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Abstract 
This study builds non-linear econometric models to analyze the effects of 
temperature on electricity consumption in Taiwan by using the smooth tran-
sition regression (STR) model and the monthly time-series data from 1983 to 
2012. The empirical results indicate that there is a non-linear relationship be-
tween electricity consumption and temperature in Taiwan. Furthermore, all 
the six estimated threshold temperatures are between 25.364˚C and 27.156˚C, 
and the average of threshold temperatures is 26.384˚C. It implies that Tai-
wan’s electricity consumption has a non-linear growth if average temperature 
is higher than the threshold temperature. In addition, the estimated threshold 
temperature has policy implications for Taiwan’s policy makers, meaning that 
the threshold temperature in this study can serve as a reference for framing 
policies of managing electricity demand in Taiwan. 
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1. Introduction 

Electricity consumption is contributed by many types of human activities, such 
as heating, air conditioning, lighting in both business and residential sectors, and 
major contributions come from operating equipment in industrial sectors. 
Whilst lighting and operating equipment might not be directly linked to climate 
change, heating and air conditioning have a direct impact on air temperature [1]. 
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All the climate-change-related impacts on electricity demand and supply can be 
easily observed from the quantifiable effects of temperature on the use of heating 
and air conditioning, and these numbers are usually described by different mea-
surements based on the concept of heating degree days (HDDs) and cooling de-
gree days (CDDs).  

HDDs is defined as the sum of negative deviations from the actually measured 
temperatures to the reference temperature (or base temperature) over a given 
time period; in contrast, CDDs indicates the sum of positive deviations from the 
average temperatures to the reference temperature over a given time period. The 
data frequency of the given time period is usually daily, weekly or monthly. The 
reference temperature is defined by the temperature level without additionally 
using electricity for heating or cooling. That is, if the air temperature is comfort-
able for humans, there will be less electricity consumption for heating or cooling. 

The reference temperature can be generally considered to be 18.3˚C (65˚F) [2]. 
However, Parkpoom and Harrison [3] used 11.7˚C (53˚F) to be the reference 
temperature in Thailand; Howden and Crimp [4] determined 17.5˚C (63.5˚F) to 
be the reference temperature for Sydney; Ahmed et al. [5] proposed 14.3˚C 
(57.7˚F) as the reference temperature for the State of New South Wales in Aus-
tralia after their calculation; Zachariadis and Hadjinicolaou [6] employed 18˚C 
(64.4˚F) and 22˚C (71.6˚F) respectively to be the reference temperature of HDDs 
and CDDs for the area of Mediterranean Europe. In sum, there could be different 
reference temperatures within different geographical regions. 

Global warming could lead to increases in CDDs and decreases in HDDs, con-
cluded by Benestad [7], whose report indicates that climate change could trigger 
more energy consumption due to air conditioning in the hot areas. De Cian et al. 
[8] used the panel data from 31 countries to investigate the relationship between 
energy consumption and variations in temperature. Their empirical results sug-
gest that higher average temperature leads to more energy consumption during 
hot seasons in the warmer countries, but less energy is consumed during cold 
seasons in the colder countries.  

Hekkenberg et al. [9] assessed the electricity demand pattern in the relatively 
temperate climate of the Netherlands. They used daily data over the period from 
1970 to 2007 to investigate possible trends in the temperature dependence of 
electricity demand. Although the Netherlands has the minimum electricity de-
mand in the summer months, however, their empirical results showed significant 
increases in the temperature dependence of electricity demand in the months of 
May, June, September, October and during the summer holidays. That is, their 
alarming result sends a signal to raise future expectations for additional peaks of 
electricity consumption in summer under the in the influence of climate change. 

Moral-Carcedo and Vicéns-Otero [10] figured out that the relationship be-
tween electricity demand and temperature is nonlinear, and the nonlinearity is 
reflected on the threshold temperatures. They employed the threshold regression 
model (TR) and the logistic smooth transition regression (LSTR) model to build 
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the relationship between electricity demand and temperature in Spain using daily 
data from 1995 to 2003.  

In their research, they created the variable of working day effect to capture the 
variations of electricity demand caused by the activities in the industrial and 
commercial sectors as well as by the behaviors of households during holidays and 
on working days. Hence, they could eliminate those effects from electricity de-
mand, then focus more on the pure effects of temperature on electricity demand. 
Their results showed that the threshold temperatures of the TR model are 15.5˚C 
(59.9˚F) and 18.4˚C (65.1˚F), and the threshold temperature of the STR model is 
18˚C (64.4˚F). 

Bessec and Fouquau [11] investigated the relationship between electricity de-
mand and temperature in 15 European countries over the period from 1985 to 
2000 using monthly data. They applied a panel smooth transition regression 
(PSTR) model to describe the relationship between electricity demand and tem-
perature in those countries and find threshold temperatures for those countries. 
In addition, in order to estimate the pure effects of temperature on electricity 
demand, they also followed Moral-Carcedo and Vicéns-Otero [10], and used 
dummy variables to represent summer holidays and time trends to filter out oth-
er source of electricity consumptions. Their results showed that the nonlinear 
pattern was more pronounced in the warm countries among the 15 European 
countries. 

