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Abstract 
Synchrotron radiation based experimental techniques known as Anomalous 
Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nano-
structure of uncountable material systems in condensed matter research i.e. 
solid state physics, chemistry, engineering and life sciences thereby rendering 
the origin of the macroscopic functionalization of the various materials via 
correlation to its structural architecture on a nanometer length scale. The 
techniques constitute a system of linear equations, which can be treated by 
matrix theory. The study aims to analyze the significance of the solutions of 
the stated matrix equations by use of the so-called condition numbers first in-
troduced by A. Turing, J. von Neumann and H. Goldstine. Special attention 
was given for the comparison with direct methods i.e. the Gaussian elimina-
tion method. The mathematical roots of ill-posed ASAXS equations prevent-
ing matrix inversion have been identified. In the framework of the theory of 
von Neumann and Goldstine the inversion of certain matrices constituted by 
ASAXS gradually becomes impossible caused by non-definiteness. In Turing’s 
theory which starts from more general prerequisites, the principal minors of 
the same matrices approach singularity thereby imposing large errors on in-
version. In conclusion both theories recommend for extremely ill-posed 
ASAXS problems avoiding inversion and the use of direct methods for in-
stance Gaussian elimination. 
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1. Introduction 

In 1947 Alan Turing stated that the best known method for the solution of linear 
equations is Gauss’s elimination method [1]. Turing reported that the 
elimination method “…unfortunately recently come into disrepute on the 
ground that rounding-off will give rise to very large errors” [1]. In the 1940s, the 
time just before electronic digital computers became available, a serious concern 
was felt, that rounding-off errors could drastically falsify the results obtained 
from such machines especially when dealing with complex mathematical 
algorithms like the inversion of a high-dimensional n × n matrix representing a 
system of linear equations (SLE). In this time n = 100 was thought to be solvable 
with the new machines to come. In his paper Turing argued that from the 
practical work of L. Fox [2] in applying the elimination method no evidence for 
an exponential build-up of errors as suspected by Hotelling [3] was found. 
Moreover from his mathematical analysis Turing came to the result that “…in 
all normal cases the Hotelling estimate is far too pessimistic” [1]. Similar results 
have been outlined independently by J. von Neumann and H. Goldstine at the 
same time in their famous inversion paper [4]. Both studies represent a 
fundamental approach. Turing treated the problem from the most general point 
i.e. developing his theory for matrices with non-singular principal minors while 
von Neumann and Goldstine started from treating symmetric positive definite 
(SPD) matrices and subsequently extended their theory to non-definite matrices.  

In this study we will make use of the concept of the condition numbers as 
introduced by Turing [1], von Neumann and Goldstine [4]. We will focus on 3 × 
3 matrices (n = 3) which are constituted by synchrotron radiation based condensed 
matter research using Anomalous Small-Angle X-ray Scattering though von 
Neumann and Goldstine stated explicitly, that the order of the matrix treated in 
their paper should be: 10n ≥ . Their words [4]: “Indeed, for smaller values of n 
the problem of inverting a matrix hardly justifies this thorough analysis”. The 
reason why we apply the theories of von Neumann, Goldstine and Turing to 
matrices of low dimension (n = 3) is the extreme ill-conditioning of these low 
order matrices inherently introduced by scattering theory in synchrotron 
radiation, making it difficult to judge whether the obtained solutions 
respective matrix inversions carry significance or not. The theories of von 
Neumann, Goldstine and Turing shed light on the problem and tell how to 
define a figure of merit for results obtained from challenging synchrotron 
radiation experiments (ASAXS) in context with the mathematical algorithms 
being applied. 

In the 70 years after Turing, von Neumann and Goldstine numerous publications 
established the scientific field of numeric mathematics dealing professionally 
with the problem of significance of the solutions obtained via matrix inversion, 
examples are [5] [6] [7] [8] [9]. But there are several reasons for referring 
preferentially to the two in the sense of numerical mathematics fundamental 
papers of Turing and von Neumann, Goldstine [1] [4]: 
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1) Turing’s definition of an ill-conditioned matrix (i.e. small percentage errors 
in the coefficients lead to large percentage errors in the solution) introduced in 
combination with the condition numbers the possibility to directly calculating 
the upper bound of the errors of the solution vector when stating rounding-off 
errors of a distinct size. This is done by the so-called backward error analysis 
first introduced in the publication of von Neumann and Goldstine [4]. In our 
paper we replace rounding-off errors by measurement errors and thus the 
synchrotron radiation based experiments can fully apply to the theories of 
Turing, von Neumann and Goldstine. 

2) Turing came to the result that there is no reason to believe that direct 
methods have disadvantages when compared to linear-iterative methods for 
instance successive approximation. Following this idea, we will demonstrate that 
solving the linear problem via an analytic expression (if available) gives clear 
information about the significance by virtue of the backward error propagation, 
which is generally furnished throughout the formula of the used analytic 
expression. 

3) Calculation of the inverse can produce large errors in the solution though 
the residual error is small. The fundamental publications of Turing and von 
Neumann, Goldstine gave at first a quantitative measure (figure of merit) for 
matrix inversion of ill-posed linear equations via condition numbers, but the 
condition numbers are different in the two publications due to their different 
approach. Until today these two concepts of quantification of conditioning (i.e. 
significance) represent reliable error estimations of ill-posed SLEs thereby 
providing a powerful tool to experimental physicists. Both concepts named in 
modern terminology N-condition (name given by Turing) and P-condition 
(name not given by von Neumann, Goldstine) provide upper limits for the 
errors constituted by the SLEs and will be compared in this paper for 
ill-posed materials being subject to condensed matter research with synchrotron 
radiation. 

