) 

From Box & Tiao [8], the joint posterior density of ( )1 2 1 2,, ,µ µ σ σ  is the 
product of (2.1) and (2.2) and is then given by: 

( )

( ) ( ) ( ) ( )1 2

1 2 1 2

2 2
1 1 1 1 1 1 2 2 2 2

2 2
1 2

1 2

, ,

1

,

exp
2

n n

x

n x n x

µ µ σ σ

µ µ
σ σ

σ σ
− + − +

Π

  Σ + − Σ + − ∝ − +  
         

(2.3) 
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Integrating 1 2,σ σ  out of (2.3), the marginal posterior density of 1 2U µ µ= −  
is shown to be 

( ) ( ) ( )

( ) ( )

1 2
2 22 2

1 1 2 2

1 2

1 1 d

| , | d

n n

n y u x n y x
u x y

u y x y x y

− −
∞

−∞

∞

−∞

   + − −
Π ∝ + +   

Σ Σ      

= Π ⋅Π

∫

∫      

(2.4) 

The conditioning in Equation (2.4) is on the represents the data vector x. 
Equation (2.4) was obtained by Jeffreys [1]. In the Bayesian approach, infe-

rences about U are completely determined by (2.4), which is not amenable to 
simple manipulation in order to have the tests on U conducted in a routine fa-
shion. Before applying some of the suggested approximations, we should under-
stand the nature of the problem, and in order to draw safe conclusions, we con-
sider not only the marginal posterior density of u, but also we need to examine 
the other components of (2.3). For this purpose, we state the following results 
without proof, since they are easily obtained by application of the calculus of 
probability: 

1) The conditional posterior pdf for U, given μ2, is the univariate student’s 

( )1 1nt − , with mean 1 2x µ−  and variance ( )( )1 1 1Σ 3n n − , i.e., 

( ) ( )( )
1

2 2
1 1 2

2
1

, 1

n

n u x
u x

µ
µ

−
 − −
 Π ∝ +

Σ 
 

.             (2.5) 

2) The marginal posterior pdf for the variance ratio λ is such that ( )2 2
2 1s s λ  

has the well-known Snedecor’s F-distribution with ( )2 1n − , and ( )1 1n −  de-
grees of freedom, i.e., 

( )
1 2

2
1

3 2
22

1

1

n n
n

xλ λ λ

+ − − −   Σ
Π ∝ + Σ                 

(2.6) 

3) The conditional posterior pdf for U, given λ, is such that 

( ) ( )( )
1 2 2

2 2
1 2, 1

n n

t u x a u x xλ λ
+ − − 

  = Π ∝ + − +            
(2.7) 

where ( ) ( )( )
1 2

1 2 1 2Σ Σ
n n

n n
λ

λ
λ λ

=
+ +

, i.e., it has student’s t density with  

( )1 2 2n n+ −  degrees of freedom. Hence as was indicated by Barnard [9], if a 
range of λ values is considered plausible, λ can be varied over this range to see 
what effect this variation has on the value of t. He also postulated that when n1 
and n2 are nearly equal, and moderately large, and 2

1s  and 2
2s  do not differ 

much, the conditional distribution in (2.7) will remain nearly constant over a 
wide range of λ values. In the next section we derive different approximations to 
deal with the situation when the range of λ is wide enough to have a considera-
ble effect on t. 
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3. Approximate Posterior Inference 
3.1. Monte Carlo Integration (Exact Approximation) 

We shall write the posterior density of U as follows: 

( ) ( ) ( )0
, du x u x xλ λ λ

∞
Π = Π ⋅Π∫               

(3.1a) 

In (3.1a) we face the same problem as we have with (2.4), however, this equa-
tion will be the tool of discussion in the remainder of this section. As can be seen 
evaluation of the posterior density of U is just evaluating the integral in (3.1a) 
which can be written as: 

( ) ( ) ( )0
, , dE u x u x xλ λ λ λ

∞
 Π = Π ⋅Π  ∫            (3.1b) 

