
Journal of Software Engineering and Applications, 2018, 11, 139-152
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2018.114009 Mar. 29, 2018 139 Journal of Software Engineering and Applications

Framework for Observing the Maintenance
Needs, Runtime Metrics and the Overall
Quality-in-Use

Timo Hynninen1, Jussi Kasurinen2, Ossi Taipale1

1School of Business and Management, Lappeenranta University of Technology, Lappeenranta, Finland
2South-Eastern Finland University of Applied Sciences, Kotka, Finland

Abstract
The post-release maintenance is usually the most expensive phase in the soft-
ware product lifecycle from the first design concepts to the end of product
support. To reduce the costs related to post-release maintenance, we propose
a run-time framework for measuring software quality characteristics applying
the ISO/IEC 25000 software quality and software quality in use models as the
starting point. Measurement probes are linked into the software during the
development phase and used to collect quality information during the run
time. As a proof-of-concept, we implemented measurements in an open-source
software project to demonstrate the utility of the framework. As a result, this
paper presents a framework for collecting runtime metrics and measuring
software quality-in-use with a systematic interface. Additionally, examples of
measurement scenarios are presented.

Keywords
Software Maintenance, Software Life-Cycle, Measurement, Test Metrics,
Maintenance Costs

1. Introduction

During the software lifecycle, the maintenance of the software is usually the big-
gest overall expense, totaling even up to 90 percent of all life cycle costs [1].
Knowing this, it is rather surprising, that the software development processes do
not focus more on the maintenance phase. Instead development processes focus
to enhance and offer product quality and quality-in-use improvements within
the development and quality assurance steps. For example, the Scrum software

How to cite this paper: Hynninen, T., Ka-
surinen, J. and Taipale, O. (2018) Frame-
work for Observing the Maintenance Needs,
Runtime Metrics and the Overall Quali-
ty-in-Use. Journal of Software Engineering
and Applications, 11, 139-152.
https://doi.org/10.4236/jsea.2018.114009

Received: January 8, 2018
Accepted: March 26, 2018
Published: March 29, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2018.114009
http://www.scirp.org
https://doi.org/10.4236/jsea.2018.114009
http://creativecommons.org/licenses/by/4.0/

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 140 Journal of Software Engineering and Applications

process model which is favored in many SME organizations [2], does not take
into account any activities which happen before or after the active sprints, even
though majority of the software related costs are not realized within this period.
This issue is glaring for example in the game software development, where the
current business models such as live-ops or any other free-2-play model [3],
mean that basically all profits are generated during the maintenance period, not
at the commitment to develop software or after delivery.

Some activity models, such as continuous delivery (CD) [4] or DevOps [5]
promote more thorough integration of maintenance activities into the develop-
ment activities, but the runtime monitoring and control of the quality characte-
ristics supporting maintenance are not included. Actions such as the delivery of
hotfixes, patches or customer-tailored features are part of the continuous release
cycle, where development and maintenance are concurrent activities, with the
development phase being one iteration ahead of the maintenance phase. How-
ever, the general infrastructure in this area is not very systematically studied. In
more abstract terms, technical evaluation of the software quality is not very
straightforward, since the maintenance issues and quality assurance needs are
usually related to the preferred quality: Usually quality assurance during main-
tenance assesses, if the software system delivers the expected features or services,
and achieves the necessary quality requirements. However, there are several dif-
ferent types of quality involved [6], and if we consider quality models such as de-
fined by the ISO/IEC 25000-family [7], there are tens of different measurements
and methods to assess the quality and quality-in-use from different perspectives.

Many existing software measurement frameworks are influenced by the
ISO/IEC quality models. For example, the software maintainability measure-
ments developed by Motogna et al. [8], the performance measurement frame-
work for cloud computing by Bautista et al. [9], or the framework for evaluating
the effect of coding practices to software maintainability by Hegedus [10]. How-
ever, previous research has been limited to cover only parts of quality models,
concentrating around specific quality characteristics such as maintainability or
performance efficiency. There is a need for further work with a general mea-
surement framework, which aims to incorporate the characteristics of a software
quality model to a software system during run time.