Small-Angle X-ray Scattering (SAXS) experiments average over a large 
sample volume and give structural and quantitative information of high statistical 
significance on nanoscopic length scales between 1 and hundreds of nanometers 
because an enormous number of scattering entities up to 1012 is probed, which 
can be correlated to the macroscopic physical and chemical properties of the 
analyzed condensed matter systems in solid state physics, chemistry, engineering 
and life science. Detailed descriptions of the experimental and theoretical aspects 
of small-angle scattering can be found under [10] [11] [12]. By use of 
synchrotron radiation at suitable storage rings the so-called Anomalous 
Small-Angle X-ray Scattering (ASAXS) can be employed, which is an excellent 
tool for the chemical selective structural analysis of multi-component systems 
from various scientific fields like alloys, ceramics, magnetic systems, catalysts, 
semiconductors, glasses, polymers, technical membranes (for instance used in 
fuel cell applications) or bio-membranes (in pharmaceutical or cell research) and 
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many other soft matter systems. Details about the ASAXS-techniques can be 
found in the reviews [13] [14]. In a former publication the solution of the 
eigenvector problem stated by the ASAXS techniques has been outlined in detail 
[15]. 

This publication aims to calculate the condition numbers as established by 
Turing and von Neumann, Goldstine for different solid state, catalytic and 
physicochemical systems from a selected series of ASAXS publications [16]-[30], 
which use direct methods (i.e. Gaussian elimination). The paper will compare 
the results of the Gaussian elimination with the predictions deduced from the 
condition numbers. Details about the scientific problems, which have been 
addressed by the ASAXS measurements, can be found in the related citations. 
We will not refer to ASAXS results from the decades before because in those 
days the separation of the pure-resonant scattering contribution was impossible 
(due to experimental limitations) meaning the vector equation was unsolvable 
due to the absence of the latter. 

The paper explains why ASAXS studies potentially provide misleading results 
thereby at 1st glance suggesting experimentally failing but at 2nd glance indicting 
the application of inappropriate mathematical algorithms. This clear distinction 
became possible because the experimental accuracies of synchrotron radiation 
experiments (ASAXS) have been tremendously enhanced in the last decades 
thereby relocating the question of the significance of the deduced results to the 
mathematical algorithms. This study identifies the roots of possible mathematical 
mishandling of ASAXS problems owing to a lack of understanding concerning 
the nature of the involved SLEs thereby closing a gap in the literature clouding 
the ASAXS techniques. 

2. The General Matrix Equation Established by Anomalous 
Small-Angle X-Ray Scattering 

The remarkable possibilities of the ASAXS techniques are based on the energy 
dependence of the atomic scattering factors giving selective access to the specific 
SAXS contributions of the different chemical components in nano-scaled phases: 

( ) ( ) ( )0,Z Z Z Zf f f ifε ε ε′ ′′= + +                   (1) 

with i being the imaginary unit. Z represents the atomic number and 
( ) ( ),Z Zf fε ε′ ′′  are the anomalous dispersion corrections which depend generally 

on the energy ε. When performing ASAXS measurements on multi-component 
systems in the vicinity of the absorption edge of one of the sample constituents 
the scattering amplitude is generally: 

( ) ( ) ( ) ( ) ( )3 3, , exp d , exp d
p p

A B
V V

A i r i rε ρ ε ρ ε= ∆ ⋅ + ∆ ⋅∫ ∫
    q r qr r qr       (2) 

where q is the magnitude of the scattering vector ( )4π sinλ Θ   , 2Θ  is the 
scattering angle, λ the X-ray wavelength and Vp is the irradiated sample volume. 

,A Bρ ρ∆ ∆  are the differences of electron scattering length densities of the 

https://doi.org/10.4236/alamt.2018.81007


G. J. Goerigk 
 

 

DOI: 10.4236/alamt.2018.81007 68 Advances in Linear Algebra & Matrix Theory 
 

A-atoms and B-atoms (here A summarizes over all non-B atoms in the system), 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
0,

0,

,

,

A A A A A A A A

B B B B B B B B

f v f V f if v

f v f V f if v

ρ ε ε ρ ε ε

ρ ε ε ρ ε ε

′ ′′∆ = ∆ ⋅ = − + + ⋅

′ ′′∆ = ∆ ⋅ = − + + ⋅

r r r

r r r

  

  

   (3) 

calculated from the atomic (molecular) volumes ,A BV V , respectively, where ρ  
is the electron density of the entire sample. The functions ( ) ( ),A Bv v r r  are the 
number densities of the atomic (molecular) species A and B, respectively and 
represent their spatial distribution in the sample. Calculating the scattering 
intensity ( ) ( ) ( ) ( )2 *, , , ,I A A Aε ε ε ε= = ⋅

   q q q q  by means of Equations (2)-(3) 
and averaging over all orientations yields the sum of three scattering contributions, 
( ) ( ) ( ) ( ), , , ,A AB BI q S q S q S qε ε ε ε= + +  [31]: 