Lee and Chiu [12] used the PSTR model and took into account the potential 
endogeneity biases to examine the relationship between electricity demand and 
temperature of 24 OECD countries over the period from 1978 to 2004. They 
provided evidence of a U-shaped relationship between electricity consumption 
and temperature of 24 OECD countries, and the threshold temperature is ap-
proximately 11.7˚C (53˚F).  

In sum, to summarize the literature mentioned above, we can highlight two 
main findings. First, the relationship between electricity consumption and tem-
perature shows nonlinearity in the past cases, so when establishing an econome-
tric model for cases in Taiwan to estimate the effects of temperature on electricity 
consumption, we should consider possible nonlinear relationship between elec-
tricity consumption and temperature. Secondly, the threshold temperature has 
some policy implications, such as guidance for the management of electricity 
demand and supply, strategies for mitigating the impact of climate change on 
electricity. 

To give an example of policy implications on electricity management, the Tai-
wanese government has introduced a policy since the year 2011 to save energy by 
asking public sectors to operate air conditioners only if the air temperature is 
higher than 26˚C (78.8˚F). In addition, once the real threshold temperature is 
found, it can be applied to computation of the data of CDDs in Taiwan to de-
scribe the patterns between temperature and electricity consumption both in the 
past and in the future. That is, if global warming leads to more temperature de-
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gree days, we should consider more power system expansion planning in Taiwan 
to meet the possible increases in electricity demand in the future. Therefore, we 
believe that it is worth further discussing how to model the real relationship be-
tween electricity consumption and temperature. 

The objective of this study is to utilize the nonlinear econometric approach 
(STR model) to analyze the effects temperature has on electricity consumption in 
Taiwan. The estimated results of the STR model provide two mainly contribu-
tions to this study. First, we show the evidence of positively nonlinear relation-
ship between electricity consumption and temperature in Taiwan. Secondly, we 
find that the average threshold temperature for Taiwan is about 26.384˚C (79.3˚F) 
over the period from 1983 to 2012. Furthermore, there are variations of thre-
shold temperatures among different sample periods, and range of threshold 
temperatures lies between 25.364˚C and 27.156˚C. The contributions of this 
study could be turned into policy implications for policy makers. 

The remainder part of this study is organized as follows: Section 2 describes 
the data source, data descriptive and data processing. Section 3 presents the eco-
nometric methodology and the empirical model. Section 4 provides our empiri-
cal results. Section 5 is the conclusion of this study. 

2. Data 
2.1. Data Source and Descriptive 

In this study, we use monthly time-series data which cover the period from 1983 
to 2012. The original data of electricity consumption per capita (kWh) are col-
lected from MOEABOE [13], and the gridded dataset of historical climate in-
formation from TCCIP [14] is used to compute the monthly average temperature 
(˚C) over the period from 1983 to 2012. 

Table 1 displays the descriptive statistics on monthly average temperature in 
the different time period over 1983 to 2012. In Table 1, the mean temperature of 
the past three decades is between 21.997˚C and 22.383˚C. The coldest month in a 
year are usually January and February, and the hottest month in a year, July and 
August. In addition, the mean temperature for summer (June, July and August) is 
between 27.127˚C and 27.460˚C, and the stand deviation of temperature in  

 
Table 1. Descriptive statistics on temperature. 

Time period Mean Min. Max. S.D. Mean of Summer S.D. of Summer 

1983-1987 22.127 14.326 (Feb.) 28.948 (Jul.) 4.711 27.395 0.716 

1987-1992 22.182 15.156 (Jan.) 28.281 (Jul.) 4.430 27.460 0.605 

1993-1997 21.997 14.285 (Feb.) 28.064 (Jul.) 4.473 27.127 0.647 

1998-2002 22.490 15.311 (Feb.) 28.261 (Aug.) 4.204 27.340 0.556 

2002-2007 22.383 14.786 (Jan.) 28.929 (Jul.) 4.452 27.397 0.840 

2008-2012 22.304 13.531 (Jan.) 28.220 (Jul.) 4.588 27.434 0.731 

Notes: () refers to the month of the data value.  
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summer is between 0.556˚C and 0.840˚C, which indicates that we observe minor 
variations of temperature in summer in the past three decades in Taiwan. 

Figure 1 shows the average electricity consumption and the average tempera-
ture, respectively. We can see that the month of the largest electricity consump-
tion per capita in a year is August; however, the month of the highest tempera-
ture in a year is July, meaning the non-temperature impacts on electricity con-
sumption should be considered. Therefore, in the Section 2.2, we filter out the 
effects of non-temperature factors on electricity consumption. 

