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Abstract 

We generalize the Eulerian numbers 
k
l

 to sets of numbers ( ), ,E k lµ  

( )0,1,2,µ =   where the Eulerian numbers appear as the special case 1µ = . 

This can be used for the evaluation of generalizations ( );G k zµ  of the 

Geometric series ( ) ( )0 1; 0;G k z G z=  by splitting an essential part 

( ) ( )11 kz µ− +−  where the numbers ( ),E k lµ  are then the coefficients of the 

remainder polynomial. This can be extended for non-integer parameter k to 
the approximative evaluation of generalized Geometric series. The recurrence 
relations 1k k→ +  and 1µ µ→ +  for the Generalized Eulerian numbers 

are derived. The Eulerian numbers ( )1 ,E k l  are related to the Stirling 

numbers of second kind ( ),S k l  and we give proofs for the explicit relations 

of Eulerian to Stirling numbers of second kind in both directions. We discuss 
some ordering relations for differentiation and multiplication operators which 
play a role in our derivations and collect this in Appendices. 
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1. Introduction 

The Eulerian numbers are discussed in the remarkable monograph of Riordan [1] 
from a combinatorial view and are the special topics in the recently published 
voluminous and versatile monograph of Petersen [2] with huge material and 
relations to other topics and with a great number of citations. The last contains 
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also some remarks about the history of these numbers. The Eulerian numbers 
are taken into account in the article of Bressoud [3] in the NIST Handbook of 
Mathematical Functions [4]. In the interesting book of Conway and Guy [5], the 
“Eulerian numbers” are also shortly mentioned with one formula but without 
explicitly giving tables. There exist also an article about the Eulerian numbers in 
Weisstein’s Encyclopedia of Mathematics [6]. 

We met the Eulerian numbers ( ) ( ), , 0,1,2, ; 0,1,2,A k l k l= =   first in 
quantum-mechanical calculations of some expectation values for coherent phase 
states and in cumulant expansions of the distance to an initial state in the time 
evolution of this state for the Hamiltonian of a harmonic oscillator [7]. To this 
time, we looked for references where these numbers which we calculated 
explicitly are present in literature and found them in the monograph of Riordan 
[1] about combinatorics1. Meanwhile, there appeared the already mentioned 
monograph of Petersen [2] which provided us a convenient access to this 
topics. 

Bressoud and Petersen denote the Eulerian numbers by 
k
l

 similar to the 

binomial numbers 
k
l

 
 
 

 and likely based on earlier sources. The Eulerian  

numbers may be ordered in form of a triangle (Eulerian triangle) in analogy to 
the Pascal triangle and with a similar palindromic symmetry. The notation of 
Petersen and of others [6] is related to the notation of Riordan [1] by  

( ), 1
k

A k l
l

= +  but concerning the definition of k and l the first as it seems to 

us is preferable and we denote it by ( )1 ,
k

E k l
l

=  since we generalize it to 

numbers ( ),E k lµ  with arbitrary 0µ ≥ . 

The Eulerian numbers possess a combinatorial background although not 
introduced in this way by Euler [1] [2]. They make a subdivision of the whole 
number of !k  permutations of k elements in non-intersecting sets of 
permutations with the same number l of descents and what counted are the  

Eulerian numbers 
k
l

. A descent in a permutation is present if from two  

adjacent numbers in a permutation, the first is larger than the second. This 
explains why the sum of Eulerian numbers of k elements is equal to the total 
number of !k  permutations and why the Eulerian numbers are symmetric with 
respect to descent and ascents. 

As mentioned, in the present work we generalize the Eulerian numbers to sets 
of numbers ( ),E k lµ  with interesting properties where the Eulerian numbers  

 

 

1In the Russian translation of this monograph which we used they were translated as “Euler num-
bers” but since these did not be the better known numbers which are usually understood under this 
name we called them “Eulerian numbers” without being aware that in English they are really called 
in this way. 
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are identical with our special case ( )1 ,
k

E k l
l

≡ . Our primary intention was to 

obtain approximations in the evaluation of series from type of generalized 
Geometric series where the number k in ( ),E k lµ  is not necessarily an integer 

(Section 3). Such series with 1
2

k =  appear in quantum optics for coherent  

phase states in the calculation of some kind of expectation values. We discuss 
some properties of the numbers ( ),E k lµ  and derive the recurrence relations 
for them. Furthermore, we find close relations between these numbers and the 
Stirling numbers of second kind. In Appendices, we discuss how some needed 
ordering relations for differentiation and multiplication operators are related 
with the Stirling numbers. 

2. Introduction of Generalized Eulerian Numbers by  
Evaluation of Generalized Geometric  
Series 

We present in this Section our concept of the introduction of Generalized 
Eulerian numbers ( ),E k lµ  from the evaluation of generalized Geometric series 
and give explicit results and tables but without the proofs which we develop in 
the following Sections. 

The Geometric series as special case of the Hypergeometric Functions 
( )1 0F ; ;a z−  (special case of general ( )1 1F , , ; , , ;p q p qa a c c z  )  

( )

( ) ( )
( ) ( )

1 0
0

1 0
0

1 F 1; ; ,
1

1 ! 1F ; ; .
1 ! ! 1

n

n

n

a
n

z z
z

n a za z
a n z

∞

=

∞

=

= ≡ −
−

 + −
 − ≡ =
 − − 

∑

∑
           (2.1) 

The convergence region of this series in the complex plane is 1z < . 
In our concept we consider the following types of generalizations ( );G k zµ  

of the Geometric series with index µ and with k as two parameters  

( )
( ) ( )

( )
( )

( ) ( )

( )( )( )
( )

( ) ( )

( )( )( )( )
( )

( ) ( )

0

0 01
0 0

1 11
0 0

2

2 22 1
0 0

3

3 33 1
0 0

11 , ; ,
1

11 , ; ,
1

12 1 , ; ,
1

13 2 1 , ; ,
1

k n l

n l

kk n l
k

n l

kk n l
k

n l

kk n l
k

n l

z E k l z G k z
z

n z E k l z G k z
z

n n z E k l z G k z
z

n n n z E k l z G k z
z

∞

= =

∞

+
= =

∞

+
= =

∞

+
= =

= ≡
−

+ = ≡
−

+ + = ≡
−

+ + + = ≡
−

∑ ∑

∑ ∑

∑ ∑

∑ ∑



   (2.2) 

where ( ) ( )0 1; 0;G k z G z=  is the Geometric series. 
The coefficients ( ),E k lµ  in the expansion of the separated functions 
( );E k zµ  in powers of z are given by  
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( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )( )( )

( ) ( ) ( )
( ) ( )( )( )( )

0 ,0 0 0
0

1
0

2
0

3
0

1 1!
, , ,0 1, , 0; 1,2, ,

!(1 )!

1 1 !
, 1 ,

! 1 !

1 2 1 !
, 2 1 ,

! 2 1 !

1 3 1 !
, 3 2 1 ,

! 3 1 !

jl

l
j

jl k

j

jl k

j

jl k

j

E k l E k E k l l
j j

kk
E k l l j

lj k j

k
E k l l j l j

j k j

k
E k l l j l j l j

j k j

δ
=

=

=

=

−
= = = = =

−

− +
= + − ≡

+ −

− +
= + − + −

+ −

− +
= + − + − + −

+ −

∑

∑

∑

∑





    (2.3) 

The numbers 
k
l

 here denoted by ( )1 ,E k l  are the Eulerian numbers. The  

second of the relations (2.2) for ( )1 ;G k z  is called the Carlitz identity (Petersen 
[2], Equation (1.10 on p. 10) and the second of the relations (2.3) is the explicit 
sum representation of the Eulerian numbers ([2], Equation (1.11) on p. 12). The 
sequence of numbers ( ),E k lµ  with 2,3,µ =   represents a generalization of 
the Eulerian numbers for integer parameter k but it is possible to extend it for 
non-integer k. 

The generalization of (2.2) with integer indices 0,1,2,µ =   is  

( ) ( ) ( )
( ) ( )

( )1 1
0 0

;! 1; , ,
! 1 1

k k
n l

k k
n l

E k zn
G k z z E k l z

n z z

µ
µ

µ µµ µ

µ∞

+ +
= =

+ 
≡ ≡ ≡ 

− − 
∑ ∑    (2.4) 

with the polynomials ( );E k zµ  of degree kµ  or smaller  

( ) ( ) ( )
0 0

( ; ) , ; 1 , .
k k

l

l l
E k z E k l z E k z E k l

µ µ

µ µ µ µ
= =

≡ ⇒ = =∑ ∑            (2.5) 

Explicitly one finds for the coefficients ( ),E k lµ  of these polynomials  

( ) ( ) ( )
( )

( )
( )0

1 1 ! !
, .