Referring to Robert and Casella [6], the principle of the Monte Carlo method 
for approximating (3.1b) is to generate sample ( )1 2, , , nλ λ λ�  from their densi-
ty ( )Π xλ  and suggest as an approximation the empirical average 

( ) ( )*

1

1, ,n
iiu x u x

n
λ λ

=
Π = Π∑                  (3.2) 

3.2. Moments (Scale) Approximation 

The second approximation to be considered is by the method of moments. 
While Patil [10] derived the posterior moments of U using (2.4), they are iden-
tical to the posterior moments 

( ) ( ) ( )0
, d dr rE u x u u x x uλ λ λ

∞ ∞

−∞
= ⋅Π ⋅Π∫ ∫ .          (3.4) 

Denoting the rth central moment of U by rm , and its 4th cumulant by 4l , we 
can show from Equation (3.4) that 

( ) ( )
1 2

2
1 1 2 23 3

m
n n n n

Σ Σ
= +

− −
, 

( )( ) ( )( ) ( )( )
2 2
1 1 2 2

4 2 2
1 2 1 21 1 1 2 2 2

23
3 33 5 3 5

m
n n n nn n n n n n

 Σ Σ Σ Σ
= + + 

− −− − − −  
 

The fourth cumulant 4l  is:  
2

4 4 23l m m= −                         (3.5) 

Following Patil [10], we suggest the following approximation to the posterior 
distribution of δ: 

( ) ( )1 2~ wherebat U x xδ δ = − + .               (3.6) 

Equating m2 and m4 to the second and fourth central moments of the R.H.S. 
of ~ in (3.6) we have: 

( )
1
22 4 4 4a m m m l −= +  and 4

4

2 1 mb
l

  
= +  
   

. 

In the above equation [s] means the smallest integer larger than s. Thus one 
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may use tables of student’s t-distribution with [b] degrees of freedom to make 
tests and construct approximate H.P.D. intervals for U. In other words: 

( )2 1 2 , ,1
2 2

1 r b r b b
P t T t P at atα α α αα δ−

−

 
− = < < = < <  

 
 

3.3. Modal Approximation 

Barnard [9] suggested that if the intention is to make inference on U alone by 
integrating out λ and it is found that ( ),u xλΠ  is very sensitive to changes in λ, 
then ( )xλΠ  should be carefully examined. If ( )xλΠ  were sharp with most 
of its probability mass concentrated over a small region about its mode denoted 
by λ*, performing the numerical integration in (3.1a) will be nearly equivalent to 
assigning the model value to λ in the conditional density, ( ),u xλΠ  so that: 

( ) ( )*, ,u x u xλ λΠ Π� .                   (3.7) 

Now, since ( )
( )

2 1*

1 2

3
1

n
n

λ
− Σ

=
+ Σ

, then substituting in (3.7) we have: 

( ) ( )( )
1 2 1

2* 2
1 21

n n

u x a u x xλ
+ − − 

  Π ∝ + − +  ,           (3.8) 

where 

( ) ( ) ( ) ( )

1

* 1 2
1 2

1 1 2 2

2
1 3

a n n
n n n n

λ
−

  Σ Σ
= + − +   + −   

. 

Therefore, as a modal approximation to the posterior distribution of we take: 

( )

( ) ( )
( )1 2

1 2*
2

1 2

1 1 2 2

~

1 3

n n

u x x
t t

n n n n

+ −

− −
=

Σ Σ
+

+ −

.             (3.9) 

3.4. Approximation Based on Averaging 

The following lemma due to Feller is quite appealing and may be used to ap-
proximate the integral (3.1a): 

Lemma: Feller ([11], p. 219). For 1,2,n = � , consider a family of distribu-
tions ( )n yφ  with expectation Θ and variance ( )2

nσ Θ  (that is the variance is a 
function of the mean). If ( )g ⋅  is bounded and continuous, and ( )2 0nσ Θ →  
for each Θ, then 

( )( ) ( ) ( ) ( )dnE g g y y y gφ
∞

−∞
⋅ = → Θ∫ .             (3.10) 

Since ( ) ( )
( )