2.2. Filtered Electricity Consumption 

In order to examine the pure effects of temperature on electricity consumption, 
we firstly remove the effects of other factors on electricity consumption [10] [11]. 
Especially, Bessec and Fouquau [11] indicated that three major components must 
be considered when we filter out the other effects affecting electricity consump-
tion. The first component is the demographic trend, the second component is the 
technological trend, and the third component is the monthly seasonality related 
to the activity. However, our data of electricity consumption are divided by pop-
ulation, so we can say that our data of electricity consumption have removed the 
effects of demographic trends. Then, we follow Moral-Carcedo and Vicéns-Otero 
[10] as well as Bessec and Fouquau [11], the two last components will be filtered 
out from electricity consumption by employing Equation (1), 

2 3
0 1 2 3 4t tEC t t t D FECβ β β β β= + + + + +               (1) 

where tEC  represents the electricity consumption at time t; t denotes the time 
trend; D is a dummy variable. We define the value of July and August equal to 
one, and the values of other months are equal to zero. The dummy variable is 
used to remove the effects of summer holidays on electricity consumption [10]. 

tFEC  stands for the filtered electricity consumption, and it is also the estimated  
 

 
Figure 1. The average electricity consumption and average temperature (1983-2012). 
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residual from Equation (1), and Table 2 shows the estimated result of Equation 
(1). 

Figure 2 is the scatter plot of filtered electricity consumption and temperature 
over the period from 1983 to 2012. We also repot a regression line between fil-
tered electricity consumption and temperature with a polynomial of order three. 
However, we cannot see the U-shape relationship between electricity consump-
tion and temperature in Figure 2. In Taiwan, people usually use more gas and oil 
products for cooking and heating in the cold seasons (from Oct. to Feb.), and air 
conditioner for cooling in summer, which is the reason for the non U-shape rela-
tionship between electricity consumption and temperature in Taiwan. However, 
although Figure 2 looks like there is a positive linear relationship between elec-
tricity consumption and temperature, we still believe that there could be a thre-
shold temperature in the relationship between electricity consumption and  

 
Table 2. The estimated result of filtered electricity consumption. 

Parameter Coefficient 

Constant 188.238 (11.021)*** 

t 0.795 (0.265)*** 

t2 0.012 (0.002)*** 

t3 −0.001 (0.000)*** 

D 77.194 (7.428)*** 

Adj. R2 0.950 

F-statistic 1706.697*** 

NO. of observation 360 

Notes: 1) () stands for standard deviation. 2) *** refers to the significance level at 1%. 
 

 
Figure 2. Filtered electricity consumption and temperature (1983-2012). 
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temperature. At this stage, we will employ smooth transition regression models 
[15] to investigate whether the nonlinear relationship exists between electricity 
consumption and temperature in Taiwan or not. 

3. Methodology and Empirical Model 

This study employs the STR model to analyze the pure effects of temperature on 
electricity consumption in Taiwan. However, before the estimation of the STR 
model, we firstly have to test whether the time series data are stationary or not; 
that is, we have to conduct a unit root test for each set of time series data. Hence, 
we will introduce the methodology of unit root test which we have used for this 
study in the following section.  

3.1. Unit Root Test 

The stationary of time series data is usually examined by the Augmented and 
Dickey Fuller (ADF) test and Philips-Perron (P.P.) test in the past literatures, and 
these two tests were provided by Dickey and Fuller [16] and Philips and Perron 
[17], respectively.  

However, both the ADF test and P.P. test have not considered the possibility of 
a structural break in the time series data. Therefore, to solve this problem, we 
employ the unit root test with structural breaks provided by Saikkonen and 
Lütkepohl [18] and Lanne et al. [19]. If there is a shift in the data generating 
process (DGP) of the level data, it should be taken into account in the unit root 
testing. The shift function ( )tf δ ϕ′  and deterministic trend will be included in 
the DGP of the time series tI , such as Equation (2), 

( )0 1t t tI t fµ µ δ ϕ ε′= + + +                     (2) 

where δ and φ are unknown parameters; tε  is the error term generated by 
AR(p) process with possible unit root. Here, two types of shift function are ap-
plied for the unit root test in this study. The first type is a simple shift dummy 
variable 1td  with shift date BT ; if Bt T≥ , the dummy variable 1td  is equal to 1; 
on the contrary, if Bt T< , the dummy variable 1td  is equal to 0. The difference 
in the shift function makes an impulse dummy, which can be seen as a rational 
function in the lag operator applied by 1td . Moreover, the actual shift term of 
impulse dummy is ( ) ( )1 1

1 2 11 1 tL L L dϕ δ ϕ δ− − − + −  , where δ is a scalar para-
meter between 0 and 1; and ( )1 2:ϕ ϕ ϕ=  is a two dimensional parameter vec-
tor. 