The aim of this research is to study the different methods of reducing the costs
of the maintenance by directly lowering the amount of work required for the
maintenance by predicting and identifying the changes in the quality characte-
ristics. Changes in the quality characteristics serve as an early warning system of
the problematic components and software failures. More specifically, we con-
centrate on developing a library of software measurement probes using the
ISO/IEC 25000 standard series as a starting point. From our prior study [11],
applying the ISO/IEC 25000 standard, we understood that the quality model is
understandable enough to warrant application in the industry. The actual re-
search questions are: “What kind of technical infrastructure would enable

https://doi.org/10.4236/jsea.2018.114009

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 141 Journal of Software Engineering and Applications

identification of on-line quality characteristics and thereby maintenance issues?”
and “How to incorporate a software quality model into a library of run-time
metrics?”

To answer these research questions, our approach was to define a framework
and implement the framework in a system to collect and monitor run-time data
from an open-source application. In addition, the collected data is visualized
with a separate analysis tool to monitor trends and changes between the differ-
ent versions of the system and to assess, for example, resource usage for the cus-
tomer environments.

In summary, this paper presents a framework for run-time software mea-
surement. The framework consists of two different types of metrics: direct me-
trics, which can be recorded from a system at run time by incorporating mea-
surement probes into the software during development; and indirect metrics,
which need to be derived from the direct metrics and the knowledge of the soft-
ware engineer or software specification. The framework aims to be general to
warrant use in different applications but at the same time loose enough to allow
developers to derive application-specific measurement.

Rest of the paper is structured as follows: In Section 2, related work is intro-
duced; Section 3 presents the research methodology; The main contribution of
this paper, the measurement framework and our proof-of-concept project are
introduced in Section 4; Discussion and conclusions are given in Sections 5 and
6 respectively.

2. Related Research

Measuring a software system with different kinds of tools and metrics is not a
novel idea. There are several different kinds of definitions for the use of metrics
(for example Honglei et al. [12]) and different quality models for selecting what
to test (for example Herzig et al. [13]), or how to select test cases (For example
Fontana & Zanoni [14], Schrettner et al. [15], Kasurinen et al. [16]). These all are
serious concerns, since the test cases and in general ensuring the system testabil-
ity can cause one third or even half of the workload in software development
life-cycle. This is mostly due to the need to capture not only the normal usage
but also extraordinary uses of the system [17].

The very definition of what product quality or quality-in-use actually means is
also a concern. There are several definitions such as value-based or manufactur-
ing-based quality [6], depending on the viewpoint or the relevant stakeholders.
The users have very different views on what is software or product quality, when
compared to some other quality definition, like the production quality. The cus-
tomers may not care at all on how low percentage of the products are faulty or
how high-quality the building components are, if the product is badly designed,
overpriced against its competing products or simply feels cheap or low-grade
product.

As stated, the assessment of quality relies on several measurable metrics and

https://doi.org/10.4236/jsea.2018.114009

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 142 Journal of Software Engineering and Applications

models, which capture the different definitions of quality. Especially for software
products and their quality, there are some different models such as CISQ [18] or
ISO/IEC 9126 [19], which share a number of common features. For example, in
both these models the problematic aspect of defining what product quality ac-
tually is, is solved by defining a number of characteristics such as reliability or
security. These characteristics in combination assess if not all, then at least most
of the different aspects of software quality, and they can be selected on
case-by-case basis depending on what aspects are relevant.

The ISO/IEC 9126 model is probably the most applied standardized model
but it is not the most current or extensive standard in existence. The ISO/IEC
25000 Software Quality Requirements and Evaluation (SQUARE) model [7] in
its core is the upgraded version of the ISO/IEC 9126 model, with the added defi-
nitions for quality in software product, and a separate model for software quali-
ty-in-use. Overall, the objective of the ISO/IEC 25000 standard family is to clari-
fy the requirements, which should be identified to assess the software quality and
ensure the success on the evaluation and reaching of the set quality objectives.
Overall, the models cover 5 characteristics with 11 sub-characteristics for the
quality-in-use, and 8 characteristics with 31 sub-characteristics for software prod-
uct quality. These models and their characteristics are summarized in Figure 1
and Figure 2.

Figure 1. The ISO/IEC 25010 software product quality model [7], characteristics on left,
and the subcharacteristics on the right.

https://doi.org/10.4236/jsea.2018.114009

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 143 Journal of Software Engineering and Applications

Figure 2. ISO/IEC 25010 software quality-in-use model [7].