2
1 1

2
1 2

1
3

n s
E x

n s
λ λ

−
= ≡ Θ =

−
 and  

( ) ( ) ( )
( )( ) ( )( )

11 1
1 2 1 22 2

1 11 1
1 1 2 2 1 2

4
var 2

5
n

n n n n
x

n n n n n n
λ σ θ θ

−− −

− −− −

 + − = =  − −  

 with ( )2 0nσ Θ →  as 
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( )1 2,n n →∞ , then by taking ( ),u xλΠ  as ( )g ⋅  and ( )| xλΠ  as ( )n yφ  the 

right hand integral of (3.1a) can be approximated by: 

( ) ( )( )
1 2 1

2 2
1 21

n n

u x a u x xλ
+ − − 

  Π ∝ + − +  , 

where  

( ) ( ) ( )
( )

122
1 12

1 2
2 1 1

1
4

3
n ssa n n

n n n
λ

−
  − = + − +  

−    
. 

Accordingly, one may take 

( )

( ) ( )

( )1 2

1 2
2

1 2 1 2

1 2 1 1 2 2

~
4
2 3 1

n n

U x x
E t

n n
n n n n n n

+ −

− −
=

  + − Σ Σ
+  + − − −   

.      (3.11) 

as an approximating distribution to the posterior distribution of U. 

3.5. Edgeworth Expansion 

The Edgeworth expansion has been used extensively by many authors in order 
to approximate the density function of any statistics nν . We refer to the paper 
by Barndorff-Nielson and Cox [12] for an overview and comparison between 
these techniques. The Edgeworth expansion, due to Edgeworth [13] [14], for the  

density function of any statistic 
( )
( )Var

n n
n

n

v E v

v
ν

−
=  at a point c is given by the 

general formula: 

( ) ( ) ( )

( )

1 3 4 22

6 4 2 21

3
1 3 6 3

6 24
1 115 45 15 exp ,

72 22

y c c c c

c c c c

ϑ θ
ψ

θ

 −
+ − + − +


  + − + − ⋅ −  Π  

�
 

where 1θ  and ( )2 3θ −  are respectively the coefficients of skewness and Kur-
tosis for the density of nν . As can be seen when 1 0ϑ = , the terms of order 

1 2n−  disappear and the modified Edgeworth expansion of order 1n−  for the 

density function of the statistic 1 2

2
n

U x x
ν

τ
− +

=  at c is given by: 

( ) ( )4 2 24
2
2

1 11 6 3 exp
224 2

y c c cκ
ψ

τ
   + − + ⋅ −   Π   
� .       (3.12) 

The Edgeworth expansion for the density of U can easily be obtained, from 
Equation (3.12), by using linear transformation, 1 2 2U x x m c= − + . 

Although we are not approximating the distribution function directly, in 
practice these approximations may be used for calculating tail areas. Thus it is of 
interest to see how these approximations for the posterior distributions of 

1 2U µ µ= −  perform at the tail.  
Example 1: “Mean tumor recurrence scores in breast cancer patients stratified 

by tumor grades.” 
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Oncotype DX is a commercial assay used for making decisions regarding the 
treatment of breast cancer. The results are reported as a tumor recurrence score 
ranging from 0 to 100, Klein et al. [15] showed that the recurrence score corre-
lated (among other genetic factors) with the tumor grade. That is there was a 
significant difference in the mean recurrence scores in patients with tumor grade 
1 as compared to the mean recurrence score of patients with tumor grade 3. In 
this example we present the summary data for 40 and 37 breast cancer women 
samples with mean recurrence scores in tumor rage 1 and tumor grade 3. This 
data is a good example that we can use to apply the proposed methodology. The 
following results were obtained: 

1 40n = , 1 11.55x = , 2
1 18.3s =  

2 37n = , 2 34.57x = , 2
2 171.25s =  

Approximations, discussed in section 3, to the posterior density of  

1 2U µ µ= −  are applied to the above data. In addition we also consider the usual 
asymptotic normal approximation which for large n1 and n2, is given as sug-
gested by Welch [16] as:  

( ) ( )1 2

2

0,1pU x x
z N

τ
− −

= → , 

The results of the data analyses based on the proposed approximations are 
presents in Table 1. 