Once a break point is fixed, Saikkonen and Lütkepohl [18] and Lanne et al. [19] 
suggested the unit root test (Equation (2)) could be estimated by the generalized 
least square (GLS) procedure under the null hypothesis of unit root. In addition, 
Lanne et al. [19] also provided the critical value for this unit root test. 

3.2. Smooth Transition Regression (STR) Model 

The STR model is widely used to describe the nonlinear relation of time series 
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data. The univariate form of STR was proposed by Chan and Tong [20], subse-
quently developed by Luukkonen et al. [21] and Teräsvirta [15] [22]. Areosa et al. 
[23] further showed the estimation of STR models with endogenous variables. 
Hence, according to Teräsvirta [15], the STR model can be specified as Equation 
(3). 

( ), ,t t t t ty z z F s c uπ θ γ= + +                    (3) 

where t represents time dimension; ty  is a dependent variable; ( ), ,tF s cγ  
represents the transition function with the transition variable ts ; π and θ 
represent the linear part of the model and nonlinear part of the model, respec-
tively. γ is a slope parameter which shows the speed of transition from one re-
gime to another regime, and c is also the extreme threshold of the transition va-
riable. In the equation, ( )1 1, , ; , , ,t t t p t t t qz y y x x x− − − −=  

, t py −  indicates the op-
timal autoregressive term for p lag lengths of dependent variable, and t qx −  
means the independent variable of q lag lengths. π and θ represent the linear part 
of the model and nonlinear part of the model, respectively. If γ →∞ , the STR 
model will reduce to the threshold regression (TR) model, meaning that if the 
transition variable is larger than c, the transition function will be one. However, 
if the transition variable is smaller than c, the transition function will be zero. In 
addition, if 0γ → , the STR model will change to a linear model. 

Generally, the transition function usually can be distinguished into two types 
of function forms, namely, the logistic function and the exponential function. 
They are expressed as Equation (4) and Equation (5), respectively. 

 ( )
( )( )

1 1, ,
21 expt

t

F s c
s c

γ
γ

 
= − 

+ − −  
               (4) 

or 

( ) ( )( )2
, , 1 expt tF s c s cγ γ = − − −  

                (5) 

The first step of the STR estimation starts with examining whether there is a 
nonlinear relationship between the dependent variable and the transition varia-
ble or not. If the nonlinear relationship exists between the variables, then the 
second step of STR estimation will investigate the number of regime switch. Both 
of the two steps can be identified via the coefficient test on the following aux-
iliary regression, as Equation (6) shows: 

2
2 3

3
0 1t t t t t t t t ty z z s z s z sβ β β β η′ ′ ′ ′= + + + +                (6) 

The null hypothesis of the linearity of the relationship between dependent va-
riables and independent variables versus the alternative hypothesis of the nonli-
nearity of the relationship between dependent variables and independent va-
riables can be examined by the null hypothesis of coefficient test as follows: 

31 1 2: 0H β β β′ ′ ′= = =                       (7) 

The test statistic of H1 holds F distribution, and F test is suggested for coeffi-
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cient test because of its better small properties [15] [21] [24]. If the testing result 
rejects the null hypothesis of H1, it indicates that the nonlinear model should be 
selected to describe the relationship between variables. Subsequently, we can se-
lect an appropriate nonlinear model via doing three types of coefficient tests, all 
of which contain F distribution. The three coefficient tests extended from the 
null hypothesis are as the following: 

12 2 3: 0 | 0H β β β′ ′ ′= = =                      (8) 

23 3: 0 | 0H β β′ ′= =                       (9) 

34 : 0H β ′ =                        (10) 

If the testing result shows that the rejection of H3 is the strongest, the appro-
priate nonlinear model is either the LSTR2 model or the exponential smooth 
transition regression model (ESTR), either of which should be chosen by doing 
the null hypothesis test of 0 1 2:H c c= . If H0 is not rejected, it means that there 
should be one regime switch, and the optimal model will be the ESTR model; 
otherwise, the appropriate model will be the LSTR2 model. However, if the test-
ing result indicates that the rejection of H2 or H4 is the strongest, the appropriate 
nonlinear model will be the logistic smooth transition regression model with one 
regime switch (LSTR).  

Once the linear model is rejected, the next step is to select the appropriate 
transition variable and estimate the parameters of transition function. Teräsvirta 
[15] suggested the transition function ( ), ,tF s cγ  should be standardized to make 
γ scale-free, which means dividing the exponent in ( ), ,tF s cγ  by the standard 
deviation of ts , as the expression of Equation (11) shows. 

( )


( )
1

, , 1 exp
t

t t
s

F s c s cγ
γ

σ

−
   

 
 


=


+ − − 
  

              (11) 

A grid search method is employed here to find the parameter γ and c, and the 
model with the minimum value of the sum of square residuals (SSR) from the 
grid search method will be used to provide an initial value of γ and c for the ini-
tial estimation of the STR model. 