The characteristics of the product quality model focus on the technical aspects

of the software, although there are also defined sub-characteristics for more hu-
man-centric aspects such as learnability. For all of the defined sub-characteristics,
the ISO/IEC 25000 standard series also defines a number of measurement tech-
niques and metrics, which can be used to assess the quality of that particular
characteristic. For example, with the testability sub-characteristics there are de-
fined measurements for test function completeness, autonomous testability and
test restartability. Similarly, confidentiality is measured with access controllabil-
ity, data encryption correctness and with the strength of the cryptographic algo-
rithms. Additionally, all of the measurements are formatted to a model, in which
the result provides a clear indicator, usually percentage, of positive outcomes
versus negative outcomes. Technically, this could enable the software systems to
be comparable against each other, and more importantly, allow formal mea-
surement of every different characteristic and their sub-characteristic. Similar
approach is also applied in the “Quality in use”-model, which focuses on the
clients and customers.

The quality-in-use-model focuses on the client side usage and on the delivered
user experience. The model follows the same principle as the product quality
model, dividing the model into a set of characteristics and their sub-characteristics.
Unlike the product quality model, several sub-characteristics such as trust or
pleasure use measurements based on the psychometric scales which are defined
by a questionnaire. However, each main characteristic have at least one aspect,
which can be measured through the use of software.

These models have been studied also in the other research works. For example
Motogna et al. [8] have been studying the maintainability-characteristic of the
ISO/IEC 25010 model, since in the software life cycle model maintenance has
significant effect on the software costs. Their study investigates the mainten-
ance sub-characteristics in detail, and proposes a set of metrics, which could be

https://doi.org/10.4236/jsea.2018.114009

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 144 Journal of Software Engineering and Applications

applied in the assessment of the software maintainability, and provide evidence
that the model is a feasible starting point for a quality assessment system. In
more general studies, for example Goues and Weimer [20] have observed that
the amount of needed test cases in the maintenance can be reduced almost by 55
percent, if the system is designed to include formalized method of collecting
quality assurance-related metrics. A similar approach was used in a research
project documented by Black [21], where a set of explicit data sources was de-
signed to ensure that the quality assurance criterions were met in each incre-
mental development cycle, since there were no realistic resources to do complete
regression test cycle with each test case of the software during each software de-
velopment cycle.

In more practical terms, Lincke et al. [22] have studied the different quality
models and their applicability in real-life software development projects. Their
study suggests, that while the models are able to implicate the quality of the
software measured to some degree, the different models provide different results
and the models in general are not comparable nor compatible. The same project
could yield completely opposite results between two different quality models, if
the selected models and applied metrics are not carefully designed and mea-
ningful. Similar observations have been made also by Darcy and Kemerer [23],
who discuss the generally applicable measurements and notify that there are on-
ly handful of universal metrics. Their studies indicate that for example in the
object-oriented programming languages, concepts such amount of cohesion and
coupling between the objects are the most useful metrics to assess the product
quality and maintenance.

Rompaey et al. [17] also state that one aspect of quality, code quality, espe-
cially the concept of code smell could be transferred to the quality assurance of
unit testing. Their definition of the SSVT-test cycle (set-up, stimulate, verify,
tear down) could be useful in the assessment of system maintainability, test au-
tomation coverage and additional aspects such as explicitness of the system and
traceability of the encountered malfunctions.

3. Research Process

During the study we constructed a framework for quality measurement and
monitoring. The measurement and monitoring system aimed specifically for
software maintenance using a multi-discipline approach. First, we conducted a
literature review that covered, for example, software maintenance, quality as-
surance and software measurement methods. The review was used to identify
existing solutions and proposed methods to tackle the issues raised by our re-
search questions. In short, software quality related to the maintainability of a
system is often evaluated by analyzing code quality or complexity and run-time
approaches are used less often.

In addition to the literature review, we conducted a survey on the applied
testing and quality assurance practices in the industry. One of the key observations

https://doi.org/10.4236/jsea.2018.114009

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 145 Journal of Software Engineering and Applications

was that the use of standards and formal process models seems to have declined
during the last eight years across different domains in our sample of software
organizations [25]. This observation affected our approach towards an on-line
measurement framework applying an international standard.