As we can see, all approximations have confidence limits close to the exact 
limits, probably because the sample sizes are moderately large. We provide the 
R-codes for the calculations of these limits in the Appendix within the applica-
tions of linear regression.  

4. Extension of the Behrens-Fisher Problem to Testing 
Equality of Slopes of Two Independent Regression Lines 

Linear and nonlinear regression models are ubiquitous in medical and biological 
research. Testing equality of slopes of two linear regression lines is of special in-
terest. This is illustrated in the following application which is a continuation of 
example 1.  

 
Table 1. Approximate 95% HPD for the difference in two means under heterogeneity 
using the breaking strength data. 

Method 
95% HPD interval estimation 

0.025 0.975 

Monte-Carlo integration (exact) 

Scale Approximation 

Modal Approximation 

Averaging Approximation 

Edgeworth Expansion 

Normal Approximation (Welch) 

−27.70 

−27.48 

−27.52 

−27.46 

−27.61 

−27.69 

−18.55 

−18.36 

−18.41 

−18.61 

−18.44 

−18.40 
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Example 2: continuation of example 1. 
Ki67 is a commonly used marker of cancer cell proliferation, and has signifi-

cant prognostic value in tumor recurrence of breast cancer. In this illustration 
which is a continuation to example 1, we use a sub-sample of women who had 
Oncotype DX testing performed and available Ki67 indices which correlated 
with tumor grades (1 versus 3). Literature documented that Ki67 scores contri-
bute significantly to models that predict risk of recurrence in breast cancer, for 
example see; Cuzick et al. [17], Klein et al. [14], and more recently Thakur et al. 
[18]. In this example we examine the relationship between Ki67 as predictor of 
tumor recurrence scores of breast for tumor grade 3 and grade 1 separately. Of 
interest is to test the equality of the slopes of the linear regressions of tumor re-
currence score on the Ki67 for both grades. We use Bayesian methodology to 
answer this question. 

We shall use the following notations. First we denote the independent variable 
by x to predict values of the dependent variable denoted by y. 

Suppose that we have two linear regression lines, then conditional on ijx  we 
assume that  

( )( )~ ,ij j j ij j jy N x xα β φ+ − , 1,2, , ji n= �  & 1,2j = . 

In general we assume that we have two conditions, and we would like to esti-
mate 1 2δ β β= − . 

In our Bayesian analysis we shall take a reference prior that is independently 
uniform in ,j jα β  and log jφ , such that: 

( ), , 1 , 1, 2j j j j jπ α β φ φ∝ =  

Let us define the following quantities: 
2

jee jyy jxy jxxS S S S= − , j ja y= , j jxy jxxb S S= , 0j j j je y b x= −  

where 

( )( )1
jn

jxy ij j ij jiS x x y y
=

= − −∑ , ( )2

1
jn

jyy ij jiS y y
=

= −∑ , ( )2

1
jn

jxx ij jiS x x
=

= −∑ , 

and  

( )2 , 1,2j j jee jxxn S S jΣ = − = . 

The joint posterior distribution of the model parameters ( ), ,j j jα β φ  are 
proportional to 

( )
( ) ( ) ( ){ }2 22 2

, , | ,
1exp
2

j

j j j ij ij

n
j j jee j j j jxx j j j

f x y

S n a S b

α β φ

π φ α β φ− +  ∝ = − + − + −     

 (4.1) 

For the two regression lines, the joint posterior of ( )1 2 1 2 1 2, , , , ,α α β β φ φ  is 

1 2π π , or  

( )

( ) ( ){ }
1 2

1 2 1 2 1 2

2 2 2 2 22 2
1 2

1

, , , , , ,

1exp
2

n n

jee j j j jxx j j j
j

x y

S n a S b

π α α β β φ φ

φ φ α β φ
+ +   − −   

   