3.3. Empirical Model 

Therefore, we establish a smooth transition regression model to describe the 
nonlinear relationship between electricity consumption and temperature. Consi-
dering the assumption of exogeneity for electricity consumption to temperature, 
Chen et al. [25] examined the relationship of Granger causality between energy 
consumption and CO2 emissions using the data of 188 countries, and they only 
observed the unidirectional causality from energy consumption to CO2 emis-
sions. Chang [26] also suggested the unidirectional causality from electricity 
consumption to CO2 emissions. Therefore, we can say that the increasing elec-
tricity consumption directly causes the rising of CO2 emissions, indirectly leads 
to higher average temperature caused by global warming, and electricity con-
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sumption further increases again directly due to the higher average temperature. 
In short, electricity consumption could indirectly affect temperature through cli-
mate change in the long term, and in turn, temperature can directly affect electric-
ity consumption [27]. That is, we can estimate the STR models under the assump-
tion of exogeneity. Hence, our empirical model is written as Equation (12), 

( )

0 1 2
1

1 2
1

, ,

p

t t i t
i

p

t t i t t
i

FEC FEC TEMP

F TEMP c FEC TEMP u

π π π

γ θ θ

−
=

−
=

= + +

 
+ + + 

 

∑

∑
        (12) 

where t means time dimension; tFEC  represents filtered electricity consumption 
at time t; tTEMP  denotes temperature at time t; tu  stands for the residuals with 
a mean of zero and constant variance; ( ), ,tF TEMP cγ  is the transition function 
with the transition variable tTEMP . As mentioned before, the parameters of γ, c, 
π2, and θ2 are the key parameters of our following estimation.  

4. Estimated Results 
4.1. Unit Root Testing 

Before performing the unit root testing, we divide the samples into six sample 
groups, and the sample period is four years for each sample group. Table 3 re-
ports the results of unit testing for each data series. We can see that the series 

tFEC  is stationary for each sample period from the results of ADF test and P.P. 
test. On the other hand, the results of ADF test and P.P. test for tTEMP  are sim-
ilar to the testing results of the series tFEC  which rejects the null hypothesis of 
unit root. This means that the series tFEC  is stationary for each sample period.  

When we considers the DGP of series with possible structural breaks, the im-
pulse dummy and shift dummy are used to detect possible structural breaks in 
this study. The result of unit root testing for structural breaks shows that all the 
null hypothesis of unit root is rejected at 1% significance level no matter the se-
ries are tFEC  or tTEMP  while the DGP of series includes impulse dummy va-
riables for structural breaks, meaning all series are stationary for each sample pe-
riod. However, when the DGP of series includes shift dummy variables for 
structural breaks, some reject the null hypothesis, others do not. 

In sum, we conclude that both the series tFEC  and the series tTEMP  are 
stationary at level based on our unit root testing; that is, we will estimate the em-
pirical model with level data. 

4.2. Estimated Result of the STR Model 

Table 4 shows the results of the nonlinear model test for each sample period, F1, 
F2, F3 and F4 represent the statistic of F test for H1, H2, H3 and H4, respectively. 
Firstly, we can see that the P-value of F1 for each period all reject the null hypo-
thesis of the linear model at 1% significance level, meaning that we should con-
sider the nonlinear relationship between electricity consumption and tempera-
ture in our empirical model for each sample period. Secondly, as the rules of 
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model selection mentioned before indicates, if F2 or F4 has the strongest signifi-
cant P-value among F2, F3 and F4, the appropriate model will be LSTR. Moreover, 
the testing results indicate that the appropriate models of each sample period are 
all LSTR models. 

 
Table 3. Results of unit root test. 

 ADF test P.P. test UR test with structural break 

Variables Intercept Intercept & Trend Intercept Intercept & Trend Impulse dummy Shift dummy Break point 