In order to realize the framework we followed the process described in the
ISO 15939 (Systems and software engineering—Measurement process) [24]. Our
framework covers the first two activities of the ISO 15939 model: establishing
measurement commitment and planning the measurement process. The other
activities recommended by the ISO 15939 model, performing measurements and
evaluating the measurements, are realized as a small-scale proof-of-concept sys-
tem. In the proof-of-concept, we implemented the metrics as a measurement li-
brary in an open-source application. Figure 3 depicts the measurement frame-
work and proof-of-concept implementations.

For each of the different sub-characteristics the ISO/IEC 25000 standard de-
fines a set metrics or measurements, which can be applied in the assessment. For
example, in the performance efficiency characteristic the sub-characteristic
time-behavior is defined as follows: “The degree to which the response and
processing times and throughput rates of a product or system, when performing
its functions, meet requirements”. To assess quality of this characteristic, the
system has to be able to measure and record the response and processing times.
Another example could be the compatibility-interoperability characteristic,
which is defined as “degree to which two or more systems, products or compo-
nents can exchange information and use the information that has been ex-
changed”. This characteristic demands a measurement or metric to assess object
interface similarities, usage of data storages and the amount of errors caused by
the faulty simultaneous operations. This approach was used to establish mea-
surements for sub-characteristics of the ISO/IEC 25000 model. Measurements
were either direct measurements such as with the performance efficiency, or in-
dicative measurements, which were used to collect information related to the
characteristic.

4. Framework for Collecting and Monitoring Quality
Characteristics

The concept system and the proposed testing and maintenance framework is

Figure 3. The measurement framework and proof-of-concept system (Modified from
ISO/IEC 15939 Systems and software engineering—Measurement process model [24]).

https://doi.org/10.4236/jsea.2018.114009

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 146 Journal of Software Engineering and Applications

based on two separate components, which complement each other: the metrics
library, developed as a proof-of-concept IDE plugin for NetBeans [26], and the
analyzer front-end, which visualizes the collected metrics.

The IDE plugin includes a shorthand and the code generators for the different
types of measurement functions included in the library. The measurement func-
tions collect data into a log file with session-relevant information, which enables
the analysis tool to calculate the results and maintenance information. The ob-
jective of the IDE plugin is to offer practical tools for testers and software devel-
opers to measure and collect relevant data to satisfy their needs to verify or to
validate their product, or to assess the feasibility and stability of their latest re-
lease.

The metrics library consists of different testing methods. These methods are
collected from previous experiences and research work with the software indus-
try, from different models, for example, Swebok [27], Test Process Improvement
(TPI) model [28] and Test Maturity Model integration (TMMi) model [29]. The
objective of the library is to offer a wide list of different testing techniques and
tools, and recommend at least one feasible approach for evaluating any ISO/IEC
25000 family model characteristic.

The target IDE and the used programming language Java were both selected
to represent a well-known, platform-independent development environment.
The developed measurements were then incorporated to a test project, which in
our case was an experimental version of the Violet UML editor [30]. The expe-
rimental version had all of the measurements implemented, so that the system
would provide real session data for the analysis tool to calculate.

Table 1 presents the measurements using the quality characteristics collection
and monitoring framework. The measurements are categorized as either direct
or indirect: Direct measures consist of runtime events which are used to calcu-
late descriptive statistics; Indirect measures are derived from the direct meas-
ures, and their implementation requires additional expert information from the
developer or the designer. For example, Maintainability is an indirect measure
based on both runtime and static analysis, whereas Mean time between failures
is a direct measurement.

The analysis tool gives longitudinal observations for the product maintenance
and the reveals production issues. The tool is used to analyze the existing
log-files, assess quality characteristics and provide a visualization snapshot of the
current state of the system along with a view into the changes of key values be-
tween the software versions. The objective of this quality characteristics collec-
tion and monitoring framework system is to provide robust and transferable
metrics, which can be used to assess the “wellbeing” of the system, and provide
systematic and relevant information from the state of the environment or suc-
cess rate of the system revisions against the set targets. Especially for the main-
tenance, one long-term objective would be the observation of system perfor-
mance or feature utilization.

https://doi.org/10.4236/jsea.2018.114009

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 147 Journal of Software Engineering and Applications

Table 1. Ways to measure the different quality characteristics in the proof-of-concept environment.