! 1 ! !

kjl

j

k l j
E k l

j k j l jµ

µ µ
µ=

 − + − +
≡   + − − 
∑              (2.6) 

The introduction of the functions ( );E k zµ  is connected with an evaluation 
of the series ( );G k zµ  under separation of an essential part ( ) ( )11 kz µ− +−  from 
remainder polynomials ( );E k zµ  in z which could be called Generalized 
Eulerian polynomials. In particular, this separation is effective for evaluations if 
z comes near to the boundary 1z =  of convergence of the series. 

We give now short tables (Tables 1-4) of the numbers ( ),E k lµ  up to 3µ =  
which are easily to calculate by a computer: 

In principle, the tables for 2µ ≥  could be reduced for the common factors 
!kµ  in the k-th line. 
We have the following relations of the Eulerian numbers ( )1 ,E k l  to 

notations in [3] [2] and in [1] [5]  

( ) ( )1 , 1, , 1 .k l

k
E k l A A k l

l +≡ ≡ ≡ +               (2.7) 
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Table 1. Numbers ( )0 ,E k l . 

k 0l =  1l =  2l =  3l =  4l =  5l =  6l =  7l =  8l =  9l =  ( )00
,k

l
E k l

=∑  

0 1 0 0 0 0 0 0 0 0 0 1 = 0! 

1 1 0 0 0 0 0 0 0 0 0 1 = 0! 

2 1 0 0 0 0 0 0 0 0 0 1 = 0! 

                        

 

Table 2. Numbers ( )1 ,
k

E k l
l

≡  (Eulerian numbers). 

k 0l =  1l =  2l =  3l =  4l =  5l =  6l =  7l =  8l =  9l =  ( )10
,k

l
E k l

=∑  

0 1 0 0 0 0 0 0 0 0 0 1 = 0! 

1 1 0 0 0 0 0 0 0 0 0 1 = 1! 

2 1 1 0 0 0 0 0 0 0 0 2 = 2! 

3 1 4 1 0 0 0 0 0 0 0 6 = 3! 

4 1 11 11 1 0 0 0 0 0 0 24 = 4! 

5 1 26 66 26 1 0 0 0 0 0 120 = 5! 

6 1 57 302 302 57 1 0 0 0 0 720 = 6! 

7 1 120 1191 2416 1191 120 1 0 0 0 5 040 = 7! 

8 1 247 4293 15619 15619 4293 247 1 0 0 40 320 = 8! 

9 1 502 14608 88234 156190 88234 14608 502 1 0 362 880 = 9! 

 
Table 3. Numbers ( )2 ,E k l  (common factors 2!k  in the k-th lines). 

k 0l =  1l =  2l =  3l =  4l =  5l =  6l =  7l =  8l =  ( )20
,k

l
E k l

=∑  

0 1 0 0 0 0 0 0 0 0 1 = 0! 

1 2 0 0 0 0 0 0 0 0 2 = 2! 

2 4 16 4 0 0 0 0 0 0 24 = 4! 

3 8 160 384 160 8 0 0 0 0 720 = 6! 

4 16 1152 9648 18688 9648 1152 16 0 0 40320 = 8! 

5 32 7424 165056 885248 1513280 885248 165056 7424 32 3628800 = 10! 

 
Table 4. Numbers ( )3 ,E k l  (common factors 3!k  in the k-th lines). 

k 0l =  1l =  2l =  3l =  4l =  5l =  6l =  7l =  8l =  ( )30
,k

l
E k l

=∑  

0 1 0 0 0 0 0 0 0 0 1 = 0! 

1 6 0 0 0 0 0 0 0 0 6 = 3! 

2 36 324 324 36 0 0 0 0 0 720 = 6! 

3 216 11 664 87 480 164 160 87 480 11 664 216 0 0 362 880 = 9! 
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The first line for 0k =  in Table 2 is not written in [1] [2] and then we have a 

triangle similar to the Pascal triangle and the notation 
k
l

 is chosen in 

analogy to the binomial coefficients 
k
l

 
 
 

 in the Pascal triangle2  

( )
( ) ( )
( ) ( )

0

1 1 !! , 1 .
! ! ! 1 !

jl k

j

k k kk l j
l ll k l j k j=

− + 
= = + −  − + − 

∑       (2.8) 

With the line to 0k =  in Table 2 the Eulerian numbers ( )1 ,E k l  form a 
triangle with an additional tip. 

Similarly to the binomial coefficients in ( )1 kx+ , from the Tables 1-4 we see 
that the polynomials ( );E k zµ  are palindromical ones (for integer µ) with the 
following relation for the coefficients ( ),E k lµ  with fixed k  

( ) ( )( ) ( ), , 1 , 0,1, 2, ,E k l E k k l kµ µ µ= − − =                (2.9) 

and for the coefficients in the first columns for 0l =  one has  

( ),0 ! .kE kµ µ=                            (2.10) 

Obviously, as to see from (2.13) and from the tables, the numbers in all rows 
(fixed k) possess the common factor !kµ  in their factorization that is 1! 1k =  
for the Eulerian numbers and in this sense the tables for ( ),E k lµ  with 2µ ≥  
could be simplified. For the sum of all coefficients ( ),E k lµ  over l one finds  

( ) ( ) ( )
0

; 1 , !.
k

l
E k z E k l k

µ

µ µ µ
=

= = =∑                     (2.11) 

Although the properties (2.9), (2.10) and (2.11) are evident from Tables 1-4 
and can be affirmed by computer up to higher values as given they have to be 
proved that we make in the following Sections. 

The integers k in the generalizations ( ),G k lµ  of the Geometric series in (2.2) 
can be extended to arbitrary real numbers k in the convergence region according 
to  

( ) ( ) ( )
( ) ( )

( )1 1
0 0

;! 1; , ,
! 1 1

k
n l

k k
n l

E k zn
G k z z E k l z

n z z
µ

µ µµ µ

µ∞ ∞

+ +
= =

+ 
≡ ≡ ≡ 

− − 
∑ ∑     (2.12) 

where then the polynomials ( );E k zµ  make the transition to entire function 
with the infinite sequence of coefficients ( );E k lµ  of their Taylor series given 
by (2.13)  

( ) ( ) ( )
( )

( )
( ) ( )

0

1 1 ! !
, , 0,1, 2, .

! 1 ! !

kjl

j

k l j
E k l l

j k j l jµ

µ µ
µ=

 − + + −
≡ =  + − − 
∑ 

      (2.13) 

The functions ( );E k zµ  are equal to the Taylor series of the functions 

( ) ( )11 ;kz G k zµ
µ

+− . 

One may also interpolate between integer numbers µ by choosing for it real 

 

 

2An interesting analogy exists also to the Stirling numbers ( ),S k l  of second kind (see Section 7). 
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numbers. In this case one has to extend the summation over lz  to infinity 
since we do not obtain an automatic restriction for l from the formula (2.13) for 
the coefficients ( ),E k lµ . 

3. Few Examples for Application of Generalized Eulerian  
Numbers 

We demonstrate in this Section the application of Eulerian numbers for the 
approximate evaluation of generalized Geometric series in cases where k is not 
an integer and where the bounds of the sums become unrestricted. 

First we consider the series ( )1 ,G k l  in (2.2) for two special cases of 

non-integer parameter k. For example, for the series ( )1 ,G k l  with 1
2

k =  one 

finds  

( )

( )
( ) ( )

( )

( )
{ }

1 13
0 02

2
3
2

3

2 3
3
2

1
0

1 1 1; 1 ,
2 21

1 1 11 3 2 2 12 2 3 8 3
2 81

3 8 3 11 2 2
16

1 1 0.0857864 0.0142695 0.00524613 ,
1

1 1 π, ! 0.886227 ,
2 2 2

n l

n l

l

G z n z E l z
z

z z
z

z

z z z
z

E l

∞ ∞

= =

∞

=

   ≡ + =   
   −

= − − − − −
−

− − − + 


= − − − +
−

    = = =         

∑ ∑

∑





 (3.1) 

where the polynomials ( )1 ;E k z  become now infinite series, and with 1
2

k = −   

( )

( )
( ) ( )

( )

( )
{ }

1 11
0 02

2
1
2

3

2 3
1
2

1
0

1 1 1; ,
2 21 1

1 1 11 2 1 8 3 3 6 2
2 241

1 21 3 2 8 3
48

1 1 0.2071068 0.0987969 0.0604365 ,
1

1 1, ! π 1.77245 .
2 2

n
l

n l

l

zG z E l z
n z

z z
z

z

z z z
z

E l

∞ ∞

= =

∞

=

   − ≡ = −   +   −

= + − + − −
−

+ − − + 


= + + + +
−

    − = − = =    
    

∑ ∑

∑





 (3.2) 

The sum check of the coefficients shows that the first 4 terms of the 
approximation in (3.2) do not give for 1z →  such a good convergence as it 
was obtained in (3.1) with the first 4 sum terms (0.894698 in (3.1) and 1.366340 
in (3.2)). Using the given formulae it is easy to calculate by a computer the sum 
of coefficients up to high approximations and we can see the convergence to the  
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values 
π

2
 and π , respectively. 