Sample period: 1983-1987 

FECt −8.053*** −8.088*** −8.057*** −8.093*** −4.230*** −2.209 1986M08 

∆FECt −14.067*** −14.076*** −31.987*** −31.258*** −5.543*** −4.344*** 1986M08 

TEMPt −6.775*** −6.868*** −3.328** −3.259* −7.441*** −7.267*** 1987M09 

∆TEMPt −9.803*** −9.839*** −3.331** −3.332* −3.824*** −2.468 1985M04 

Sample period: 1988-1992 

FECt −6.753*** −6.621*** −5.044*** −5.002*** −3.956*** −2.053 1991M06 

∆FECt −15.562*** −15.676*** −11.551*** −11.466*** −4.604*** −1.657 1991M03 

TEMPt −10.332*** −10.209*** −3.297** −3.229* −8.178*** −7.026*** 1989M04 

∆TEMPt −6.323*** −6.260*** −4.139*** −4.143*** −4.687*** −4.753*** 1988M06 

Sample period: 1993-1997 

FECt −6.279*** −6.638*** −4.692*** −4.645*** −4.880*** −3.461** 1996M08 

∆FECt −12.341*** −12.315*** −11.494*** −11.397*** −4.882*** −2.163 1997M03 

TEMPt −8.058*** −8.064*** −3.286** −3.234* −7.945*** −5.224*** 1994M04 

∆TEMPt −7.564*** −7.482*** −4.126*** −4.118*** −4.357*** −3.201*** 1994M04 

Sample period: 1998-2002 

FECt −6.595*** −6.564*** −3.832*** −3.812** −4.928*** −3.510*** 2001M11 

∆FECt −8.943*** −8.851*** −9.738*** −9.655*** −4.109*** −1.229 2002M03 

TEMPt −6.359*** −6.294*** −3.248** −3.182* −8.225*** −6.902*** 1999M12 

∆TEMPt −8.201*** −8.117*** −3.672*** −3.680** −5.312*** −3.349*** 2000M01 

Sample period: 2003-2007 

FECt −6.435*** −7.440*** −3.921*** −3.959** −4.890*** −4.251*** 2005M02 

∆FECt −12.405*** −12.321*** −9.717*** −9.644*** −3.701*** −1.653 2005M03 

TEMPt −8.715*** −9.082*** −3.267** −3.204* −8.328*** −5.063*** 2005M12 

∆TEMPt −8.867*** −8.895*** −4.381*** −4.375*** −4.133*** −3.844*** 2005M12 

Sample period: 2008-2012 

FECt −6.435*** −7.440*** −3.921*** −3.959** −3.480*** −2.997** 2008M11 

∆FECt −12.405*** −12.321*** −9.717*** −9.644*** −3.634*** −1.508 2012M03 

TEMPt −8.715*** −9.082*** −3.267** −3.204* −9.686*** −6.938*** 2009M02 

∆TEMPt −8.867*** −8.895*** −4.381*** −4.375*** −5.231*** −3.596*** 2009M02 

Notes: 1) The critical values (1%, 5%, 10%) of UR test with structural break are (−3.48, −2.88, −2.58). 2) ***, **, * refers to the significance level at 1%, 5%, 
10%, respectively. 
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Table 4. Results of appropriate nonlinear model test. 

Sample period F1 F4 F3 F2 Selected model 

1983-1987 0.000 0.235 0.044 0.000* LSTR 

1988-1992 0.000 0.682 0.001 0.000* LSTR 

1993-1997 0.000 0.000* 0.001 0.007 LSTR 

1998-2002 0.010 0.463 0.638 0.000* LSTR 

2003-2007 0.000 0.004* 0.030 0.053 LSTR 

2008-2012 0.007 0.248 0.136 0.002* LSTR 

Notes: * denotes the strongest rejection among null hypothesis of H2, H3 and H4. 
 
Table 5. The estimated results of STR models. 

Estimated results 
Sample period 

1983-1987 1988-1992 1993-1997 1998-2002 2003-2007 2008-2012 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

The linear part of the model 

π2 3.756(0.944)*** 3.774(1.105)*** 4.527(1.463)*** 9.313(1.135)*** 18.485(3.308)*** 23.128(4.080)*** 

The nonlinear part of the model 

θ2 25.225(7.404)*** 15.119(7.272)** 11.682(23.677) 42.108(46.399) 4.536(2.359)* 9.375(6.552) 

γ 39.400(22.385)* 6.843(2.968)** 7.464(4.378)* 15.396(6.739)** 4.088(2.707) 6.271(4.657) 

c 26.892(0.222)*** 25.530(0.624)*** 25.364(0.459)*** 27.156(0.421)*** 26.477(0.802)*** 26.884(0.771)*** 

Adj. R2 0.932 0.937 0.945 0.916 0.863 0.830 

SD of residuals 8.511 10.119 12.452 20.391 27.474 32.726 

AIC 4.564 4.893 5.681 6.278 6.806 7.643 

NO. of observations 53 53 53 52 54 53 

Notes: 1) ***, **, * refers to the significance level at 1%, 5%, 10%, respectively. 2) () refers to stand error. 
 

Subsequently, we establish the LSTR model for six sample periods, respectively. 
Table 5 represents the estimated results of the STR model for each sample pe-
riods, the appropriate lag length of the dependent variable is chosen by mini-
mum AIC (Akaike Information Criterion) with maximum lag length of 10 lags. 
We only report the estimated coefficient of key parameters in Table 5 to focus on 
threshold temperature of electricity consumption. 

We can see that the estimated results of the linear part of all models indicate 
the positively significant relationships exist between electricity consumption and 
temperature in Taiwan. Furthermore, the largest coefficient of π2 is estimated 
during the period from 2003 to 2007 (Model 5), meaning that during these 5 
years, when temperature increases by 1˚C, people are the most sensitive to con-
sume excessive electricity compared with other periods.  