=

 ∝ − + − + −  
∏

 (4.2) 
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Integrating out 1α  and 2α , the joint posterior of ( )1 2 1 2, , ,β β φ φ  is thus 
given as: 

( )1 2
21 1 2

2 2
1 2

1

1exp
2

n n
jee jxx j j

j j

S S bβ
φ φ

φ

+ +   − −   
   

=

  + −  ∝ −       
∏  

Integrating out 1φ  and 2φ  we get: 

( ) ( ) ( )
1 21 1
2 22 21 2

1 2 1 1 2 2
1 2

2 2, , 1 1

n n

n nx y b bπ β β β β

− −   − −   
      − −

∝ + − + −   Σ Σ   
  (4.3) 

Under the transformation 1 2δ β β= − , one can show that the posterior den-
sity of δ is given by: 

( ) ( ) ( )

( ) ( )

1 21 1
2 22 21 2

2 1 2 2 2
1 2

2 2 2

, 1 1 d

, , , , d

r r

r rx y b b

x y x y

π δ δ β β β

π δ β π β β

+ +   − −   ∞    

−∞
∞

−∞

   
∝ + + − + −   Σ Σ   

=

∫

∫

  (4.4) 

where 2j jr n= − . 
The Bayesian inferences on δ are completely determined by Equation (4.4) 

which we cannot easily manipulate in order to have statistical inferences test on 
δ conducted in a routine fashion. Moreover, it is clear from (4.4) that the exact  

marginal posterior distribution of 
( )j j j

j

b rβ −

Σ
 is that of a Student 

t-distribution with rj degrees of freedom.  
Similar to testing the equality of means of two normally distributed distribu-

tions and as shown in the first part of the paper, we use the suggested approxi-
mations to the integral given in (4.4) to find the marginal posterior distribution 
of δ. However, it is quite helpful to not only examine the posterior density of δ, 
but also examine the components of the joint posterior density given in (4.4). 
For this purpose, we state the following results without proof, since they can be 
easily obtained by applications of the calculus of probability.  

1) The conditional posterior p∙d∙f of δ, given 2β  is the univariate Student-t 
with ( 1 2n − ), with conditional mean 1 2b β−  and conditional variance  

( )( )
1

1 12 4n n
Σ

− −
. 

The unconditional posterior mean and variance of δ are: 

( ) 1 2,E x y b bδ = −  

( ) ( ) ( )( ) ( )( )
1 2

2
1 1 2 2

var ,
2 4 2 4

x y
n n n n

µ δ δ
Σ Σ

= = +
− − − −

 

( ) ( )( )( )( ) ( )( )( )( )

( )( )( )( )

2 2
1 2

4
1 1 1 1 2 2 2 2

1 2

1 2 1 2

3 3
2 2 4 6 2 2 4 6

6
2 2 4 4

n n n n n n n n

n n n n

µ δ
Σ Σ

= +
− − − − − − − −

Σ Σ
+

− − − −
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2) The marginal posterior p∙d∙f of the variance ratio λ is a scale multiplicative 
of the F-distribution. That is: 

( )
( ) 2 1

1 1
1 2 2, 2

2 2

2
2

ee
n n

ee

S n
F

S n
λ φ φ − −

−
= =

−
 

Therefore, the posterior moments of λ are:  

( )
( )

21

2 1

2
,

4
ee

ee

nSE x y
S n

λ
−

  = ⋅  −
 

( )21

2 1

4
Mode , ee

ee

nSx y
S n

λ
−

  = ⋅   

( ) ( )( )
( ) ( )

2 2 1 2
1 2 2

1 1

2 2 6
var ,

4 6
ee ee

n n n
x y S S

n n
λ

 − + −
  =    − −  

 

Using the inverse moments of the F-distribution we can show that:  

2 1

1 2

21 ,
4

ee

ee

S nE x y
S nλ

  −  =     −    
                 (4.5) 

and 

( )
( )( )