( ) ( ) ( )
( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

2 2

0, 0,

2 2
´

2 2

,

, 2

Re

,

1 , , 1

A A A A

AB A A A B B B

A B AB A B

B B B B

A A A A AB A B A B B B B B

S q f c A q

S q f V f f V f

f f c A q A q

S q f c A q

c V c V V c V

ε ε

ε ρ ε ρ ε

ε ε

ε ε

ϕ ϕ ϕ ϕ ϕ ϕ

= ∆ ⋅ ⋅

 ′ ′= − + − +
′′ ′′+ ⋅ ⋅

= ∆ ⋅ ⋅

= − = = −

     (4) 

,A Bϕ ϕ  are the volume fractions of the two components and thus related to the 
chemical concentrations. Because we want to analyze the conditioning of the 
ASAXS defined SLE in general, we have included the chemical concentrations 
into the pre-factors of Equation (4) that is in this paper the scattering functions 
of Equation (4) are based on the Fourier transform of the normalized pair 
correlation functions ( ) ( ) ( )( ) ( )2 2

,Re ,A A B BA q A q A q A q . The details are outlined 
in the Appendix 1. 

The measurement of the scattering curves at different X-ray energies represented 
by index i in the vicinity of the absorption edge of the B-atoms constitutes the 
following vector equation: 

( ) ( ) ( ),ij i j i iq qε ε
⊗ =

⊗ =

M A I
M A I

                     (5) 

where the summation is running over the index j of the matrix (columns) and 
vector components. In order to simplify we will restrict the problem to the 
measurement of scattering curves at three X-ray energies: i = 1, 2, 3. 
Measurements at more than 3 energies cannot improve the system of linear 
equations, because when measuring at n energies in maximum 3 equations are 
linear independent while (n-3) equations are linear dependent [25]. The vector 
Equation (5) in explicit form writes: 

( )
( ) ( )( )
( )

( )
( )
( )

2

11 12 13 1

21 22 23 2

231 32 33 3

,
Re ,

,

A

A B

B

A qa a a I q
a a a A q A q I q
a a a I qA q

ε
ε
ε

      
    ⊗ =             

          (6) 

with 

https://doi.org/10.4236/alamt.2018.81007


G. J. Goerigk 
 

 

DOI: 10.4236/alamt.2018.81007 69 Advances in Linear Algebra & Matrix Theory 
 

( )( ) ( )

( )( ) ( )( ) ( ) ( )

( )( ) ( )

2 2
1 0,

2 0, 0,

2 2
3 0,

2

i A A i A i A

i A A i B B i A i B i AB

i B B i B i B

a f f f c

a f f f f f f c

a f f f c

ε ε

ε ε ε ε

ε ε

 ′ ′′= ∆ + +  
 ′ ′ ′′ ′′= ∆ + ∆ + + 

 ′ ′′= ∆ + +  

      (7) 

and 0, , 0, , ,A B A B A Bf f Vρ∆ = −  which represent the electron density contrast of the 
components A and B with respect to the entire sample. Any non-singular real 
square matrix M may be decomposed into the product of two matrices: 

= ⊗M L U                             (8) 

where L and U mean an unique unit lower triangular and upper triangular 
matrix [1]: 

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

31
32 12

3121 11
21 31 32

2111 11
22 12

11

1 0 0
1 0 0

1 0 0

, ,

a a a u u u
a a a l u u
a a a l l u

aa a
aa al l l aa a a a

a

     
     = ⊗     
     
     

−
= = =

−

        (9a) 

The unit lower matrix L represents the transformation of the vector Equations 
(6) by elementary operations (with det(L) = 1). The inverse matrix of L changes 
the matrix M into the upper triangular matrix U via: 

1− ⊗ =L M U                            (9b) 

We introduce Equation (9b) into Equation (5) giving: 

( ) ( ) ( )

( )
( ) ( )( )
( )

1 1 1

2

11 12 13 1

22 23 2

233 3

,

0 Re
0 0

ij i j i i

A

A B

B

q q

A qu u u B
u u A q A q B

u BA q

ε ε

− − −⊗ ⊗ = ⊗ ⊗ ⊗ = ⊗ = ⊗ =

⊗ =

 
    
     =           

 

L M A L L U A U A L I B
U A B

       (10) 

where the meaning of ,ij iu B  is explicitly outlined in the Appendix 1 (A3). The 
SLE in Equation (10) remains unchanged with respect to Equation (6) due to the 
elementary operations i.e. the solution vector is the same but we deal with a 
different vector B on the right side, which is a linear combination of the scattering 
curves in Equation (6). 

The Equations (8)-(10) represent the most general mathematical description 
of any (non-contiguous) ASAXS problem in synchrotron radiation based experiments1. 
The diagonal elements of U are (physical) invariants, more specifically the eigenvalues 
of the linear map, which are not changed by similarity transformations like the 
elementary operations. The matrix constituted by ASAXS is non-symmetric 

 

 

1Equation (8) disregards permutations because partial pivoting turns out to be not necessary in the 
case of materials with non-contiguous X-ray absorption edges. Turing and von Neumann, Goldstine 
treated the most general case with permutations. 
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and—more important—is in general not positive definite, due to possibly negative 
eigenvalues. We will come back to the latter when calculating the P-condition of 
von Neumann and Goldstine. In what is to follow we will focus on the vector 
Equation (10). As outlined in the Appendix 1 the restriction of the problem to 
U will not influence the findings of this publication. 