For 1k = −  one obtains the following series with the known exact evaluation  

( ) ( ) ( )1 1
0

log 1
1; 1; .

1

n

n

zzG z E z
n z

∞

=

−
− = = − = −

+∑            (3.3) 

The sum converges for 1z <  and the functions ( )1 ;G k z  and ( )1 ;E k z  
become identical for 1k = − . 

As a further example we consider the sum 2
1 ;
2

G z 
 
 

 with the coefficients 

2
1 ,
2

E l 
 
 

 of 2 20

1 1; ,
2 2

l
lE z E l z∞

=

   =   
   

∑  given in (3) and find ( ( )2 ;E k z  

becomes now an infinite series)  

( )( )
( )

( )
( ) ( ){

( ) }

( )
{ }

2 22
0 0

2
2

3

2 3
2

2
0

1 1 1; 2 1 ,
2 21

1 2 2 2 6 2 6 2 2 3
1

4 3 6 2 5

1 1.4142136 0.3789374 0.0206643 0.0065775 ,
1

1 , 1! 1 .
2

n l

n l

l

G z n n z E l z
z

z z
z

z

z z z
z

E l

∞ ∞

= =

∞

=

   ≡ + + =   
   −

= − − − − −
−

− − − −

= − − − −
−

   = =  
  

∑ ∑

∑





 (3.4) 

This formula provides usable approximations for the infinite sum on the 
left-hand side. The sum check for the first 4 coefficients gives the value 1.008034 
and shows that it is already “relatively” near to the theoretical value 1 for the 
sum of the infinite number of coefficients. 

The separated function ( ) ( )11 kz µ− +−  from ( );G k zµ  depends only on the 
product µk of the parameters but not on µ and k separately. By µ-fold 
differentiation of the Geometric series one obtains  

( )
( )

( )
( )

( )1 1
0 0

! ! 11; 1, .
! 1 1

n l

n l

n
z G z E l z

n z z

µ

µ µµ µ

µ µ∞

+ +
= =

+
= ≡ =

− −
∑ ∑       (3.5) 

According to (3.13) the coefficients ( )1,E lµ  can be calculated by  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

,0
0 0

1 1 ! !
1, ! , 1, !,

! 1 ! !

1,0 !, 1, 0, 1, 2, ,

jl

l
j l

l j
E l E l

j j l j

E E l l

µ

µ µ

µ µ

µ µ
µ δ µ

µ

µ
= =

− + + −
= = =

+ − −

= = =

∑ ∑



    (3.6) 

where the explicit result can be taken from comparison with (3.5). This case 
corresponds to 1k =  and therefore kµ µ=  in the general formula for 

( );G k zµ  and the sum ( ) ( )0 , !k
l E k l kµ

µ µ
=

=∑  over the coefficients is here 
obviously confirmed. We assumed in the last derivation that µ is a non-negative 
integer but using fractional differentiation the result (3.5) is also correct if µ is an 
arbitrary non-negative number where, however, the coefficients ( )1,E lµ  are 
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not automatically vanishing for 1l ≥  and have to be taken into account in the 
sums. 

4. Proof of the General Relation for ( )E k z;µ  and Its  
Inversion 

We prove in this Section the general formula (2.4) for the functions ( );G k zµ  
together with the formulae (2.5) for the Eulerian polynomials ( );E k zµ  with 
their coefficients ( );E k lµ  in (2.13) and derive some consequences. For this 
purpose we multiply ( );G k zµ  with ( ) 11 kz µ +−  and apply for this factor the 
binomial formula and make a transformation by reordering of the sum terms of 
this product by substitution j n l+ →  in the arising double sum as follows  

( ) ( ) ( )

( ) ( )
( )

( )

( ) ( )
( )

( )
( )

( )

1

0 0

0 0

0

; 1 ;

1 1 ! !
! 1 ! !

1 1 ! !
! 1 ! !

, .

k

kj
j n

j n

kjl
l

l j

l

l

E k z z G k z

k n
z

j k j n

k l j
z

j k j l j

E k l z

µ
µ µ

µ

µ µ
µ

µ µ
µ

+

∞ ∞
+

= =

∞

= =

∞

=

≡ −

− + + 
=  

+ −  
  − + − + =    + − −  

≡

∑∑

∑ ∑

∑

          (4.1) 

Using the uniqueness of the Taylor series we find immediately in this way the 
formula (2.13) for the Generalized Eulerian numbers ( ),E k lµ  as the 
coefficients in the expansion in powers lx  that means by substitution of the 
summation index  

( ) ( ) ( )
( ) ( )

( )
0

1 1 ! !
, .

! 1 ! !

kn ll

n

k n
E k l

l n k l n nµ

µ µ
µ

−

=

− + + 
=  

− + − +  
∑            (4.2) 

As integration limit in the first summation over the functions lz  in (4.1) we 
wrote l →∞  since the formula for ( ),E k lµ  provides automatically the 
restriction 0 1l kµ≤ ≤ +  in case that kµ  is an integer and admits the useful 
extension to 0 l≤ →∞  in case that kµ  is an arbitrary real number. 

We now derive the inversion of the transformation (4.2) that means we 

express 
( )!

!

k
n

n
µ+ 

 
 

 by the Generalized Eulerian numbers ( ),E k lµ . For this 

purpose we use the sum evaluation (4.4) with the split factor 
( ) 1

1
1 kz µ +−

 and 

make a Taylor series expansion of this factor according to  

( )
( )

( )

( )
( ) ( )

( )
( ) ( )

1
0

0 0

0 0

! 1 ;
! 1

!
,

! !

!
, .

! !

k
n

k
n

k
j l

j l

k
n

n j

n
z E k z

n z

j k
E k l z

j k

j k
E k n j z

j k

µµ

µ

µ

µ

µ

µ

µ
µ

µ
µ

∞

+
=

∞
+

= =

∞

= =

+ 
= 

− 

+
=

 +
= −  

 

∑

∑∑

∑ ∑

         (4.3) 
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Thus we find the new identity  

( ) ( )
( ) ( )

( )
( ) ( ) ( )

0

! !
,

! ! !

!
, .

! !

k
n

j n k

k

l

n j k
E k n j

n j k

n l k
E k l

n l k

µ
µ

µ

µ

µ µ
µ

µ
µ

= −

=

+ + 
= − 

 
− +

=
−

∑

∑
              (4.4) 

In the special case 1µ =  we specialize from (4.4)  

( ) ( )
( ) ( )1

0

!
1 , ,

! !

kk

l

n l k
n E k l

n l k=

− +
+ =

−∑                       (4.5) 

where ( )1 ,
k

E k l
l

≡  are the Eulerian numbers. The relation (4.5) is called the 

Worpitzky identity [2] (Petersen, p. 11 there). 

5. Recurrence Relation k k 1→ +  for ( )G k z;µ  and  

( )E k z;µ  

We now derive a recurrence relation for 1k k→ +  of ( );G k zµ . For this 
purpose we multiply first ( );G k zµ  with zµ  and form the the µ-th derivative 
of this product  

( ) ( )

( ) ( )

0

1

0

!
;

!

!
1; .

!

k
n

n

k
n

n

n
z G k z z

nz z

n
z G k z

n

µ µ
µ µ

µµ µ

µ

µ

µ

∞
+

=

+
∞

=

+ ∂ ∂
=  

∂ ∂  

+ 
= = + 

 

∑

∑
        (5.1) 

Thus we have already obtained the required recurrence relation. The operator 

z
z

µ
µ

µ

∂
∂

 is in analogy to anti-normal ordering and in quantum optics of the  

boson annihilation and creation operators ( )†,a a  it is known how one can 
bring this to normal ordering (e.g., [8]; can be proved by complete induction; see 
Appendix A), in application to our case  

( ) ( ) ( ) ( )
2

2
0

!1; ; ; .
! !

j
j

j
j

G k z z G k z z G k z
z j j z

µ µµ
µ µ

µ µ µµ µ

µ
µ

−
−

−
=

∂ ∂
+ = =

∂ − ∂∑     (5.2) 

Both forms of operator ordering are appropriate for the following calculations 
but anti-normal ordering proved to be here more simple for us. 