2
1 12

2
1 2 2

21 ,
4 6

ee

ee

n nSE x y
S n nλ

 −   =     − −      
 

3) The conditional posterior p∙d∙f of δ, given λ is such that 

( ) ( )( )
( )1 2

2
1 2, , 1 ABx y b b

A B

ν

π δ λ δ
− −

 ∝ + − − +           
 (4.6) 

( ) 1 2, ,E x y b bδ λ = −  

( ) 1 2 1 2

1 2 1 2 1 2

1 1 1 1var , ,
6 6

ee ee ee ee

xx xx

S S S Sx y
n n A B n n S S

λ λ
δ λ

λ
 + + = + = +  + − + −   

 

These results are derived based on the fact that conditional on λ, the posterior 
distribution of 

( ) 1 2

1 1

4D n n
t

A B

δ
− −

− + −
=

+
 

Is that of a t-distribution with ( )1 2 4n n+ −  degrees of freedom. 

5. Approximating the Posterior Distribution of δ 
5.1. Moments Approximation (Scale Approximation) 

As a first approximation to the posterior distribution of ( )1 2b bδ∆ = − −  is to 
assume that  

( )d at ν∆=                          (5.1) 

Equating ( )2µ ∆  and ( )4µ ∆  to the second and fourth control moments of 

the R∙H∙S of 
d
=  in (5.1) we get: 
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( ) ( )
( ) ( )

1 2

2 4

4 4

a
µ µ
µ κ
 ∆ ∆

=  
∆ + ∆  

 

( )
( )

4

4

2 1
µ

ν
κ

  ∆
= +   ∆   

 

Here, ( ) ( ) ( )2
4 4 23κ µ µ∆ = ∆ − ∆  and [ ]ξ  mean the smallest integer larger 

than ξ. Thus one may use tables of student’s t-distribution with [ ]ν  degrees of 
freedom to construct H.P.D. intervals on δ. As can be seen this result is identical 
to the moment or the scale approximation of the posterior distribution of the 
difference between means. 

5.2. Modal Approximation 

As suggested by Box and Tiao [8], we approximate the posterior density on re-
placing λ by its modal value so that: 

( ) ( )*, , ,x y x yπ δ π δ λ
                  

 (5.2) 

Hence we take 

 
( )( ) ( )

( )
1 2 1 2* 4b b n n

T
A B AB

δ − + + −
=

+
               (5.3) 

As a t-statistic with ( )1 2 4n n+ −  degrees of freedom, where  

( )*
1 1 2xx ee eeA S S Sλ= +  and ( )* *

2 1 2xx ee eeB S S Sλ λ= + , and 
( )2* 1

2 1

4ee

ee

nS
S n

λ
−

= ⋅  

is the modal value of λ. 

5.3. Approximation Based on Averaging 
Here we find that the conditions of Feller’s [8] lemma are satisfied by the two 

central moments of λ . This is because: ( ) 12

1 2

2,
4

ee

ee

SnE x y
n S

λ λ ϕ
−

= = =
−

 and 

( ) ( ) ( )( )
2 2 1 2

1 2

6var , 2
6 2n

n nx y
n n

λ σ ϕ ϕ
 + −

= =  
− −  

 with ( )2 0nσ ϕ →  as  

( )1 2,n n →∞ . 

By taking ( ),x yπ δ  as ( )g ⋅  and ( ),x yπ λ  as ( )nψ ξ , the R.H.S. of (5.2) 
can be approximated by 

( ) ( ) ( )( )
( )1 22

1 2, 1x y a b b
ν

π δ α λ δ
− −

 + − −  
 

where  

( )
11

1 2 2 1

1 1 2 2

1 1 1ee ee ee ee

xx xx xx xx

S S S Sa
A B S S S S

λ λ
λ

−−   = + = + + +  
   

 

Hence, we take 

( )
( ) ( )1 2

1 2
4

1 2

~ n n

b b
T t

δ
+ −

− −
=

Σ + Σ
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where 

( )
( )( )

1 2
1 1

1 1

6
2 4

n n
n n

+ −
Σ = Σ

− −
 

( )
1 2

2 22
2

6
2

n n
n
+ −

Σ = Σ
−

 