3. Systems being Capable of Using the Direct Method with 
Simplified Analytic Formula 

The upper triangular matrix U is fully equivalent to the Gaussian elimination 
method and allows via backward substitution the analytic resolution of the SLE 
i.e. the Fourier transform of the pair correlation functions can be obtained via 
analytic formula as can be easily seen from the last line in vector Equation (10) 
giving: 

( ) 2
3 33BA q B u=                          (11) 

The quantity B3 is directly related to the 3rd component of the solution vector 
( ) 2

BA q , which attracts the highest interest, because it carries exclusively all 
structural and quantitative (chemical concentration) information concerning the 
impact of the chemical component B to the macroscopic functionalization of the 
material under investigation. Equation (11) combines scattering curves from 
different energies and allows the calculation of error propagation thereby giving 
the significance of the solution via error bars. Details about the mathematical 
algorithm employed in ASAXS techniques (Jacobian) are outlined in Appendix 
2. As can be seen from the Equation (A3) the error propagation will behave in 
strongly different manner depending on the physical parameters say conditioning. 
It is calculated via the difference of the difference of two scattering curves 
weighted with pre-factors defined by the experiment, which amplify the error 
propagation. Typically the form factor of the pure-resonant scattering calculated 
via backward substitution is in the order of 10−3 to 10−2 with respect to the input 
scattering curves. This means the pre-factors define together with the measurement 
errors via amplification, whether a solution can carry significance or not. In other 
words, experiments which reduce the number of pre-factors or change their 
magnitude are better conditioned via reducing the amplification of error 
propagation thereby providing higher significance. 

From Equation (A3) we learn, that via 33 3,u B  the 9 matrix coefficients ija  
of Equation (7), which carry 2 contrast and 12 dispersion parameters (entering 
linearly and non-linearly the matrix coefficients) contribute 28 times as 
amplification factors into Equation (11) when calculating the form factor of the 
pure-resonant scattering. It is clear that this causes a large amplification of the 
error propagation when performing the backward substitution throughout a 
very complex formula. 

We will now turn to experiments with better conditioning. A large number of 
two phase alloys for instance the semiconductor alloy silicon germanium have 
X-ray absorption edges which lie far apart to each other. Moreover due to the 
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light element silicon the anomalous dispersion corrections, 0Si Af f′ ′= ≈ , 
0Si Af f′′ ′′= ≈ , can be taken as zero giving a tremendous simplification when 

inserting 33 3,u B  into Equation (11): 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 1 31 2

1 2 1 3 1 2 3

2 22 2
1 31 2

1 2 3 2 3
1 2 1 3

, ,, , 1
, ,

, ,

B
B B B B

B BB B
B B

B B B B

I q I qI q I q
A q

f f f f F

f ff f
F f f

f f f f

ε εε ε
ε ε ε ε ε ε ε

ε εε ε
ε ε ε ε ε

ε ε ε ε

 −−
= − ⋅ ′ ′ ′ ′− −  

′′ ′′′′ ′′ −−
′ ′= − + −

′ ′ ′ ′− −

 (12) 

Now only the dispersion parameters of component B (here germanium) enter 
Equation (12) giving in total 6 dispersion parameters contributing 14 times in 
the amplification. Interestingly the contrast parameters vanished. In fact the 
conditioning is even better because in the energy range below the K-absorption 
edge of germanium the ( ) ( ) 1 2Ge i B if fε ε′′ ′′= ≈  are numbers of about ½ giving 
very small numbers for the two decimal fractions in the second line of equation 
(12), which can be neglected. Thus only 3 dispersion parameters contribute 
substantially only 6 times. Moreover being able to neglect the decimal fractions 
the dispersion parameters enter all linearly thereby reducing the error 
propagation significantly. As a result such condensed matter systems can easily 
be analyzed via ASAXS experiments using the direct method of Equation (12) 
which represents Gaussian elimination [17] [22] [23] [25]. 

4. Comparing the Results from the Direct Method with  
Expected Results from Matrix Inversion by Use of  
Condition Numbers 

In the previous section we have treated two-phase systems in solid state physics 
with ASAXS-constituted SLEs which have been successfully analyzed by 
Gaussian elimination. In concern of the direct method the situation is similar for 
a 2nd material class. These materials are highly diluted three phase systems from 
soft matter research for instance polymer ions decorated by counter ions. The 
counter ions represent the phase B (for instance Sr2+, Pb2+, Tl+, Br−, I− ions), 
while the other two phases are the solvent (water or other fluids with low 
molecular weight) and the soft matter component (for instance polyacrylate, 
proteins or liposomes). Because the solvent and soft matter components consist 
of light elements the same arguments as for the two phase alloys with light 
elements hold and the simplified formula in Equation (12) can be applied with 
the exception that in the case of the Pb2+ and Tl+ counter ions the decimal 
fractions no longer can be neglected because the ( ) ( )Pb i B if fε ε′′ ′′=  cover values 
between 4 and 6 when performing ASAXS measurements in the energy range of 
the LIII-absorption edge [16] [18] [19] [20] [24] [26] [27] [28] [30]. Other three 
phase systems come from catalyst research and can also be treated via Equation 
(12) for instance porous substrate structures (silica, carbon, or gibbsite and 
bayerite) for metal or metal oxide catalysts. The 3rd phase is represented by 
vacuum (pores) [21] [29]. 
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Though the direct method was successfully applied for all these materials it 
appeared that these systems behaved cumbersome in the ASAXS experiments, 
which was evidenced by numerous experimental parameters. For instance the 
primary flux normalization had to be more accurate, the transmission corrections 
needed to be improved to the accuracy regime of 10−5, additionally the absolute 
calibration of the scattering curves needed to be improved significantly, the 
beam stability needed substantial improvement etc. [14]. The reason of these 
systems being extra demanding may be attributed to various material parameters 
for instance high dilutions or small or vanishing contrast in the soft matter 
systems or a large contrast in combination with a high volume fraction of the 
pores (causing overwhelming pore scattering) or a small amount of the metal or 
ceramic component in the case of the catalyst systems. 