ISO 25010 Characteristic
(subcharacteristic)

Ways to measure in the framework Measurement type
Implementation in the

software

Functional suitability (Functional
correctness, functional appropriateness)

Code coverage, user-applied action to
achieve use case outcomes

Indirect
Analysis tool calculations

with IDE plugin code insert

Performance efficiency (Time behavior)
Mean response time, response time

adequacy, mean throughput
Direct

Analysis tool calculations
with IDE plugin code insert

Compatibility (Interoperability) External interface adequacy Indirect IDE plugin code insert.

Usability (Learnability)
Error messages understandability, user

error recoverability
Direct

Analysis tool calculations,
IDE plugin insert

Reliability (Maturity)
Mean time between failure (MTBF),

Failure rate
Direct

Analysis tool calculations
with IDE plugin code inserts

Security (Accountability) System log retention Direct/Indirect
Analysis tool calculations

(log retention).

Maintainability (Analysability,
Modifiablity)

System log completeness, Modification
correctness

Indirect
Analysis tool calculations

(errors after tailoring)

Portability (Adaptability) Operational environment adaptability Indirect
Analysis tool calculations

(errors after tailoring)

Effectiveness Task error intensity Direct
Analysis tool calculations,

IDE plugin code inserts

Efficiency Task time Direct
Analysis tool calculations,

IDE plugin code inserts

Satisfaction Feature utilization Direct
Analysis tool calculations,

IDE plugin code insert

Freedom from risk
(Economic risk mitigation)

Business performance, errors with
economic consequences

Indirect
Analysis tool calculations,

IDE plugin code inserts

Context coverage (Flexibility)
Proficiency

independence
Indirect

Analysis tool calculations,
feature utilization-%

To evaluate the utility of the proposed framework, we developed use case sce-

narios to test the proof-of-concept system where the metrics library based on the
framework was integrated to the Violet UML editor. In the scenarios we wanted
to present simple maintenance metrics collected over time which would be
beneficial for a developer monitoring a software system in use.

In the first scenario the proof-of-concept system is being used by multiple
clients, with varying hardware and possibly different operating systems. The
performance metric we decided to visualize was mean system startup time for
each client. Figure 4 presents the data from our scenario with six different
clients. In this example, the developer would be able to see if a patch or update
causes system startup times to rise for all clients, and have an early warning for
when to adjust loaded resources at startup. Alternatively, if a client files a bug
report about slow system performance, the developer will be able to categorize if
the problem appears locally for a single client only.

In another scenario, the metric we implemented was the usage of a new fea-
ture in the program. When software is in the maintenance phase old functionality

https://doi.org/10.4236/jsea.2018.114009

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 148 Journal of Software Engineering and Applications

seldom changes, but new features may be added. In our scenario, a new feature
has been added and deployed. In the scenario there is only one client but the
software could just as well be deployed as a public web service or the metric
could be the sum of all clients. The software developer wants to monitor how
much the new feature is being utilized since it has been launched into produc-
tion. In this example, the two features being compared allow the end user to
access the same functionality and have the same outcome, but through a differ-
ent path of navigation in the user interface. Figure 5 illustrates the comparison
between the usages of the selected features, where feature utilization is plotted by
day. As observable from the graph, users in this scenario have started to favor
the newly deployed feature over the old one to accomplish their task.

5. Discussion and Conclusion

The objective was to integrate a software quality measurement framework into
source code as a library of measurement tools. To bridge the gap between

Figure 4. Example, a time-performance metric collected from six different clients in a test
scenario.

Figure 5. A feature utilization metric collected from clients in a test scenario.

https://doi.org/10.4236/jsea.2018.114009

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 149 Journal of Software Engineering and Applications

established quality evaluation models and their use in practice, we used the ISO
25,000 software quality and quality in-use models as the starting point. In order
to realize our goals we implemented a framework for software measurement and
a proof-of-concept prototype using an open-source project, and evaluated the
work using descriptive scenarios for software in the maintenance phase of its life
cycle. The framework offers a step towards integrating software development
and run-time quality evaluation.

According to the quality characteristics collection and monitoring framework,
the ISO/IEC 25,000 quality characteristics which can be represented or measured
from technical aspects of the system can be covered by the framework. The
framework offers the following novel benefits:
• Development of a systematic interface for the measurement components.
• Framework that is systematic and intuitive enough to warrant ease of use

without extensive training.
• Analysis tools.