We now analyze the data in this example. We take the Ki67 to be the explana-
tory variable (x), while the recurrence score is the dependent variable (y). The 
tumor grades 1 and 3 form the two groups whose slopes are to be compared. The 
summary data are: 

Tumor grade 1   Tumor grade 3 

1 40n =     2 37n =  

1 19566xxS =    2 7450xxS =   

1 2777.7eeS =    2 383.6eeS =  

1 0.2516b =    2 0.181b =   
The scatter plots are given for tumor grade 1 (Figure 1) and for tumor grade 3 

(Figure 2) 
 

 
Figure 1. Scatter plot of recurrence score against Ki67 for tumor grade 1. 
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Figure 2. Scatter plot of recurrence score against Ki67 for tumor grade 3. 
 

As we can see, for tumor grade 1, the association between Ki67 and tumor re-
currence is quite weak, but the association is stronger for tumor grade 3. 

Remarks: 
For all the proposed methods, our data analysis approach is simulation-based. 

The number of replications used is sufficient. For the Monte-Carlo integration, 
which we consider to be the exact we monitored the simulation. As we can see in 
Figure 3 the sequence of simulations tends to stabilize as we approach the speci-
fied number of simulations. 

We should note that the red line bands in Figure 3 are not 95% confidence 
bands in classical sense, but they correspond to the confidence assessment that is 
produced for every number of iteration, if we decide to stop at this number of 
iterations. The 2.5% and 97.5% quantiles for the methods are shown in Table 2. 

6. Discussion 

In the data analytic part, one may be interested in the shape of the density of the 
approximating distributions and how they deviate from the exact density. We 
did not discuss this issue since most of the time we are interested in the tail area  
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Figure 3. Monitoring the approximation of the function ( ), ,x yπ δ λ  with mean ± two 

standard deviations against the iterations for a single sequence of simulations. 
 

Table 2. Approximate 95% HPD for the difference in two slopes of linear regression lines 
heterogeneity using the Tumor recurrence scores data. 

Method 
95% HPD interval estimation 

0.025 0.975 

Monte-Carlo integration (exact) 

Scale Approximation 

Modal Approximation 

Averaging Approximation 

Edgeworth Expansion 

Normal Approximation (Welch) 

−0.673 

−0.663 

−0.660 

−0.664 

−0.665 

−0.661 

0.028 

0.024 

−0.002 

0.005 

0.018 

0.021 

 
of the distribution in order to construct confidence intervals on the mean dif-
ference or the difference of slopes. From Table 1 and Table 2, we can see that all 
the approximations perform well when compared to the exact limits. However, 
the scale approximation, which uses the first 4 central moments, provides more 
accurate confidence limits. The modal approximation seems to err in the upper 
limits of difference between the target parameters. Our general conclusion is that 
when the sample sizes are reasonably large as in the breast cancer example all the 
approximations (except the modal) may be used. For sample sizes and routine 
implementation of the proposed test, the scale (the four moments) approxima-
tion is recommended.  
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Appendix: R Codes for the Regression Model. The Codes for 
the Comparison between Means Is Quite Similar 
and Not Included 

R-CODES. 
#Summary data 
n1=40, n2=37, s1xx=1019.6, s2xx=11167.57, s1ee=700.13, s2ee=3931.172 
b1=.124, b2=.447. 
 
#Monte Carlo integration 
sig1=(n1-2)*s1ee/s1xx 

sig2=(n2-2)*s2ee/s2xx 

T2=(sig1/((n1-2)*(n1-4)))+(sig2/((n2-2)*(n2-4))) 

ll=rf(10000,n2-2,n1-2) #simulating from the  

F-distribution 

l=ll*(s1ee/s2ee)*((n2-2)/(n1-2)) 

A=s1xx/(s1ee+l*s2ee) 

B=l*s2xx/(s1ee+l*s2ee) 

nn=n1+n2-4 

beta1=b1+rt(10000,n1-2)*sqrt(sig1/((n1-2)*(n1-4))) 

beta2=b2+rt(10000,n2-2)*sqrt(sig2/((n2-2)*(n2-4))) 

delta=(beta1-beta2) 