Using the connection (5.4) of ( );G k zµ  to the Generalized Eulerian 
polynomials ( );E k zµ  we find in anti-normal ordering  

( )
( ) ( )

( )
( ) 11 1

1; ;
.

11 kk

E k z E k z
z

z zz

µ
µ µµ

µ µµ ++ +

+ ∂
=
∂ −−

                 (5.3) 

We multiply this identity with ( ) ( )1 11 kz µ + +−  and bring the right-hand side to 
anti-normal ordering using the commutation rules (5.1) of Appendix A and then 
the disentanglement relation (5.3) to anti-normal ordering (see Appendix B)  
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( ) ( ) ( ) ( )
( )

( )( )
( ) ( ) ( ) ( )

1 1
1

0

;
1; 1

1

! 1 1 !
1 ; .

! ! 1 !

k
k

i
i

i
i

E k z
E k z z z

z z

k
z z E k z

i i k i z

µ
µ µµ

µ µ µ

µ
µ

µ

µ µ
µ µ

+ +

+

=

∂
+ = −

∂ −

+ +  ∂
= − − + + ∂ 
∑

     (5.4) 

Here we make two remarks. From (see (2.5))  

( ) ( )
0

; , ,
k

l

l
E k z E k l z

µ

µ µ
=

= ∑                        (5.5) 

first follows  

( ) ( ) ( ) ( )
0 0

1 1, ; 1, 1; ,
! !

l l

l l
z z

E k l E k z E k l E k z
l lz zµ µ µ µ

= =

   ∂ ∂
= ⇒ + = +   

∂ ∂   
  (5.6) 

and second, the already mentioned  

( ){ } ( )
1

0
; , ,

k

z
l

E k z E k l
µ

µ µ=
=

= ∑                        (5.7) 

that means the sum of coefficients ( ),E k lµ  in each row with fixed k in the 
tables of the Generalized Eulerian polynomials ( );E k zµ . 

If we insert (5.5) into (5.4) we find  

( )
( )

( )

( )( )
( ) ( ) ( ) ( )

1

0

0 0

1; 1,

! 1 1 !
1 , .

! ! 1 !

k
l

l

ik
im

i
i m

E k z E k l z

k
z z E k m

i i k i z

µ

µ µ

µ µ
µ

µ

µ µ
µ µ

+

=

+

= =

+ = +

+ +  ∂
= − − + + ∂ 

∑

∑ ∑
   (5.8) 

To get the recurrence relation for ( )1,E k lµ +  we have according to (5.6) 
and using (5.8) to form  

( )
( )( )

( ) ( ) ( ) ( )

( )( )
( ) ( ) ( ) ( )

0 0
0

0 0 0

1,

! 1 1 !1 1 ,
! ! ! 1 !

! 1 1 !1 1 , .
! ! ! 1 !

l ik
im

l i
i m

z

l ik
im

l i
i m z

E k l

k
z z E k m

l i i k iz z

k
z z E k m

l i i k i z

µ

µ µ
µ

µ

µ µ
µ

µ

µ µ
µ µ

µ µ
µ µ

+

= =
=

+
+

+
= = =

+

 + +  ∂ ∂ = −  − + +∂ ∂   

+ +  ∂
= − 

− + + ∂ 

∑ ∑

∑ ∑

    (5.9) 

The detailed calculation in Appendix A using the general formula for the 
inner derivative (A1) at 0z =  together with (A2) leads in (5.9) to the general 
recurrence relation for ( )1,E k lµ +   

( )
( )( ) ( ) ( )

( ) ( )
( )
( ) ( )

( )
( )
( )

( )( )
( )( )

( ) ( )

0 0

0 0

1,

! 1 1 ! 1 ! 1 !
,

! ! ! 1 ! ! !

1 1 !1 ! !! , ,
! ! ! ! !1 1 !

i ji

i j

n mn

n m

E k l

k l i i
E k l j

l i i k i j i j

kn l m
E k l n

n n m n m lk m

µ

µ

µ

µ

µ

µ µ
µ

µ µ

µ µµ
µ µ

= =

−

= =

+

+ + − + −
= − +

− + + −

 + +− + −
 = −
 − − + + − 

∑ ∑

∑ ∑

    

(5.10) 

where we used a substitution of the summation variable. The inner sum in (5.10) 
can be evaluated using the Jacobi polynomials and we find in different 
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compositions of the factorials to binomial coefficients  

( ) ( )
( ) ( )

( ) ( )

( )
( )

( )
( ) ( )

0

0

! !!1, ,
! ! ! !

! !
! , ,

! ! ! !

n

n

l n n k l
E k l E k l n

n n l k l

l n n k l
E k l n

l n n k l

µ

µ µ

µ

µ

µ µµ
µ µ

µ µ
µ

µ µ

=

=

+ − + −
+ = −

− −

+ − + −
= −

− −

∑

∑
  (5.11) 

or equivalently in the form (for later use)  

( ) ( ) ( )
( ) ( ) ( ) ( )! ! !

1, , .
! ! ! !

l

m l

k m m
E k l E k m

l k l m l l mµ µ
µ

µ µ µ
µ µ= −

− +
+ =

− + − −∑       (5.12) 

Thus the recurrence relations possess 1µ +  sum terms on the right-hand 
side proportional to the numbers ( ) ( ) ( ), , , 1 , , ,E k l E k l E k lµ µ µ µ− −

. 
For the first four special cases 0,1,2,3µ =  we find from (5.10) or (5.11)  

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )

0 0

1 1 1

2 2 2

2

1, , ,

1, 1 , 1 , 1 ,

1, 2 1 , 2 2 1 1 , 1

2 2 2 1 , 2 ,

E k l E k l

E k l l E k l k l E k l

E k l l l E k l k l l E k l

k l k l E k l

+ =

+ = + + − + −

+ = + + + − + + −

+ − + − + −  
( ) ( )( )( ) ( )

( )( )( ) ( )
( )( )( ) ( )

( )( )( ) ( )

3 3

3

3

3

1, 3 2 1 ,

3 3 1 2 1 , 1

3 3 2 3 1 1 , 2

3 3 3 2 3 1 , 3 ,

E k l l l l E k l

k l l l E k l

k l k l l E k l

k l k l k l E k k

+ = + + +

+ − + + + −

+ − + − + + −

+ − + − + − + −



    (5.13) 

The second of these relations which written by ( )1 ,
k

E k l
l

≡  takes on the 

form  

( ) ( )
1

1 1 ,
1

k k k
l k l

l l l
+

= + + + −
−

             (5.14) 

is the recurrence relation for the Eulerian numbers with a certain similarity to 

the recurrence relation for the binomial coefficients 
k
l

 
 
 

 and as we later see to  

that for Stirling numbers of second kind. It is known (Riordan [1], chap. 8, 
Petersen [2], p. 8, Equation (1.7), Bressoud, p. 632). 

In the representation (5.12) of ( )1,E k lµ +  we may sum over l using the 

Vandermonde’s convolution identity 0
n
l

n c n c
l a l a=

−    
=    −    

∑  or in the form  

{ }

( ) ( ) ( )
( )

( ) ( )
,

0

!! ! ,
! ! ! ! ! !l l l l l

µ ν µ ν λµ ν
µ ν λ µ λ ν λ=

+ +
=

− − + + +∑          (5.15) 

and one obtains the following recurrence relation for the sums over all 
coefficients ( ),E k lµ  for fixed k  

( )
( )

( )( )
( ) ( )

1

0 0

1 !
1, , .

!

k k

l m

k
E k l E k m

k

µ µ

µ µ

µ
µ

+

= =

+
+ =∑ ∑              (5.16) 
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This recurrence relation with the initial condition ( )0
0 1, !l E lµ µ

=
=∑  (or 

( )0
0 0, 1!l E lµ=

=∑ ) is solved by  

( ) ( )
0

, !,
k

l
E k l k

µ

µ µ
=

=∑                        (17) 

as can be proved by complete induction. There are other possibilities to prove 
this equation (see next Section) but from the explicit expression for ( ),E k lµ  
given in (2.13) we could not find a simple direct proof of this result. 

6. Recurrence Relation 1µ µ→ +  for ( )G k z;µ  and  

( )E k z;µ  

We now derive a recurrence relation 1µ µ→ +  for ( );G k zµ  by applying the 

operator 
k

z
z
∂ 

 ∂ 
 to ( );G k zµ  using the eigenvalue property  

k
n k nz z n z

z
∂  = ∂ 

  

( ) ( )

( ) ( )

( ) ( )

0

1

0 0

1

!
;

!