Software quality related to the maintainability of a system, is often evaluated
by analyzing the quality or complexity of the source code. Cyclomatic complexi-
ty [31], Halstead complexity measures [32], and C&K metrics [33] are estab-
lished ways to measure code complexity. The complexity metrics are calculated
directly from source code, and analysis tools often employ them. For example,
Microsoft’s Visual Studio includes a maintainability index indicator, which is
based on both Halstead metrics and cyclomatic complexity [34]. In the academic
work, RTtool is a software suite used by researchers to analyze the relative thre-
sholds for the metrics of code quality in a software project [35]. Unfortunately,
at the moment existing code complexity metrics are poorly used in the industry
[36].

Model based approaches or machine learning have been identified as solutions
of evaluating software and predicting defects [37]. Runtime metrics have been
proposed as one method of quality evaluation [37], and they have been applied
by, for example Hegedus, whose model used run-time measures together with
static measures to measure testability and analyzability by using fault proneness
metrics [10]. However, in general run-time metrics are rarely used in software
quality and maintenance evaluation.

The limitations and validity of the presented framework warrant some discus-
sion. First, we must acknowledge that the analysis of metrics depends on the
software they are used with. Not all quality characteristics are interesting in all
software applications. The analysis is affected by the application context, and
therefore the normalization of metrics varies case by case.

This work begun by using the ISO/IEC 25,000 software quality and software
quality-in-use models as the starting point. In the presented framework, we have
covered examples of quality characteristics of the models. The limitations are re-
lated to quality-in-use characteristics that have an inherent subjective nature.
For example, it is difficult to quantify user trust, pleasure or comfort through

https://doi.org/10.4236/jsea.2018.114009

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 150 Journal of Software Engineering and Applications

source code, but indirect run-time measurements may give useful information.
Quality characteristics like freedom from risk or security can only partly be cov-
ered.

Additionally, the utilization of the framework requires effort from the devel-
oper. Probes must be fitted directly to source code, as the framework is intended
to be used considering the domain knowledge. In our proof-of-concept library
we have tried to minimize the required manual programming work required by
exposing ready-to-use API’s to the developer.

6. Conclusions

The objective of this paper was to study how the amount of maintenance effort,
and thereby, cost could be reduced using a quality characteristics collection and
monitoring framework. The paper presents the implementation of a framework
for software measures and a proof-of-concept prototype using an open-source
project. The framework provides a systematic interface, which can be used to
collect runtime metrics and measure software quality-in-use.

The measurement framework and proof-of-concept project were evaluated by
using descriptive scenarios for software in the maintenance phase of its life cycle.
The measurement framework was implemented as a metrics library, and mea-
surements were linked into the software as probes during development. This
work maps the run-time software metrics to quality characteristics.

In future work, we are going to investigate approaches to source code model-
ling and defect prediction methods to automate the measurement process. In
addition, the methods presented to assess the quality of the system during main-
tenance could also be thematically expanded to cover the software lifecycle
phases of design and implementation.

Acknowledgements

This work was funded by the Technology Development center of Finland
(TEKES), as part of the. Maintain project (project number 1204/31/2016).

References
[1] The Four Laws of Application, Total Cost of Ownership (2012) Gartner, Inc.,

Stamford, CT.

[2] Kasurinen, J., Maglyas, A. and Smolander, K. (2014) Is Requirements Engineering
Useless in Game Development? In: Salinesi, C. and van de Weerd, I., Eds., Re-
quirements Engineering: Foundation for Software Quality, REFSQ 2014, Lecture
Notes in Computer Science, Vol. 8396, Springer, Cham, 1-16.
https://doi.org/10.1007/978-3-319-05843-6_1

[3] Alha, K., Koskinen, E., Paavilainen, J., Hamari, J. and Kinnunen, J. (2014)
Free-to-Play Games: Professionals’ Perspectives. Proceedings of Nordic Digra 2014,
Gotland, 29 May 2014.

[4] Humble, J. and Farley, D. (2010) Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Pearson Education.
https://books.google.fi/books?id=6ADDuzere-YC

https://doi.org/10.4236/jsea.2018.114009
https://doi.org/10.1007/978-3-319-05843-6_1
https://books.google.fi/books?id=6ADDuzere-YC

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 151 Journal of Software Engineering and Applications

[5] Roche, J. (2013) Adopting DevOps Practices in Quality Assurance. Communica-
tions of the ACM, 56, 38-43. https://doi.org/10.1145/2524713.2524721

[6] Garvin, D.A. (1984) What Does “Product Quality” Really Mean? Sloan Manage-
ment Review, 4, 25-43.