In addition, for the estimated results of the nonlinear part, Model 2, Model 3 
and Model 6 represents the positively significant relationships also exist between 
electricity consumption and temperature. It implies that when the transition va-
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riable (temperature) increases, the relationship between electricity consumption 
and temperature becomes much more positive. 

Turning to the slope parameter γ, the estimated values are from 4.088 to 
39.400, and four of six models provide the significant value of parameter γ, in 
addition, for the estimated results of parameter c, the estimated values are from 
25.530˚C to 27.156˚C, which implies that the electricity consumption is conti-
nuously transforming with logistic function when the temperature level reaches 
an inflexion point. For instance, as the result of Model 6, when the temperature 
reaches 26.884˚C, the relationship between electricity consumption and temper-
ature becomes more sensitive, and increases in temperature cause nonlinear in-
creases in electricity consumption. 

At this level, we can make three remarks. Firstly, the estimated value of thre-
shold parameter c (25.530˚C to 27.156˚C) is different from the value of 18.3˚C 
generally used as the reference temperature of cooling degree days (CDDs) in the 
past literatures. Secondly, the average of all threshold value is 26.384˚C, and this 
value is not only close to the official reference temperature of CDDs in Taiwan, 
but also similar to the threshold temperature of CDDs used by Holtedahl and 
Joutz [28] (74˚F and 80˚F). Thirdly, the threshold value of temperature is not al-
ways a fixed value; the number could fluctuate in different time periods.  

Moreover, we can reasonably infer that El Nino Southern Oscillation (ENSO) 
is one of the reasons for varying threshold temperatures in different time periods. 
We believe that El Niño events will lead to warmer winters and hotter summers; 
that is, there will be more hot days in a year when an El Niño event occurs. 
Needless to say, more hot days could change how people use electricity. For in-
stance, as an El Niño event makes people feel hot in a warmer winter, people 
would use air-conditioners to create a comfortable indoor temperature by lower-
ing the temperature, which leads to a lower the threshold temperature. On the 
contrary, a La Niña event makes colder summers and winters colder, which 
would also encourage people to use air-conditioner due to a higher temperature; 
this could lead to a higher threshold temperature. 

To add this into consideration, we define ENSO score based on the data of 
Oceanic Niño Index (ONI) sourced from CPC [29]. According to the definition 
of ENSO events, we assign a score of 4 to −4 to distinguish a very strong El Niño 
year (a score 4), a strong El Niño year (a score 3), a moderate El Niño year (a 
score 2), a weak El Niño year (a score 1), a neutral year (a score 0), a weak La 
Niña year (a score −1), a moderate La Niña year (a score −2), and −3 for a strong 
La Niña year (a score −3). Therefore, we can see the relationship between ENSO 
scores and threshold temperatures from Figure 3. 

4.3. Model Diagnostics 

The quality of the estimated nonlinear model would be examined against miss-
pecification like what we conducted on the linear model. Specification tests such 
as the serial correlation test [30], the ARCH-LM test [31], a normality test, a pa-
rameter constancy test and the no remaining nonlinearity test are employed for  
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Figure 3. Historical ENSO score and threshold temperature. 

 
Table 6. Testing for the serial autocorrelation of residuals (F-value). 

Lag 1 2 3 4 5 6 7 8 

Model 1 2.149 1.605 1.493 1.008 1.399 1.195 1.500 1.232 

Model 2 1.905 2.054 1.472 2.682* 2.034 1.787 1.720 1.467 

Model 3 0.875 0.731 0.945 0.939 0.875 0.728 0.577 0.450 

Model 4 1.159 1.377 0.685 0.619 0.687 0.895 0.809 0.651 

Model 5 0.205 0.318 0.964 0.671 0.695 0.576 1.171 1.038 

Model 6 1.716 0.928 1.354 0.942 0.719 0.820 0.689 0.599 

Notes: * refers to the significance level at 10%. 
 

model diagnostic in this section. Table 6 shows the testing results of the serial 
correlation of residuals for each model with 8 lag terms. We can see that only the 
fourth lag term of Model 2 rejects the null hypothesis of no serial correlation of 
residuals at 10% significance level. Overall, we can say that none of six models 
have the serial correlation.  

In addition, Table 7 reports the testing results of the ARCH-LM test, the nor-
mality test, the parameter constancy test and the no remaining nonlinearity test, 
respectively. We can see that all models are no problem of heteroskedasticity up 
to the lag order of eight as the results of the ARCH-LM test. All results of the 
Jarque-Bera (J.B.) normality test cannot reject the null hypothesis of normality, 
meaning that the error terms of all models are normally distributed.  