! 1 !
( 1)! !

; , 0 .

kk k
n

n

k k
n m

n m

n
z G k z z z

z z n

n m
z z

n m

zG k z k

µ

µ

µ

µ µ

∞

=

∞ ∞
+

= =

+

+ ∂ ∂   ≡     ∂ ∂     

+ + +   
= =   

−   
≡ ≠

∑

∑ ∑     (6.1) 

The case 0k =  makes an exception from this recurrence relation due to  

( ) ( )1
0

10; 0; .
1

n

n
G z z G z

zµ µ

∞

+
=

= = =
−∑                (6.2) 

We apply now the transition to normal ordering. The operator 
k

z
z
∂ 

 ∂ 
 in 

(6.1) can be “disentangled” using the Stirling numbers of second kind ( ),S k l  
(e.g., [1] [3] [9]) in the following way (see Appendix C)  

( )
0

, .
k jk

j
j

j
z S k j z

z z=

∂ ∂  = ∂ ∂ 
∑                     (6.3) 

This can be proved by complete induction using the known recurrence 
relations for the Stirling numbers of second kind (see Appendix C). Applying the 
relation (6.4) of ( );G z kµ  to the Generalized Eulerian polynomials ( );E k zµ  
from (6.1) follows  

( )
( )( ) ( ) ( )

( )

( )
( ) ( )

1
11 1

0

1
0

; ;
,

11

1 1, ; .
11

jk
j

j kk
j

jk
j

k
j

zE k z E k z
S k j z

z zz

kS k j z E k z
z zz

µ µ
µµ

µµ

µ

+
++ +

=

+
=

∂
=

∂ −−

∂ + = + ∂ − −

∑

∑
   (6.4) 

Using the auxiliary formula (6.7) in the second form this can be transformed 
to  
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( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

1
0 0

0 0

0 0 0

! ! 1; 1 , ;
! ! ! 1

! !1 1 , 1 ;
! ! !

! !1 !, , 1
! ! ! !

j ijkk j
i j i

j i

lk k k l jj
l

l j

k m k k l jj m l

m l j

j k i
zE k z z S k j z E k z

i j i k zz

j k j l
S k j z z E k z

k l j l z

j k j lmE k m S k j z z
k l m l j l

µ µ

µ

µ

µ

µ

µ
µ

µ
µ

µ
µ

−

+ −
= =

+ −

= =

+ −+ −

= = =

+ ∂
= −

− ∂−

 + − ∂
= −  − ∂ 

 + −
= −  − − 

∑ ∑

∑ ∑

∑ ∑ ∑ ,

  

(6.5) 

with exclusion of the case 0k =  (see (6.2)). 
First we consider the recurrence relation for the sum of the coefficients 
( ),E k lµ  over l. From  

( )
( )

( ) ( )( )

1

1
0

1 11

,

; 1 lim ; ,

k

l

z

E k l

E k z zE k z

µ

µ

µ µ

+

+
=

+ +→
= = =

∑
                (6.6) 

applied to the right-hand side of (6.5) follows that it can be different from zero 
only if ( )1lim 1 k l j

z z + −
→ −  is different from zero that is only the case if 

0k l j+ − =  and we find  

( )
( )

( ) ( ) ( ) ( )
( ) ( )( )

( )( )
( ) ( )

,0

1

1
0

0 0

0

,

! 1 !1 !, ,
! ! ! !

1 !
, .

!

l

k

l

k m

m l

k

m

E k l

k l kmE k m S k k l
k l m l k

k
E k m

k

µ

µ

µ

µ
δ

µ

µ

µ
µ

µ
µ

+

+
=

= = =

=

+ +
= +

−

+
=

∑

∑ ∑

∑



     (6.7) 

To get the second line we used that ( ),S k k l+  is only different from zero for 

0l =  and ( ), 1S k k = . In this way we found the recurrence relation for the 

sums ( )0 ,k
l E k lµ

µ=∑  from 1µ µ→ +  which with  

( ) ( )
0

0 1
0 0

, 1, , !,
k

l l
E k l E k l k

= =

= =∑ ∑                 (6.8) 

leads to the already known solution (5.17). 
We now try to derive a recurrence relation for the coefficients ( ),E k lµ  from 

1µ µ→ +  and mention for this purpose  

( ) ( )
( )

( )
1

1 1 10 0 0

1 1, lim ; , .
! !

l l k
m

l lz m z

E k l E k z E k m z
l lz z

µ

µ µ µ

+

+ + +→ = =

 ∂ ∂ = =  
∂ ∂  

∑     (6.9) 

From the Leibniz formula for the multiple derivatives of a product of two 
functions  

( ) ( ) ( )
( ) ( ) ( ) ( )

0

! ,
! !

l l
k l k

l
k

lf z g z f z g z
k l kz

−

=

∂
=

−∂ ∑             (6.10) 

one derives the following auxiliary formula  
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( )

( ) ( )
( )
( ) ( )

( )
( ) ( )

0

0
0

1

1 !! ! 1
! ! ! !

1 ! !
.

! !

l
qp

l
z

l kl q l kp k

k
z

l p

z z
z

ql p z z
k l k p k q l k

l q
l p q l p

=

−
− +−

=
=

−

 ∂
− 

∂ 

 − = − 
− − − +  

−
=

− − +

∑         (6.11) 

It is different from zero only for 0 l p q≤ − ≤ . 
We now calculate the recurrence relation for ( ),E k lµ  from 1µ µ→ + . 

Since according to (6.9) we have to apply the operator 
l

lz
∂
∂

 to ( );E k zµ  we  

have first to change the summation index l on the right-hand side in (6.5) and 
write this relation in the form  

( ) ( ) ( ) ( )

( )
( ) ( ) ( )( )

1
0 0

1

0

1, , , !
!

! !
1 ,

! ! !

k k

m j

m k j nj m n

n

E k z E k m S k j j
k

m k j n
z z

n m n j n

µ

µ µµ

µ

+
= =

− ++ − −

=

=

+ −
⋅ −

− −

∑ ∑

∑
     (6.12) 

where we also changed the order of the inner summations that, however, is 
subsidiary. Now we may apply the auxiliary identity (6.11) when we accomplish  

the differentiations by the operator 
0

1
!

l

l
zl z
=

 ∂
… 

∂ 
 in (6.9). With corresponding  

substitutions this led us to the following recurrence relation with a triple sum  

( ) ( )
( ) ( ) ( )

( ) ( )

{ } ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1
0 0

,

0

1 1 !
, , , !

! 1 !

1 ! !
, 0 .

! ! ! 1 !

l mk k

m j

j nj m

n

m
E k l E k m S k j j

k k m l

k j n k j n
k

n j n m n l j m n

µ

µ µµ

µ

+

+
= =

−

=

− −
=

+ − −

− + − − +
⋅ ≠

− − − − + +

∑ ∑

∑
     (6.13) 

We checked by computer the correctness of formulae (6.13) and also of (6.5) 
in comparison to the formula (6.13). If we represent (6.13) in the form  

( ) ( ) ( )1
0

, , , , ,
k

m
E k l f k l m E k m

µ

µ µ µ+
=

≡ ∑             (6.14) 

where the numbers ( ), ,f k l mµ  are given by a double sum which can be taken 
from (6.13) then by prime-number analysis of ( ), ,f k l mµ  we find that for some 
relatively low integers ( ), ,k l m  we have already in some cases relatively high 
prime numbers and it is unlikely that one can find a closed simple formula of 
multiplicative type for these coefficients. It seems to us also unlikely that one 
may find simple intermediate results for the evaluation of one of the double 
sums in ( ), ,f k l mµ  such as given in (6.13) or by possible reordering of terms of 
this double sum. Nevertheless, this is astonishing in view of the simple result 
(6.13) for ( ),E k lµ . 

We mention that the inner sum in (6.13) can be represented as polynomial 
case of the Hypergeometric function ( )3 2 1 2 3 1 2F , , ; , ;a a a c c z  with special 
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argument 1z =  as follows (can be directly taken from Wolfram’s “Mathematica” 
but is also not so difficult to specialize from the mentioned Hypergeometric 
function in a transformed form)  

{ } ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

,

0

3 2

1 ! !
! ! ! 1 !

