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Abstract 

In this research article, we investigate the stability of a complex dynamical 
system involving coupled rigid bodies consisting of three equal masses joined 
by three rigid rods of equal lengths, hinged at each of their bases. The system 
is free to oscillate in the vertical plane. We obtained the equation of motion 
using the generalized coordinates and the Euler-Lagrange equations. We then 
proceeded to study the stability of the dynamical systems using the Jacobian 
linearization method and subsequently confirmed our result by phase portrait 
analysis. Finally, we performed MathCAD simulation of the resulting ordi-
nary differential equations, describing the dynamics of the system and ob-
tained the graphical profiles for each generalized coordinates representing the 
angles measured with respect to the vertical axis. It is discovered that the 
coupled rigid pendulum gives rise to irregular oscillations with ever increasing 
amplitude. Furthermore, the resulting phase portrait analysis depicted spiral 
sources for each of the oscillating masses showing that the system under in-
vestigation is unstable. 
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1. Introduction 

The dynamics of coupled bodies and oscillators is significant in mechanics, en-
gineering, electronics as well as biological systems. They are mostly represented 
as nonlinear dynamical systems [1]. One of the most important stages in the 
analysis of any mechanical model is to establish and find the solution of the dy-
namical equations which are referred to as equations of motion [2]. The equa-
tions of motion are often derived by the Euler-Lagrange equations. The funda-
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mental idea of the Lagrangean approach to mechanics is to reformulate the equ-
ations of motion in terms of the dynamical variables that describe the degree of 
freedom, and thereby incorporate constraint forces into the definition of the de-
grees of freedom rather than explicitly including them as forces in Newton’s 
second law. Of importance is the notion of stability of a given dynamical system, 
where we would be concerned with the stability of some critical point of the sys-
tem. Indeed stability plays a central role in system engineering, especially in the 
field of control system and automation, with regards to both dynamics and con-
trol. 

Chutiphon [3] suggested Lyapunov stability as a general and useful approach 
to analyze the stability of nonlinear systems. It has two approaches: indirect and 
direct methods. For the second method of Lyapunov (indirect method), the idea 
of system linearization around a given point is used and local stability within 
small stability regions is possibly achieved. Seyrania and Wang [4] studied the 
stability of periodic solutions of the harmonically excited Duffing’s equation 
with the direct application of the Lyapunov theorem. The damping coefficient 
and excitation amplitude are assumed to be small. The approximate methods 
were used to find the periodic solutions. They derived the stability conditions 
and found stable and unstable region on the frequency response curve. 

Maliki and Nwoba [5] studied a mathematical model of a coupled system of 
harmonic oscillators using the generalized coordinates and Euler-Lagrange equ-
ation. Laplace transform was also used to get the analytical solution of the sys-
tem. The stability analysis of the system was investigated by the direct method 
and it was observed that the coupled system is asymptotically stable for the 
strictly negative roots and strongly unstable for the positive roots. 

Maliki and Okereke [6] investigated the stability analysis of certain third order 
linear and nonlinear ordinary differential equations. They employed the method 
of phase portrait analysis and showed, using simulation that the Hart-
man-Groβman theorem is verified, for a second order linearized system, which 
approximates the nonlinear system, preserving the topological features. 

1.1. Statement of the Problem 

We consider the problem of analyzing the dynamics of a triple pendulum as 
shown in Figure 1. Despite the complexity of the system we will obtain, with the 
help of the Euler Lagrange (E-L) equations, the equation of motion of each of the 
individual masses (assumed to be equal). The system is coupled and joined by 
three rigid rods of equal lengths, hinged to each of the masses. 

1.2. Model Formulation 

From the figure below we choose 1 2,θ θ  and 3θ  as our generalized coordi-
nates. 

To compute the Lagrangean of the system, we first compute the total kinetic 
energy (K.E) and potential energy (P.E) of the system. However, we require the 
following expressions. 
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Figure 1. A triple pendulum. 

 

1 1 1sinx l θ=                           (1) 

1 1 1cosy l θ= −                          (2) 

2 1 1 2 2sin sinx l lθ θ= +                       (3) 

2 1 1 2 2cos cosy l lθ θ= − −                      (4) 

3 1 1 2 2 3 3sin sin sinx l l lθ θ θ= + +                   (5) 

3 1 1 2 2 3 3cos cos cosy l l lθ θ θ= − − −                  (6) 

Differentiating the above coordinates with respect to time, we get; 

1 1 1 1cosx lθ θ= 

                          (7) 

1 1 1 1siny l θ θ= 

                          (8) 

2 1 1 1 2 2 2cos cosx l lθ θ θ θ= + 

                     (9) 

2 1 1 1 2 2 2sin siny l lθ θ θ θ= + 

                     (10) 

3 1 1 1 2 2 2 3 3 3cos cos cosx l l lθ θ θ θ θ θ= + +  

                (11) 

3 1 1 1 2 2 2 3 3 3sin sin siny l l lθ θ θ θ θ θ= + +  

                (12) 