We also check whether there is remaining nonlinearity in the models after all 
the STR models has been fitted, and the null hypothesis of no remaining nonli-
nearity test is no additive nonlinearity of the STR model. The testing results are 
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all statistically non-significant, which means there is no additive nonlinearity in 
any of the STR model. The null hypothesis of parameter constancy test is con-
stant parameters against the alternative hypothesis of smooth continuous changes 
in parameters. The testing results cannot reject the null hypothesis, and it indi-
cates that the parameters of six models are constant in both regimes. 

Figure 4 graphs logistic transition function of six models, and the diagram of 
Model 1 to Model 6 are listed in Figure 4 from left to right and from up to down. 
We can see that Model 1 has the steepest slope of logistic transition function 
among the six models, meaning the speed of its transition between two regimes 
is the fastest during the period from 1983 to 1988. By contrast, Model 5 has the 
gentlest slope of logistic transition function among the six models, showing that 
the speed of its transition between the two regimes is the slowest during the pe-
riod from 2003 to 2007. 

 
Table 7. Results of specification tests. 

 
ARCH-LM test 

(x2 [8]) 
Normality test 

(J.B.) 
No remaining nonlinearity 

test (P-value) 
Parameter constancy test 

(F-value) 

Model 1 3.497 0.499 0.513 1.432 

Model 2 8.553 4.341 0.667 0.388 

Model 3 8.174 0.196 0.644 0.913 

Model 4 6.597 1.996 0.993 1.463 

Model 5 7.733 1.135 0.838 1.671 

Model 6 13.026 1.284 0.856 0.349 

 

 
Source: Author’s estimation. 

Figure 4. Logistic transition function of six models which all are with transition variable of temperature. 
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5. Conclusions 

This study discusses the relationship between electricity consumption and tem-
perature in Taiwan for the period from 1983 to 2012. In order to get more infor-
mation from our data, we divide all samples into six groups with sample period 
of five years for each group before conducting the empirical estimation. Fur-
thermore, we employ the STR model to estimate the nonlinear relationship be-
tween electricity consumption and temperature for each sample period. In addi-
tion, we also find threshold temperatures on the nonlinear relationship between 
electricity consumption and temperature for each sample period. 

The empirical results show that there are positively significant effects of tem-
perature on electricity consumption in Taiwan for each sample period. When we 
only focus on the estimated results for the linear part of the model, we can find 
that the purely linear effects of temperature on electricity consumption keep ris-
ing over the whole sample period. However, some estimated results for the non-
linear part of the model are positively significant, while others are not. That is, 
we cannot conclude that the purely total effects of temperature on electricity 
consumption also keep magnifying over the whole sample period.  

On the other hand, we figure out the threshold temperature estimated using 
the STR estimation for each sample period. The threshold temperature is 26.892˚C 
(1983-1987), 25.530˚C (1988-1992), 25.364˚C (1993-1997), 27.156˚C (1998-2002), 
26.477˚C (2003-2007), and 26.884˚C (2008-2012). In sum, the average threshold 
temperature over the period from 1983 to 2012 is 26.384˚C. We can say that the 
pure effects of temperature on electricity become much more sensitive if temper-
ature reaches the threshold temperature based on our empirical results. In addi-
tion, Taiwan has a subtropical climate with higher humidity and a higher yearly 
average temperature (at about 22˚C), meaning that Taiwan has a higher temper-
ature compared to other countries with a temperate and frigid climate. Hence, 
estimated temperatures in this study are between 25˚C and 27˚C, which are rea-
sonably comfortable for people living in subtropical climate such as Taiwan. 
Furthermore, the estimated threshold temperature carries the same meaning 
with the reference temperature of CDDs. That is, if the air temperature is higher 
than the threshold temperature, it will lead to increases in electricity consump-
tion. For instance, policy makers could use the threshold temperature to be the 
reference temperature, and thus they could propose a policy to ask people to re-
duce electricity consumption when the air temperature is higher than the refer-
ence temperature in order to save electricity and to promote efficiency of using 
electricity.  

In addition, increasing use of air conditioning resulted in temperature rise for 
a comfortable living environment seems to be a serious problem of power supply 
in Taiwan under the influence of global warming. Santamouris et al. [32] con-
cluded that a 1% increase in temperature under the threshold temperature of 
24˚C in warm countries would lead to a 3.5% increase in peak electricity demand. 
That is, if the ambient temperature is higher than the threshold temperature, the 
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risk of power shortage sharply rises. Now Taiwan is aiming for a future of a 
non-nuclear homeland and is actively developing renewable energy (mainly wind 
and solar power) to meet the estimated losses of nuclear energy. However, wind 
and solar power are not stable sources of power supply due to current limitations 
of power storage technology in Taiwan. Therefore, the threshold temperature 
could send a warning signal to not only promote the idea of energy saving but 
also suggest more power system expansion planning in preparation for more op-
erating reserve in the future.  

Thus, the estimated threshold temperature will have policy implications for 
policy makers, who can use the threshold temperature in this study as a reference 
for making electricity management policies in Taiwan.  
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