                  

q1=quantile(delta,prob=c(0.025,0.975)) 

q1 

 
#Monitoring the simulation 
h=function(x){(1/(1+((A*B)/(A+B))*(x-b1+b2)^2)^(((nn+

1)/2)))} 

x=h(l) 

estint=cumsum(x)/(1:10^4) 

mean(estint) 

esterr=sqrt(cumsum((x-estint)^2))/(1:10^4) 

mean(esterr) 

plot(estint,xlab="Mean and error range",lwd=2, 

ylim=mean(x)+20*c(-esterr[10^4],esterr[10^4]),ylab=""

) 

lines(estint+2*esterr,col="red",lwd=2) 

lines(estint-2*esterr,col="red",lwd=2) 

#Moments (Scale) Approximation 
sig1=(n1-2)*s1ee/s1xx 

sig2=(n2-2)*s2ee/s2xx 

T2=(sig1/((n1-2)*(n1-4)))+(sig2/((n2-2)*(n2-4))) 

T41=3*sig1^2/((n1-2)^2*(n1-4)*(n1-6)) 
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T42=3*sig2^2/((n2-2)^2*(n2-4)*(n2-6)) 

T412=6*sig1*sig2/((n1-2)*(n1-4)*(n2-2)*(n2-4)) 

T4=T41+T42+T412 

K4=T4-3*T2^2 

a=sqrt(T2*T4/(T4+K4)) 

b=ceiling(2*(1+(T4/K4)))  #integer degrees of freedom 

d=rt(10000,b) 

delta.m=(b1-b2)+a*d 

q2=quantile(delta.m,prob=c(.025,.975)) 

q2 

#Welch Normal Approximation 
zz=rnorm(10000) 

u=(b1-b2)+zz*sqrt(T2) 

mean.u=mean(u) 

sd.u=sd(u) 

qqnorm(u) 

q3=quantile(u,prob=c(0.025,0.975)) 

q3 

 
#Edgeworth expansion 
library(distr) 

aa=K4/(24*T2^2) 

p <- function(x) (1/sqrt(2*pi) *(1/(exp(x^2/2)* 

                    (1+aa*(x^4-6*x^2+3))))) 

# probability density function 

dist <-AbscontDistribution(d=p) # signature for a 

distribution with pdf ~ p 

rdist <- r(dist)                 # function to create 

random variates from p 

 

set.seed(1)                       

XX <- rdist(10000)                 # sample from X ~ p 

x <- seq(-10,10, .01) 

hist(XX, freq=F, breaks=50, xlim=c(-5,5)) 

lines(x,p(x),lty=2, col="red") 

mean(XX) 

sd(XX) 

edgeworth=b1-b2+sqrt(T2)*XX 

hist(edgeworth) 

q4=quantile(edgeworth,prob=c(0.025,.975)) 

q4 

#Averaging approximation based on Feller’s lemma 
nu=n1+n2-4 
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f=rf(10000,n2-2,n1-2) 

t=rt(10000,nu) 

l=(s1ee/s2ee)*f 

mean.l=mean(l) 

denom=s1ee+mean.l*s2ee 

A=s1xx/denom 

B=mean.l*s2xx/denom 

d.mean=(b1-b2)+ (sqrt((A+B)/(A*B))*t)/sqrt(nu) 

q5=quantile(d.mean,prob=c(.025,.975)) 

q5 

#Modal approximation 
ff=rf(10000,n2-2,n1-2) 

f=ff*s1ee*(n2-2)/s2ee*(n1-2) 

m=(s1ee/s2ee)*(n2-4)/n1 

nu=n1+n2-4 

t=rt(10000,nu) 

denom=s1ee+m*s2ee 

AA=s1xx/denom 

BB=m*s2xx/denom 

d.mod=(b1-b2)+ (sqrt((AA+BB)/(AA*BB))*t)/sqrt(nu) 

q6=quantile(d.mod,prob=c(.025,.975)) 

q6 
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