1 ! !
F , , ; 2, ;1 ,

! 1 !

j nj m

n

j

k j n k j n
n j n m n l j m n

k j k j
j m k l j l j m k j

j l j m

µ

µ
µ

−

=

− + − − +
− − − − + +

− + −
≡ − − + − − − + − −

− − +

∑
  (6.15) 

with 5 parameters ( ); , , ,j k l mµ . This sum is different from zero only for  
0 1 1,
0 1 1.

j n l m m j m n l
m n l j j j m n l

≤ − ≤ + − ⇔ ≤ + − ≤ +
≤ − ≤ + − ⇔ ≤ + − ≤ +

             (6.16) 

We see that all coefficients ( ),E k mµ  with 1m l≤ +  are involved in the 
recurrence relation (6.14). The only known nontrivial sum identity for ( )3 2F 

, 
the Pfaff-Saalschütz identity (see Andrews, Askey and Roy [10], pp. 69, 70) 
cannot be fitted to the present case. 

All this shows that the recurrence relation (6.13) from 1µ µ→ +  is probably 
of limited value for analysis in comparison to the recurrence relation from 

1k k→ +  with fixed µ which is given in (5.10) and specialized in (5.13). 

7. Relation between Eulerian Numbers and Stirling  
Numbers of Second Kind 

In this Section we give proofs for relations of the Eulerian numbers to the 
Stirling numbers of second kind and of their inversions. 

If we compare the explicit representations of the Stirling numbers of second 
kind ( ),S k l  with that of the Eulerian numbers ( )1 ,E k l   

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

0

1
0

1
, , 0,0 1,

! !

1 1 !
, 1 ,

! 1 !

jl k

j

jl k

j

S k l l j S
j l j

kk
E k l l j

lj k j

=

=

−
= − =

−

− +
= + − ≡

+ −

∑

∑
              (7.1) 

then we see certain similarities. The same is between the representations of 
( )1 kn +  by Stirling numbers of second kind according to  

( ) ( ) ( ) ( ) ( ) ( )0 0

! !1 1 , 1, 1 ,
! !

k kk k l

l l

n l nn S k l S k l
n n l

−

= =

+
+ = − = + +

−∑ ∑          (7.2) 

and by Eulerian numbers according to  

( ) ( ) ( )
( )

1

1
0

!
1 , .

! !

kk

l

n k l
n E k l

k n l

−

=

+ −
+ =

−∑                     (7.3) 

We now derive an expression of the Eulerian numbers ( )1 ,E k l  by the 
Stirling numbers of second kind ( ),S n k . 

For our objective we consider the definition (2.2) for ( )1 ;G k z  and after 
using the first of the relations (7.2) we make a reordering of the arising double 
sum  
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

0 0 0

0 0

1
0

!
1 1 ,

!
!

1 ,
!

!1 , ,
1

kk k jn n

n n j

k k j n

j n

k k j
j

j

n j
n z z S k j

n
n j

S k j z
n

jS k j
z

∞ ∞
−

= = =

∞
−

= =

−

+
=

+
+ = −

+
= −

= −
−

∑ ∑ ∑

∑ ∑

∑

              (7.4) 

where we have evaluated the inner sum. Now we split a function 
( ) 1

1
1 kz +−

 

from the last result and expand the remaining function in a Taylor series with 
respect to powers lz   

( )
( )

( ) ( ) ( )

( )
( ) ( ) ( )

( )

1
0 0

1
0 0

11 1 , ! 1
1

! !1 1 , .
! !1

kk k j k jn
k

n j

k k l k j l l
k

l j

n z S k j j z
z

j k j
S k j z

l k j lz

∞
− −

+
= =

−
− −

+
= =

+ = − −
−

 −
= −  − −−  

∑ ∑

∑ ∑
    (7.5) 

By comparison with  

( )
( )

( )11
0 0

11 , ,
1

kk n l
k

n l
n z E k l z

z

∞

+
= =

+ =
−

∑ ∑                   (7.6) 

follows for the relation between Eulerian numbers ( )1 ,E k l  and Stirling 
numbers of second kind ( ),S k l  [3] (Eq. 26.14.7)  

( ) ( ) ( ) ( )
( ) ( )1

0

1 ! !
, 1 , .

! !

k l k l j

j

j k j
E k l S k j

l k l j

− −

=

− −
= −

− −∑             (7.7) 

The inversion of this relation is [3] (Eq. 26.14.12)  

( ) ( )
( ) ( )1

0

!1, , .
! ! !

l

i

k l i
S k l E k k l i

l k l i=

− +
= − +

−∑               (7.8) 

This can be proved by inserting ( ),S k j  according to (7.8) into (7.7) and 
reordering of the double sum  

( ) ( ) ( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ,

1 1
0 0

1
0 0

1 1

1 ! ! !1, 1 ,
! ! ! ! !

1 ! 1 !1 , .
! ! ! !

m l
m l

k l jk l j

j i

m l ik m l

m i

j k j k j i
E k l E k k j i

l k l j j i k j

m m l
E k m

l m l i m l i
δ−

− −

= =

− −

= =

= − =

− − − +
= − − +

− − −

− − −
=

− − −

∑ ∑

∑ ∑


   (7.9) 

We see that the right-hand sides are equal to the left-hand sides for all ( ),k l . 
If we use the second alternative representation of ( )1 kn +  by the Stirling 

numbers of second kind one finds an alternative representation of ( )1 ,E k l  by 
( ),S k l . Instead of (4) we find then  

( ) ( )
( ) 1

0 0

!1 1, 1 ,
1

jkk n
j

n j

j zn z S k j
z

∞

+
= =

+ = + +
−

∑ ∑               (7.10) 

and instead of (5)  
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( )
( )

( )( ) ( )
( ) ( )1

0 0 0

! !11 1, 1 1 .
! !1

k lk l jn l
k

n l j

j k j
n z S k j z

l j k lz

∞
−

+
= = =

 −
+ = + + −  − −−  

∑ ∑ ∑   (7.11) 

By comparison with (7.6) we arrive at the following alternative representation 
of Eulerian numbers ( )1 ,E k l  by Stirling numbers of second kind ( ),S k l   

( ) ( ) ( ) ( )
( ) ( )1

0

! !1, 1 1, 1 .
! !

l l j

j

j k j
E k l S k j

k l l j
−

=

−
= − + +

− −∑          (7.12) 

The inversion of this relation is  

( ) ( )
( ) ( )1

0

!11, 1 , .
! ! !

l

i

k l i
S k l E k l i

l k l i=

− +
+ + = −

−∑             (7.13) 

One may be astonished that two differently looking representations (7.7) and 
(7.12) of the Eulerian numbers by the Stirling numbers of second kind are 
possible but one has the following relation between ( )1, 1S k l+ +  and ( ),S k l   

( ) ( ) ( )
0

!1, 1 , ,
! !

k

j

kS k l S j l
j k j=

+ + =
−∑                (7.14) 

with the inversion  

( ) ( ) ( ) ( )
0

!, 1 1, 1 .
! !

k k j

j

kS k l S j l
j k j

−

=

= − + +
−∑            (7.15) 

These relations can be proved using the recurrence relations for the Stirling 
numbers of second kind. 

8. Conclusion 

We derived in this paper properties of sets of numbers  
( ) ( ), , 0,1, 2, , 0,1, 2, , 0,1, ,E k l k l lµ µ µ= = =  

,  which for 1µ =  are the 
Eulerian numbers and which for 2µ ≥  could be called Generalized Eulerian 
numbers. A main purpose was to obtain sum approximation for some 
generalized Geometric series denoted by ( );G k zµ  with extension of k to 
arbitrary real numbers providing for 1; 1z z< →  that means for the 
convergence region of these series acceptable approximations for the sums 
taking into account a few number of corresponding terms with powers of z in 
the Generalized Eulerian polynomials ( );E k zµ  with non-integer k. We  

proposed notations for these generalizations since the notation 
n
l

 for the 

Eulerian numbers is difficult to extend. The total number ( ) ( )0 , !k
l E k l kµ

µ µ
=

=∑   

suggests a combinatorial subdivision of the permutations of kµ  elements in 
classes with certain mutually not intersecting properties for example, as it is 
possible and known for the Eulerian numbers ( )1 ,E k l . 

In comparison to the Hypergeometric functions ( )1 1F , , ; , , ;p q r sa a c c z 
 

the series ( );G k zµ  involving in their evaluation the numbers ( ),E k lµ  
represent a generalization of the Geometric series in a different direction. 
Considering the Hypergeometric functions with different orders of growth for 
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increasing 0z >  or with finite convergence radius such as the Geometric series  

( )
( )1 0 1

0

1 1 !F 1; ; ,
1 1 1

n
n

n n
n

nz z
z zz z

∞

+
=

∂
− = = ⇒ =

− −∂ −
∑  

( ) ( )0 0
0

F ; ; exp ,
!

n

n

zz z
n

∞

=

− − = =∑  

( ) ( ) ( ) ( )
( )

0 1 0 02
0

I 2
F ;1; I 2 I 2 ,

!

n n n

n n
n

zzz z z
n z z

∞

=

∂
− = = ⇒ =

∂∑  

we think that it is possible to generalize the second and third function in a 
similar way as we made this here for the Geometric series 0

n
n z∞

=∑  since the 
derivatives of these functions are easy to obtain. 