A 3rd material class is represented by three-phase systems with contiguous 
lying X-ray absorption edges. An example for such very ill-conditioned systems 
is IrO2 catalyst prepared on the semiconductor substrate TaON for solar fuel 
applications [32]. This material is hard to treat with ASAXS experiments because 
1) the LII-absorption edge of tantalum and the LIII-absorption of iridium lie close 
together i.e. Equation (12) cannot be used, 2) the substrate carries an enormous 
contrast with respect to vacuum (pore structure) due to the heavy element 
tantalum thereby causing an overwhelming pore scattering showing strong 
energy dependence in the energy range of the LIII-absorption edge of iridium. In 
summary this gives a worst case behavior making total pivoting potentially 
necessary, which we will not treat in this publication. 

These very different examples illustrate, that we ought to know more about 
the conditioning of an ASAXS experiment so that we could better optimize the 
experimental parameters like the length of exposure times which govern the error 
of the scattering curves, the selection of X-ray energies, the accuracy required for 
the transmission measurements, the number of calibration measurements, the 
detector to be used and many other questions which appear, in advance of a 
beam time at 3rd generation synchrotron radiation sources. 

What we would like to have is say a figure of merit, which summarizes all 
these questions in one or two numbers and consequently define how to perform 
the experiment. This request is met by the condition numbers of Turing and von 
Neumann, Goldstine as will be shown in what is to follow. 

Turing introduced the N-condition number (in literature also known as 
Turing number) based on the Frobenius norm U : 

( ) 1

3 3
2 1 2

, 1 , 1

1
3

,ij ij
i j i j

N

u µ

−

−

= =

= ⋅ ⋅

= =∑ ∑

U U U

U U
                  (13) 

The ijµ  represent the coefficients of the inverse matrix. From this the backward 
error A A∆  of the solution vector can be calculated via the error of the 
scattering curves B B∆  [1] 
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( )3
A B

N
A B
∆ ∆

≤ ⋅ ⋅U                      (14) 

where 
3 3

2 2

1 1
,i i

i i
B B B B

= =

∆ = ∆ =∑ ∑                 (15) 

and 

3 3
2 2

1 1
,i i

i i
A A A A

= =

∆ = ∆ =∑ ∑                  (16) 

As an example we assume to have measured scattering curves with a relative 
accuracy of 310B B −∆ =  via ASAXS on semiconductor alloys with a 
N-condition number ( ) 30N =U . Inserting these numbers into Equation (14) 
gives 0.09A A∆ = , meaning that the summarized error of the components 
of the solution vector obtained by matrix inversion achieve relative accuracies 
within 9%. This result tells that the solution vector deduced from inversion 
carries significance, which we have been expecting because our backward error 
propagation calculation via the simplified Equation (12) gave already a better 
result due to establishing for each single vector component the criterion of 
significance. The latter cannot be rendered by the N-condition number, because 
it deals with the ratio of the square root of summed squares thereby giving only 
an upper limit for the error. 

But the condition number provides at this point the invaluable information 
that the error estimations from matrix theory and error propagation are similar 
for these materials thereby suggesting that this material class can be treated by 
ASAXS with a high degree of significance in both directions via back substitution 
(Gaussian elimination) or alternatively matrix inversion. In other words Turing’s 
theory states that these systems behave well because the analytic calculations of 
error propagation and error estimation via condition numbers are close together. 
The details come from the calculation of error propagation while the universal 
information comes from the linear theory but for these materials they nearly 
coincide! Analysis and linear algebra go together. 

5. Condition Numbers of Two-Phase Systems 

Figure 1 depicts N(U) for materials with Z between sodium and uranium on the 
x-axis embedded in host materials with electron densities between 1.0 × 1023 (≈ 
lithium) and 2.6 × 1024 (≈ molybdenum) electrons/cm3 on the y-axis. Details of 
the calculations are outlined in Appendix 3. The color code represents the 
logarithm naturalis of the N-condition number. Figure 1(a) depicts the 
N-condition number for atomic concentrations of 50% i.e. x = 0.5 showing an 
increase from low to high Z. The red line crossing in the middle of the picture is 
the 10%-line (corresponding to N-condition number of 34), where due to 
Equation (14) the error of the solution vector is 10% when assuming scattering  
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Figure 1. The N-condition number of two-phase systems for (relative) 
number densities of 50% (a) and 1% (b). The color code represents the natural 
logarithm of the N-condition. The red dashed line in (a) represents N = 34 i.e. 
the relative error of the solution vector amounts 10%. The blue dashed line in 
(b) represents N = 331 giving the border of insignificance (see text). In (b) 
several examples from the literature are depicted. 

 
curves with 310B B −∆ = . Thus at the concentration x = 0.5 for nearly all 
alloys the solution vector obtained from matrix inversion will provide high 
significance. The latter represents a comment on why alloys became the first 
systems quantitatively analyzed by ASAXS in the 1990s. 