[7] ISO/IEC (2011) ISO/IEC 25000: Systems and Software Quality Requirements and
Evaluation (SQuaRE)—Guide to SQuaRE.

[8] Motogna, S., Vescan, A., Serban, C. and Tirban, P. (2016) An Approach to Assess
Maintainability Change. 2016 IEEE International Conference on Automation,
Quality and Testing, Robotics (AQTR), Cluj-Napoca, 19-21 May 2016, 1-6.
https://doi.org/10.1109/AQTR.2016.7501279

[9] Bautista, L., Abran, A. and April, A. (2012) Design of a Performance Measurement
Framework for Cloud Computing. Journal of Software Engineering and Applica-
tions, 5, 69-75. https://doi.org/10.4236/jsea.2012.52011

[10] Hegedus, P. (2013) Revealing the Effect of Coding Practices on Software Maintaina-
bility. 2013 29th IEEE International Conference on Software Maintenance (ICSM),
Eindhoven, 22-28 September 2013, 578-581. https://doi.org/10.1109/ICSM.2013.99

[11] Kasurinen, J., Taipale, O., Vanhanen, J. and Smolander, K. (2012) Exploring the
Perceived End-Product Quality in Software-Developing Organizations. Internation-
al Journal of Information System Modeling and Design, 3, 1-32.
https://doi.org/10.4018/jismd.2012040101

[12] Honglei, T., Wei, S. and Yanan, Z. (2009) The Research on Software Metrics and
Software Complexity Metrics. International Forum on Computer
Science-Technology and Applications, Chongqing, 25-27 December 2009, Vol. 1,
131-136. https://doi.org/10.1109/IFCSTA.2009.39

[13] Herzig, K., Greiler, M., Czerwonka, J. and Murphy, B. (2015) The Art of Testing
Less without Sacrificing Quality. Proceedings of the 37th International Conference
on Software Engineering, Vol. 1, Florence, 16-24 May 2015, 483-493.
https://doi.org/10.1109/ICSE.2015.66

[14] Fontana, F.A. and Zanoni, M. (2011) On Investigating Code Smells Correlations.
IEEE 4th International Conference on Software Testing, Verification and Validation
Workshops, Berlin, 21-25 March 2011, 474-475.
https://doi.org/10.1109/ICSTW.2011.14

[15] Schrettner, L., Fülöp, L.J., Beszédes, Á., Kiss, Á. and Gyimóthy, T. (2012) Software
Quality Model and Framework with Applications in Industrial Context. 16th Euro-
pean Conference on Software Maintenance and Reengineering, Szeged, 27-30
March 2012, 453-456. https://doi.org/10.1109/CSMR.2012.57

[16] Kasurinen, J., Taipale, O. and Smolander, K. (2010) Test Case Selection and Priori-
tization: Risk-Based or Design-Based? Proceedings of the 2010 ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement, Bolza-
no-Bozen, 16-17 September 2010, Article No. 10.
https://doi.org/10.1145/1852786.1852800

[17] Rompaey, B.V., Bois, B.D., Demeyer, S. and Rieger, M. (2007) On The Detection of
Test Smells: A Metrics-Based Approach for General Fixture and Eager Test. IEEE
Transactions on Software Engineering, 33, 800-817.
https://doi.org/10.1109/TSE.2007.70745

[18] Consortium for IT Software Quality. http://it-cisq.org/

[19] ISO/IEC (2001) ISO/IEC 9126: Software Engineering—Product Quality.

[20] Goues, C.L. and Weimer, W. (2012) Measuring Code Quality to Improve Specifica-

https://doi.org/10.4236/jsea.2018.114009
https://doi.org/10.1145/2524713.2524721
https://doi.org/10.1109/AQTR.2016.7501279
https://doi.org/10.4236/jsea.2012.52011
https://doi.org/10.1109/ICSM.2013.99
https://doi.org/10.4018/jismd.2012040101
https://doi.org/10.1109/IFCSTA.2009.39
https://doi.org/10.1109/ICSE.2015.66
https://doi.org/10.1109/ICSTW.2011.14
https://doi.org/10.1109/CSMR.2012.57
https://doi.org/10.1145/1852786.1852800
https://doi.org/10.1109/TSE.2007.70745
http://it-cisq.org/