We mention that to problems which we see at this moment belong the 
calculation of generating functions for the numbers ( ),E k lµ  and the extension 
of the connection of Stirling numbers ( ),S k l  to Eulerian numbers from 

( )1 ,E k l  onto the whole set of numbers ( ),E k lµ . Furthermore, it would be 
interesting to establish the evident relation of the Generalized Eulerian numbers 
to problems of combinatorics. 
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Appendix A 

Proof of the recurrence relations for Generalized Eulerian numbers 
In this Appendix we consider more in detail the derivation of the recurrence 

relations for the Generalized Eulerian numbers. In preparation we first derive an 
auxiliary formula which we later apply. 

We need in the following the l-th derivatives of a product ( )1 nmz z−  taken at 
0z =   

( ) ( )
( )
( )
( )

( )
( ) { }

( ) ( )
( ) ( )
( )

( ) ( )

00 0

00

,0
0

1 !
1
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l m
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n l
l m n l m
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+ −

=
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+ −
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−   ∂ ∂
− =   

−∂ ∂   

− +
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− + −

− +
=

− + −

−
=

− − +

∑

∑

∑
       (A1) 

The result on the right-hand side with the part written in the general form  

( )
1 0 0 .

! !
k n

k n k
≠ ⇒ ≤ ≤

−
                  (A2) 

can be only different from zero for integer k such as written if it is non-negative 
and not greater than n. If such expressions are within a summation this may 
restrict the bounds for the summation. 

The more detailed derivation of (5.4) using (B1) of Appendix B and then the 
disentanglement relation (B3)) is the following  

( ) ( ) ( ) ( )
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( ) ( ) ( )
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1 1
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  (A3) 

A full representation of the right-hand side in powers of z alone is obtained by 
Taylor series expansion of ( )1 iz−  but this makes the right-hand side to a triple 
sum. 
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Using (A1) with corresponding parameter substitutions we find from (5.9)  
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 (A4) 

By substitutions of the summation variables j nµ= −  and i mµ= −  this 
can be transformed to the form  

( )
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( )
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 (A5) 

The inner sum can be expressed by a specialized Jacobi polynomial ( ) ( ),Pn uα β  
for the special value 1u = −  (or 1u = +  by a transformation) according to  
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Jacobi polynomials for argument 1u =   can be evaluated as follows  
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− = − = −             (A7) 

This leads to the final expression  

( ) ( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( ) ( )

0

0

! 1 1 !
1, ! ,

! ! ! 1 !

! !
! , .

! ! ! !

n

n

n

l n l k
E k l E k l n

l n n l k n

l n n k l
E k l n

l n n k l

µ

µ µ

µ

µ

µ µ
µ

µ µ

µ µ
µ

µ µ

=

=

+ − − − −
+ = −

− − − −

+ − + −
= −

− −

∑

∑
        (A8) 

where we used in second line a transformation from factorials for negative 
numbers to that for positive numbers (see, e.g. [12]; is also easily derivable). 

Although we derived a reliable and checked result for ( )1,E k lµ +  in relation 
to ( ),E k mµ  it was obtained in not very easy way using a lot of transformations 
and it is not yet clear whether or not this is the best way. In particular, it seems 
to be possible to derive it with normal instead of anti-normal ordering but this is 
also not simple3. 

  

 

 

3It was not a principal reason to use anti-normal ordering for the proof. We tried it also by normal 
ordering but came first with anti-normal ordering to the result. It is also possible that some inter-
mediate steps in the proof can be shortened. 
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Appendix B 

Some ordering relations for differential and multiplication operators 

We give here a few ordering relations for differential operators 
z
∂
∂

 and 

multiplication operators with powers of the functions 1 z−  which we use for 
proofs in this paper. First, we mention the simple commutation rules  

( ) ( )

( ) ( )

1 1
1

1 1 ,
1

nn

n

z z
z z z

z z
z zz

α α

α α

α

α

∂ ∂ − = + − ∂ ∂ − 

∂ ∂ ⇒ − = + − ∂ −∂  

             (B1) 

and analogously  

( ) ( )
1 1 ,

11 1

nn

n z zzz zβ β

β∂ ∂ = − ∂ −∂  − −
               (B2) 

where α are arbitrary real (or even complex) numbers. Next we consider the 

disentanglement of the operators 
1

n

z z
α∂ + ∂ − 

 that means its representation in 

anti-normal or in normal ordering. 

The anti-normal ordering (all powers of the differential operators 
z
∂
∂

 are in 

front of multiplication operators) is  

( ) ( ) ( )

( ) ( ) ( )

0

0

! ! 1
1 ! ! ! 1

! ! 1 .
! ! ! 1

n n jn

n j j
j

in

i n i
i

n
z z j n j j z z

n
i n i n i z z

α α
α

α
α

−

−
=

−
=

∂ ∂ + = ∂ − − − ∂  −

∂
=

− − + ∂ −

∑

∑
           (B3) 

Let us prove this relation by complete induction. The relation is obviously true 
for 0n =  and for 1n = . We suppose that it is true for arbitrary n and show 
that it is right then also for 1n +   

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )( )
( ) ( ) ( )

1

0

1

1
0

1
0

1

1
0

0

! ! 1
1 ! ! ! 11

! ! 1
! ! ! 1

! ! 1 1
! ! ! 1

! ! 1 1
! 1 ! ! 1

n n jn

n j j
j

n jn

n j j
j

n jn

n j j
j

n jn

n j j
j

n

j

n
z z j n j j z zz z

n
j n j j z z

n j
j j

j n j j z z

n n j j
j n j j z z

α α α
α

α
α

α α
α

α
α

+ −

−
=

+ −

+ −
=

−

− +
=

+ −

+ −
=

=

∂ ∂ ∂   + = +   ∂ − − − ∂ −∂   −

∂
=

− − ∂ −

− ∂
+ → −

− − ∂ −

+ − + ∂
=

+ − − ∂ −

=

∑

∑

∑

∑

∑ ( )
( ) ( ) ( )

1

1

1 ! ! 1 ,
! 1 ! ! 1

n j

n j j

n
j n j j z z

α
α

+ −

+ −

+ ∂
+ − − ∂ −

  (B4) 

and (B3) is proved. 

The normal ordering (all powers of the differential operators 
z
∂
∂

 are behind 
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of multiplication operators) is  

( )
( ) ( ) ( )
( )

( ) ( ) ( )

0

0

1 ! ! 1
1 ! ! ! 1

1 ! ! 1 .
! ! ! 1

jn n jn

j n j
j

n i in

n i i
i

n
z z j n j j zz

n
i n i n i zz

ββ
β

β
β

−

−
=

−

−
=

−∂ ∂ − = ∂ − − − ∂  −

− ∂
=

− − + ∂−

∑

∑
           (B5) 

The proof can be made by complete induction in analogy to the proof of (3). 
More general operator identities of such kind are derived in [11]. The operator 
identities (B3) and (B5) are applicable to arbitrary functions of z. 

If we substitute in (B3) α β→ −  then we find in anti-normal ordering  

( )
( ) ( ) ( )

( )
( ) ( ) ( )

0

0

! ! 1
1 ! ! ! 1

1 !( 1 )! 1 ,
! ! 1 ! 1

n n jn

n j j
j

j n jn

n j j
j

n
z z j n j j z z

n j
j n j z z

ββ
β

β
β

−

−
=

−

−
=

−∂ ∂ − = ∂ − − − − ∂  −

− − + ∂
=

− − ∂ −

∑

∑
             (B6) 

and in analogous way from (B5) by substituting β α→ −   

( ) ( )
( ) ( ) ( )
( )

( ) ( ) ( )

0

0

1 ! ! 1
1 ! ! ! 1

! 1 ! 1 .
! ! 1 ! 1

jn n jn

j n j
j

n jn

j n j
j

n
z z j n j j zz

n j
j n j zz

αα
α

α
α

−

−
=

−

−
=

− −∂ ∂ + = ∂ − − − − ∂  −

− + ∂
=

− − ∂−

∑

∑
            (B7) 

We have here applied a relation  

( )
( ) ( ) ( )

( ) ( )! 1 !
1 , 0, 1, 2, ,

! 1 !
ka k a

k
a k a
− + −

= − = ± ±
− − −


             (B8) 

between factorials of positive and negative numbers with integers k (e.g., 
Gradshteyn and Ryzhik, [12], chap. 8.334). 
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Appendix C 

Ordering relations involving the Stirling numbers 
We collect in this Appendix some ordering relations for operators of 

differentiation and multiplication which involve the Stirling numbers of first 
kind ( ),s k l  and of second kind ( ),S k l . The Stirling numbers are discussed in 
most representations of combinatorics (e.g., in cited [1] [3] and well represented 
by van Lint and Wilson in [9]). We begin with Stirling numbers of second kind. 