The situation appears different for small concentrations (x = 0.01) as depicted 
in Figure 1(b). From right bottom to top left the N-condition number increases. 
The blue line crossing is the border of resolution corresponding to N-condition 
number of 331 meaning that the relative error A A∆  approaches 1 
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(insignificance) when having 310B B −∆ = . To gain the solution vector now 
via matrix inversion will mean to improve drastically the accuracy of measured 
scattering curves into the 10−4 regime i.e. extending the exposure (measurement) 
time by a factor of 100! The N-condition approaches very large values (upper left 
of Figure 1(b)) because the principal minors of the matrix approach zero due to 
the small volume fractions (chemical concentrations) ,A Bϕ ϕ . 

Several examples from the literature are explicitly depicted in Figure 1(b): 
crystalline copper-cobalt alloys, amorphous silicon germanium semiconductor 
alloys (photovoltaics) [17], CdSxSe1-x quantum dots in a silica glass matrix (optical 
filters), ternary alloys exhibiting spinodal decomposition [22] and tungsten 
embedded in proton conducting SPEEK (sulfonated-polyether-ether-ketone) 
membranes used in fuel cell techniques. Figure 2 summarizes for the two-phase 
systems N-condition maps for different (relative) atomic concentrations x = 0.01, 
0.27, 0.5, 0.7. 

6. Condition Numbers of Three-Phase Systems 

Figure 3(a) depicts N(U) for three-phase systems from soft matter research. The 
x-axis shows like in the previous section the atomic number Z. On the y-axis the 
absolute value of the electron contrast between the molecular system and the 
solvent is plotted in units of electrons. The absolute value is needed because the 
plot is logarithmic thus including negative and positive contrasts. Three 
examples are shown in the map. These are negatively charged polyacrylate 
chains highly diluted in water decorated with the two different counter ions Sr2+ 
and Pb2+ with a concentration of 1.5 mM [20] [30]. For the contrast we assume 
two values 1 and 0.1 electron. As can be seen for the contrast 1 the N-condition  
 

 
Figure 2. The N-condition number of two-phase systems for (relative) 
number densities of 70%, 50%, 27% and 1%. The maps for 50% and 1% are 
the same as in Figure 1. 
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Figure 3. The N-condition number (a) of diluted three-phase systems. On 
the y-axis the contrast is plotted logarithmically i.e. includes also negative 
contrast. The units are electrons. The examples are from the literature [20] 
[26] [30] showing Sr2+ and Pb2+ counter ions with a concentration of 1.5 mM 
decorating polyacrylate anions in H2O. The P-condition number of the same 
systems is plotted in (b). For small contrast the condition numbers become 
extremely large indicating that matrix inversion lost significance (see text). 
For the Pb containing system the markers in the map give only a rough 
estimation of the condition numbers because the maps need to be 
re-calculated for LIII-absorption edges (see Appendix 3). 

 
number of the Sr containing system reaches a value of about 4.7 × 105 i.e. the 
insignificance amounts to 1400A A∆ = !! For a contrast of 0.1 electrons N 
becomes even larger. According to Equation (14) apparently we have crossed the 
border of insignificance. The reasons are the very low chemical concentrations 
of the counter ions thereby causing some of the principal minors approaching 
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singularity. The outcome from the large N-condition number is that a matrix 
inversion in such cases never can provide a significant solution vector. This 
seems to be in contradiction to results from the literature where significant 
results have been reported via employment of Gaussian elimination using Equation 
(12) [16] [20] [26] [27] [28] [30]. The results have been verified carefully via 
error propagation calculation suggesting a mysterious contradiction between 
N-condition number used in linear algebra and error calculation in analysis. Of 
course the N-condition is an upper limit in the sense of the largest possible error. 
But the large discrepancy leads into contemplation. 

In order to obtain additional information we now introduce the P-condition 
number of von Neumann and Goldstine: 

( ) max

min

P
λ
λ

=U                            (17) 

The max min,λ λ  mean the eigenvalues of the matrix U with the largest 
respective smallest absolute value. Figure 3(b) depicts the P-condition for the 
soft matter three-phase systems. We receive for polyacrylate in water with 1.5 
mM Sr2+ counter ions at a contrast of 1 electron P = 1096. von Neumann and 
Goldstine introduced for the P-condition the following error estimation for 
solving the problem by matrix inversion [4]: 

( ) 214.24
A B

P n
A B
∆ ∆

= U                      (18) 

Because the order of our matrix is n = 3 we receive via substitution the 
relative error for the solution vector of 140A A∆ =  when assuming 

310B B −∆ = . Thus von Neumann and Goldstine find insignificance as well 
but not so drastic as Turing. The explanation for the discrepancy comes from the 
fact that the matrices constituted by ASAXS are not necessarily positive definite. 
Turing’s N-condition number tolerates negative eigenvalues (see Figure 1(a) 
depicting in the upper left systems with negative contrast) because his theory is 
based on most general (non-singular) matrices but it approaches large values 
when the principal minors approach zero (see Figure 1(b) which in the upper 
left represents systems with small chemical concentrations x = 0.01). In case of 
the three-phase soft matter systems there are two reasons why the N-condition 
drastically increases. One is the small chemical concentration the other a 
vanishing electron contrast between the soft matter component and the solvent 
i.e. small numbers of electrons on the y-axis in Figure 3(a). Both parameters are 
multiplied when entering the matrix coefficients in Equation (7). The situation is 
different for von Neumann’s and Goldstine’s P-condition. 