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 152 Journal of Software Engineering and Applications

tion Mining. IEEE Transactions on Software Engineering, 38, 175-190.
https://doi.org/10.1109/TSE.2011.5

[21] Black, P.E. (2006) Software Assurance during Maintenance. 22nd IEEE Internation-
al Conference on Software Maintenance, Philadelphia, 24-27 September 2006,
70-72. https://doi.org/10.1109/ICSM.2006.58

[22] Lincke, R., Gutzmann, T. and Löwe, W. (2010) Software Quality Prediction Models
Compared. 10th International Conference on Quality Software, Zhangjiajie, 14-15
July 2010, 82-91.

[23] Darcy, D.P. and Kemerer, C.F. (2005) OO Metrics in Practice. IEEE Software, 22,
17-19. https://doi.org/10.1109/MS.2005.160

[24] ISO/IEC (2007) ISO/IEC 15939: Systems and Software Engineering—Measurement
Process.

[25] Hynninen, T., Kasurinen, J., Knutas, A. and Taipale, O. (2017) Testing Practices in
the Finnish Software Industry. IEEE Conference on Software Engineering Educa-
tion and Training, Savannah, 7-9 November 2017.

[26] NetBeans IDE. https://netbeans.org/

[27] Bourque, P. and Fairley, R.E. (2014) Guide to the Software Engineering Body of
Knowledge, Version 3.0. IEEE Computer Society, Washington DC.

[28] Koomen, T. and Pol, M. (1999) Test Process Improvement: A Practical Step-by-Step
Guide to Structured Testing. Addison-Wesley Longman Publishing Co., Inc., Bos-
tong.

[29] van Veenendaal, E. and Wells, B. (2012) Test Maturity Model Integration TMMi.
Uitgeverij Tutein Nolthenius, Hertogenbosch.

[30] Horstmann, C.S. and de Pellegrin, A. Violet UML Editor.
http://violet.sourceforge.net

[31] McCabe, T.J. (1976) A Complexity Measure. IEEE Transactions on Software Engi-
neering, SE-2, 308-320. https://doi.org/10.1109/TSE.1976.233837

[32] Halstead, M.H. (1977) Elements of Software Science. Vol. 7, Elsevier, New York.

[33] Chidamber, S.R. and Kemerer, C.F. (1994) A Metrics Suite for Object Oriented De-
sign. IEEE Transactions on Software Engineering, 20, 476-493.
https://doi.org/10.1109/32.295895

[34] Code Analysis Team (2007) Maintainability Index Range and Meaning—Code
Analysis Team Blog.
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-r
ange-and-meaning

[35] Oliveira, P., Lima, F.P., Valente, M.T. and Serebrenik, A. (2014) RTTool: A Tool for
Extracting Relative Thresholds for Source Code Metrics. IEEE International Confe-
rence on Software Maintenance and Evolution, Victoria, 29 September-3 October
2014, 629-632. https://doi.org/10.1109/ICSME.2014.112

[36] Antinyan, V., Staron, M. and Sandberg, A. (2017) Evaluating Code Complexity
Triggers, Use of Complexity Measures and the Influence of Code Complexity on
Maintenance Time. Empirical Software Engineering, 22, 3057-3087.
https://doi.org/10.1007/s10664-017-9508-2

[37] Catal, C. (2011) Software Fault Prediction: A Literature Review and Current Trends.
Expert Systems with Applications, 38, 4626-4636.
https://doi.org/10.1016/j.eswa.2010.10.024

https://doi.org/10.4236/jsea.2018.114009
https://doi.org/10.1109/TSE.2011.5
https://doi.org/10.1109/ICSM.2006.58
https://doi.org/10.1109/MS.2005.160
https://netbeans.org/
http://violet.sourceforge.net/
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/32.295895
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning
https://doi.org/10.1109/ICSME.2014.112
https://doi.org/10.1007/s10664-017-9508-2
https://doi.org/10.1016/j.eswa.2010.10.024

	Framework for Observing the Maintenance Needs, Runtime Metrics and the Overall Quality-in-Use
	Abstract
	Keywords
	1. Introduction
	2. Related Research
	3. Research Process
	4. Framework for Collecting and Monitoring Quality Characteristics
	5. Discussion and Conclusion
	6. Conclusions
	Acknowledgements
	References