The basic definition of Stirling numbers of second kind ( ),S k l  is by the 

relation between kz  and 
( )

!
!

z
z l−

 as follows4  

( ) ( ) ( ) ( ) ( )
0 0

!!, 1 1, 1 .
! !

k k k lk

l l

z lzz S k l S k l
z l z

−

= =

+
= = − + +

−∑ ∑         (C1) 

For ( )1 nz +  one obtains one obtains the following two simple and often 
useful forms  

( ) ( ) ( ) ( ) ( ) ( )
0 0

!!1 1, 1 1 , .
! !

k kk k l

l l

z lzz S k l S k l
z l z

−

= =

+
+ = + + = −

−∑ ∑        (C2) 

One of the means for proofs by complete induction of formulae is usually the 
recurrence relation  

( ) ( ) ( ) ( )1, 1 , 1 , 1 .S k l S k l l S k l+ + = + + +               (C3) 

The explicit expression for ( ),S k l  is  

( ) ( )
( ) ( ) ( ) ( )

0

1
, , 0,0 1, ,

! !

jl k

j
S k l l j S l k

j l j=

−
= − = ≤

−∑          (C4) 

where ( )0,0S  is indeterminate by this formula and, therefore, is additionally 
given. 

The transition from 
k

z
z
∂ 

 ∂ 
 to normal ordering (all powers of z are in front 

of all powers of 
z
∂
∂

) and to anti-normal ordering (all powers of z are behind of 

all powers of 
z
∂
∂

) is by the relations  

( ) ( ) ( )
0 0

, 1 1, 1 ,
k l lk k k ll l

l l
l l

z S k l z S k l z
z z z

−

= =

∂ ∂ ∂  = = − + + ∂ ∂ ∂ 
∑ ∑       (C5) 

and the analogous transition from 
k

z
z
∂ 

 ∂ 
 possesses the form  

 

 

4The use of the Pochhammer symbol ( ) ( )
!

!l

zz
z l

≡
−

 is not unique in literature and sometimes with 

this symbol the expression 
( )
( )

1 !
1 !

z l
z
− +
−

 is denoted. Often these two possibilities are distinguished by 

the notations ( ) ( )
!

!
l

l

zz z
z l

≡ ≡
−

 and ( )( ) ( )
( )

1 !
1 !

l l z l
z z

z
− +

≡ ≡
−

. 
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( ) ( ) ( )
0 0

1, 1 1 , .
k l lk k k ll l

l l
l l

z S k l z S k l z
z z z

−

= =

∂ ∂ ∂  = + + = − ∂ ∂ ∂ 
∑ ∑       (C6) 

For some convenience and completeness let us give in addition the inverse 
relations with the Stirling numbers of first kind ( ),s k l . They satisfy the 
relations  

( ) ( ) ( ) ( ) ,
0 0

, , , , .
k k

k m
l l

S k l s l m s k l S l m δ
= =

= =∑ ∑               (C7) 

A basic definition of ( ),s k l  is by the relation  

( ) ( ) ( )( )
0 0

! , 1, 1 1 ,
!

k k ll

l l

z s k l z s k l z
z k = =

= = + + +
− ∑ ∑               (C8) 

or equivalently  

( ) ( ) ( ) ( ) ( )( )
0 0

!
1 1, 1 1 , 1 ,

!

k kk l k l ll

l l

z k
s k l z s k l z

z
− −

= =

+
= − + + = − +∑ ∑       (C9) 

The recurrence relation is  

( ) ( ) ( ) ( )1, 1 , 1 , 1 .s k l s k l k s k l+ + = − + +             (C10) 

Explicit expressions for the Stirling numbers of first kind are not so simple as 
for the second kind and are obtained by ( ,k jδ  Kronecker symbol; note that the 
j-s in denominator are not factorials!)  

( ) ( ) 1 2

1 2

,

1 1 1 1 2

1 !
, .

!
l

l

k l k k k
k j j j

j j j l

l

k
s k l

l j j j
δ−

+ + +

= = =

×

 −
=  

 
∑∑ ∑ 







            (C11) 

We checked these formulae by computer5. 

The transition from normally ordered operators 
k

k
kz

z
∂
∂

 to 
l

z
z
∂ 

 ∂ 
 or to 

l

z
z
∂ 

 ∂ 
 is by the formulae  

( ) ( )
0 0

, 1, 1 ,
l lk k k

k
k

l l
z s k l z s k l z

z zz = =

∂ ∂ ∂   = = + +   ∂ ∂∂    
∑ ∑           (C12) 

and the same from anti-normally ordered operators 
k

k
k z

z
∂
∂

  

( ) ( ) ( ) ( )
0 0

1 1, 1 1 , .
l lk k kk l k lk

k
l l

z s k l z s k l z
z zz

− −

= =

∂ ∂ ∂   = − + + = −   ∂ ∂∂    
∑ ∑    (C13) 

The direct transitions from 
k

k
k z

z
∂
∂

 to 
k

k
kz

z
∂
∂

 and vice versa is given by  

( )
( )
( )

2

2
0

2

2
0

! ,
! !

1 !
,

! !

k k jk
k k j

k k j
j

jk k jk
k k j

k k j
j

kz z
z j k j z

k
z z

z j k j z

−
−

−
=

−
−

−
=

∂ ∂
=

∂ − ∂

−∂ ∂
=

∂ − ∂

∑

∑
                (C14) 

 

 

5With increasing l under fixed 10k ≤  the calculation time grows very rapidly. 
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and may be proved by complete induction. 
A lot of formulae for the Stirling numbers can be found in the article of 

Bressoud [3] in the NIST handbook [4]. 
For convenience of using the paper in self-contained way we give here tables 

of Stirling numbers of second kind (Table A1) and of first kind (Table A2): 
The empty places in Table A1 and Table A2 are zeros. 
The connection between two different basic formulae for the Stirling numbers 

of second and first kind, for example, (C5) and (C1) for second kind can be 
established by applying (C5) to the eigenfunctions ( ), 0,1, 2,nz n =   of the  

operator z
z
∂
∂

 to the eigenvalue n according to  

 
Table A1. Stirling numbers of second kind ( ),S n k . 

n 0k =  1k =  2k =  3k =  4k =  5k =  6k =  7k =  8k =  9k =  10k =  
  

0 1            

1 0 1           

2 0 1 1          

3 0 1 3 1         

4 0 1 7 6 1        

5 0 1 15 25 10 1       

6 0 1 31 90 65 15 1      

7 0 1 63 301 350 140 21 1     

8 0 1 127 966 1701 1050 266 28 1    

9 0 1 255 3025 7770 6951 2646 462 36 1   

10 0 1 511 9330 34105 42525 22827 5880 750 45 1  

              

 
Table A2. Stirling numbers of first kind ( ),s n k . 

n 0k =  1k =  2k =  3k =  4k =  5k =  6k =  7k =  8k =  9k =  10k =  
  

0 1            

1 0 1           

2 0 −1 1          

3 0 2 −3 1         

4 0 −6 11 −6 1        

5 0 24 −50 35 −10 1       

6 0 −120 274 −225 85 −15 1      

7 0 720 −1764 1624 −735 175 −21 1     

8 0 −5040 13068 −13132 6769 −1960 322 −28 1    

9 0 40320 −109584 118124 −67284 22449 −4536 546 −36 1   

10 0 −362880 1026576 −1172700 723680 −269325 63273 −9450 870 −45 1  

              
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,n nz z nz
z
∂  = ∂ 

                      (C15) 

with the consequence  

( ) ( ) ( ) ( )0 0

!, , .
!

k lk k
k n n l n n

l
l l

nn z z z S k l z z S k l z
z n lz= =

  ∂ ∂ = = =      ∂ −∂     
∑ ∑     (C16) 

This means the equality (C5) for all discrete eigenfunctions nz  of the  

operator z
z
∂
∂

 to eigenvalues n. This shows the equivalence of (C1) and (C5)  

which both can be used for the basic introduction of the Stirling numbers of 
second kind. Analogous consideration can be made for the Stirling of first kind 
and for all inversions. 
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