Equation (18) was introduced by von Neumann and Goldstine explicitly for 
positive definite matrices. For non-definite matrices their a priori error estimation 
of Equation (18) turned into the a posteriori error estimation [4]: 

( )2 236.58
A B

P n
A B
∆ ∆

= U                         (19) 
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Note the P-condition now enters squared into Equation (19). This gives 
395464A A∆ =  i.e. a value of insignificance now drastically larger than 

Turing’s estimation based on N-condition. In consequence the theories of von 
Neumann, Goldstine and Turing accord in stating that in the case of such (soft 
matter) low dimensional (n = 3) matrices constituted by ASAXS matrix 
inversion is not capable to provide any reliable solution vectors when dealing 
with measurement errors of 310B B −∆ = . The calculation of the inverse 
produces large errors in the solution though the residual error is small. The only 
way to escape from this problem is drastically enhancing the significance of the 
input data (i.e. reducing the error of the measured scattering curves) to a degree 
dictated by the condition numbers, which of course faces limitations due to the 
experimental techniques. In order to reach the border of significance for inversion 
(based on Turing’s theory) an accuracy of 610B B −∆ =  is here required 
(exposure time 106 times longer!!) which up to now by no means can be 
furnished by 3rd generation synchrotron radiation sources. 

7. Discussion and Future Prospects 

von Neumann and Goldstine have been able to explain in detail—using an 
argumentation of reversed logic—that the absence of positive definiteness for 
matrices means that these matrices loose the non-singularity i.e. the calculation 
of the inverse becomes gradually impossible. In other words in case of the 
ill-posed soft matter systems we approach in the space of matrices the border 
line between non-singularity and singularity i.e. between matrices having an 
inverse or not. This corresponds in Turing’s theory to the principal minors 
approaching singularity thereby violating the pre-requisite for the LU decomposition. 
This is what can be identified as the mathematical roots of the ASAXS problem 
of ill-posed systems! 

The by far most interesting result of this study is that the direct method of 
Gaussian elimination succeeds via back substitution even in the case of such 
ill-posed soft matter systems where inversion fails. The Figures 1-3 can serve in 
future condensed matter research using synchrotron radiation based anomalous 
scattering techniques for the estimation of N-condition of the related scientific 
problem thereby gaining information whether matrix inversion can be used 
appropriately or seek for an analytic expression should be favored. 

A further result is a clear warning to introduce iterative non-linear procedures 
(for instance via minimizing the residual error) into the data analysis of ASAXS 
measurements because these are by no means capable in giving any information 
about the significance of the solution. More specifically the information of 
significance is lost when employing non-linear algorithms because the linear 
theories of von Neumann, Goldstine and Turing are not applicable and thus per 
definitionem no criteria exist to judge significance i.e. these methods can be to a 
high degree misleading. 

We want to outline the latter using a vector example taken from the text book 
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of Joan Westlake [33]. Consider the following SLE in the two-dimensional space: 

1 2

1 2

10 11
10 101 111
x x

x x
+ =
+ =

                           (20) 

or in terms of vector equations: 

1

2

1 10 11
10 101 111

x
x

    
⊗ =    

    
                       (21) 

The solution vector is 1 21, 1x x= = . We now consider an approximate 
solution vector 1 21.001, 1.01x x= = . From Equation (21) the residual vector r 
with the components 1 20.101, 1.02r r= =  can be calculated giving a square root 
of the sum of squared residuals of 

2
2

1
1.025i

i
r r

=

∆ = =∑ .                      (22) 

Now we consider a 2nd vector with components 1 211.1, 0x x= =  giving the 
residual vector components 1 20.1, 0r r= =  with the square root of the sum of 
squared residuals 0.1r∆ = . The residual of the second vector is drastically 
smaller when compared to the residual of the first vector but the first vector is 
clearly closer to the true solution. The example demonstrates that non-linear 
fitting of a linear problem can fail drastically. The words of Joan Westlake: 
“Hence a residual of zero implies the solution is exact, but a residual vector that 
is small does not necessarily imply the solution is close. A small residual means 
there are no substantial errors in the direction of the large eigenvectors, but 
there may be very substantial errors in the direction of the small eigenvectors” 
[33]. In our case this means very substantial errors in the direction of the small 
eigenvector of the pure-resonant scattering in comparison to non-substantial 
errors of the large eigenvector of non-resonant scattering or vice versa. Of 
course the situation is more complicated because we have a 3rd eigenvector 
represented by the mixed-resonant scattering. 

8. Conclusion 

The problem of ill-posed systems of linear equations constituted by Anomalous 
Small-Angle X-ray Scattering in synchrotron radiation is inherently introduced 
by scattering theory thereby prohibiting matrix inversion for numerous systems 
in condensed matter research. The mathematical roots for extreme ill-posed 
systems have been identified in the absence of positive definiteness of their 
matrices (von Neumann, Goldstine) or correspondingly the principal minors 
approaching singularity (Turing). Gaussian elimination can overcome this 
problem for numerous (not all) systems represented by a simplified analytic 
expression. This is evidenced by error propagation analysis thereby establishing 
significance. Only linear algorithms can give a figure of merit for the significance 
of the solutions. Minimizing the residuals can be to a high degree misleading. 
The study evidences that the significance of the deduced conclusions from 
ASAXS measurements depends not only on the accuracy of the experimental 
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data but inevitably demands for the application of appropriate (linear) mathematical 
algorithms. High accuracies require appropriate algorithms. 
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Appendix 1: Details of the General Matrix Equation  
Established by Anomalous Small-Angle X-Ray Scattering 

The three scattering contributions obtained via inserting Equation (3) into equa-
tion (2) and subsequent averaging over all orientations are: 
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(A1) 

The convolution integrals represent the Fourier transform of the pair correla-
tion functions. When taking out the chemical concentrations from the convolu-
tion integrals we receive: 
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The functions ( ) ( ),A Bγ γ r r  are the normalized density functions of the atomic 
(molecular) species A and B, respectively and represent their spatial distribution 
in the sample. Thus the functions ( ) ( ) ( )( ) ( )2 2

,Re ,A A B BA q A q A q A q  represent 
the normalized pair correlation functions. 

The matrix coefficients and vector components obtained from Equation (7) 
via elementary transformations are: 
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Generally two possibilities exist to calculate the condition numbers of a SLE 
constituted by ASAXS. Starting with the original matrix 
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or using the upper triangular matrix: 
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            (A5) 

When using (A5) better (smaller) N-conditions are calculated but at the same 
time the errors of the right hand vector increase due to error propagation be-
cause: 

1− ⊗ =L I B                          (A6) 

In summary better results are obtained from starting with (A5). A detailed 
analysis of this problem can be found in [25]. 
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Appendix 2: Details of the Mathematical Algorithm  
Employed in ASAXS Techniques (Jacobian)—Error  
Propagation 

Equations (11)-(12) combine scattering curves from three different X-ray ener-
gies (wavelengths). Because the scattering vector q depends on the wavelength 
corresponding q-values are located at different detector coordinates. This makes 
the introduction of the Jacobian necessary for the transformation from Cartesian 
(detector related pixel) coordinates into polar coordinates in the reciprocal space 
in order to receive scattering curves with identical q-binning: 
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        (A7) 

where d dσ Ω  represents the scattering cross sections with error bars stored 
in the detector pixel with the cartesian coordinates x,y,z, and l is the sample to 
detector distance. ( ) ( ), , , ,rq q q x y zϑ ϕ∂ ∂  is the Jacobian. The integration 
limits of the k-th q-interval are functions of the cartesian coordinates 
( ) ( ) ( ), , , , , , , ,kx y z x y z q x y zϑ ϕ . The error bars of d dσ Ω  have been calculated 

via error propagation from the photon counts in the detector pixel of the single 
photon count detector. Via (A7) the error propagation from the detector pixel to 
the q-intervals can be calculated. The mathematical details are outlined in [34]. 
The Jacobian represents the exact coordinate transformation establishing the 
same q-binning for scattering curves measured at different wavelengths, which is 
inevitably required when applying Equation (12). Other non-linear algorithms 
(for instance interpolation via splines) introduce large errors thereby disabling 
the matrix inversion and the application of Equation (12) with a subsequent 
calculation of error propagation. 
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Appendix 3: Details of the Calculations of the Condition 
Numbers 

The two-dimensional maps of N(U) of Figures 1-3 (depicted in the plane spanned 
by the electron density respective electron contrast and the atomic number) have 
been calculated via Equation (13) using C-code and subsequently are displayed 
by Origin® 2017 software. Via equation (A3) the anomalous dispersion correc-
tions [35] [36] of Equation (7) enter the N-condition. The N-condition shows 
strong differences depending on the input parameters listed in the Tables 
A1-A3 for three examples. The chemical elements have different dispersion 
corrections but the values are similar for K- respective LIII-absorption edges. 
Thus in order to generalize the calculated maps of Figures 1-3 dispersion para-
meters preferentially used in ASAXS experiments at K- respective LIII-absorption 
edges have been assumed. 

As can be seen from Table A3 the anomalous dispersion corrections of the 
LIII-absorption edges provide higher differences in combination with higher f’’ 
values. In consequence this provides higher significance of ASAXS experiments 
performed at LIII-edges when compared to K-edges. 
 
Table A1. Anomalous dispersion corrections typical for ASAXS experiments of 
two-phase systems performed in the energy range of K-absorption edges not using the 
energy of the absorption edge. Ge serves as an example [17]. 

Energy [eV] 
K-absorption edge of Ge 

f’ f’’ 

ε1: 10053 −2.093 0.592 

ε2: 11083 −5.996 0.495 

ε3: 11098 −7.458 0.493 

 
Table A2. Anomalous dispersion corrections typical for ASAXS experiments of 
three-phase systems performed in the energy range of K-absorption edges using the 
energy of the absorption edge. Sr serves as an example [20]. 

Energy [eV] 
K-absorption edge of Sr 

f’ f’’ 

ε1: 15507 −2.75 0.56 

ε2: 16093 −6.66 0.53 

ε3: 16105 −10.3 2.08 

 
Table A3. Anomalous dispersion corrections typical for ASAXS experiments of 
three-phase systems performed in the energy range of LIII-absorption edges using the 
energy of the absorption edge. Pb serves as an example [30]. 

Energy [eV] 
LIII-absorption edge of Pb 

f’ f’’ 

ε1:12650 −9.982 4.134 

ε2: 13000 −14.602 3.956 

ε3: 13035 −22.666 6.002  
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