The square of the velocities for each mass is given by; 

( ) ( )2 22 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1cos sinv x y l l lθ θ θ θ θ= + = + =  

             (13) 

Similarly, 

( ) ( )
( )

2 22 2 2
2 2 2 1 1 1 2 2 2 1 1 1 2 2 2

2 2 2 2
1 1 2 2 1 2 1 2 1 2

cos cos sin sin

2 cos

v x y l l l l

l l l l

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

= + = + + +

= + + −

   

 

   

   (14) 

Finally, 
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( )
( )

22 2 2
3 3 3 1 1 1 2 2 2 3 3 3

2

1 1 1 2 2 2 3 3 3

cos cos cos

sin sin sin

v x y l l l

l l l

θ θ θ θ θ θ

θ θ θ θ θ θ

= + = + +

+ + +

  

 

  

 

After some algebraic manipulations, we get 

( )
( ) ( )

2 2 2 2 2 2 2
3 1 1 2 2 3 3 1 2 1 2 1 2

1 3 1 3 1 3 2 3 2 3 2 3

2 cos

cos cos

v l l l l l

l l l l

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

= + + + −
+ − + − 

    

   

          (15) 

The total kinetic energy of the pendulum is then: 

( )

( )(
( ) ( ) )

2 2 2
1 1 2 2 3 3

2 2 2 2 2 2
1 1 1 2 1 1 2 2 1 2 1 2 1 2

2 2 2 2 2 2
3 1 1 2 2 3 3 1 2 1 2 1 2

1 3 1 3 1 3 2 3 2 3 2 3

1 1 1
2 2 2
1 1 2 cos
2 2

1 2 cos
2

cos cos

T m v m v m v

m l m l l l l

m l l l l l

l l l l

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

= + +

 = + + + − 

+ + + + −

+ − + − 

    

    

   

      (16) 

( ) ( )
( ) ( )

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 1 1 2 2 2 3 1 1 3 2 2 3 3 3

2 1 2 1 2 1 2 3 1 2 1 2 1 2

3 1 3 1 3 1 3 3 2 3 2 3 2 3

1 1 1 1 1 1
2 2 2 2 2 2

cos cos

cos cos

T m l m l m l m l m l m l

m l l m l l

m l l m l l

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

⇒ = + + + + +

+ − + −

+ − + −

     

   

   

  (17) 

The total potential energy of the pendulum is the sum of the potential energy 
of each mass; 

1 1 2 2 3 3V m gy m gy m gy= + +  

( )
( )

1 1 1 2 1 1 2 2

3 1 1 2 2 3 3

cos cos cos

cos cos cos

V m gl m g l l

m g l l l

θ θ θ

θ θ θ

⇒ = − + − −

+ − − −
          (18) 

Recall that the Lagrangean is given by L T V= − . 

( ) ( ) ( )
( )

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 1 1 2 2 2 3 1 1 3 2 2 3 3 3

2 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 3 1 3 1 3

3 2 3 2 3 2 3 2 1 1 2 2 2

3 1 1 3 2

1 1 1 1 1 1
2 2 2 2 2 2

cos cos cos

cos cos cos
cos cos

L m l m l m l m l m l m l

m l l m l l m l l

m l l m gl m gl
m gl m gl

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

θ

∴ = + + + + +

+ − + − + −

+ − + +

+ +

     

     

 

2 3 3 3cosm glθ θ+

(19) 

We now employ the E-L equations to obtain the equations of motion, i.e.; 

d 0,    1, 2,3
d jj

L L j
t θθ

 ∂ ∂
− = =   ∂∂ 



                  (20) 

For the first generalized coordinate j = 1, we have; 

( )

( ) ( )

2 2 2
1 1 1 2 1 1 2 1 2 2 1 2 3 1 1

1

3 1 2 2 1 2 3 1 3 3 1 3

cos

cos cos

L m l m l m l l m l

m l l m l l

θ θ θ θ θ θ
θ

θ θ θ θ θ θ

∂
= + + − +

∂

+ − + −

   



 

 

( ) ( ) ( )

( )

2
1 1 1 2 3 1 2 2 2 3 1 2

1

3 1 3 3 1 3

cos

cos

L l m m m l l m m

m l l

θ θ θ θ
θ

θ θ θ

∂
⇒ = + + + + −

∂

+ −
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( ) ( ) ( )

( )

2
1 1 1 2 3 1 2 2 2 3 1 2

1

3 1 3 3 1 3

d cos
d

cos

L l m m m l l m m
t

m l l

θ θ θ θ
θ

θ θ θ

 ∂
∴ = + + + + − 

∂ 
+ −

 



  

Furthermore 

( ) ( ) ( )2 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 3 1 3 1 3
1

1 1 1 2 1 1 3 1 1

sin sin sin

sin sin sin

L m l l m l l m l l

m gl m gl m gl

θ θ θ θ θ θ θ θ θ θ θ θ
θ

θ θ θ

∂
= − − − − − −

∂
− − −

     

 

( ) ( ) ( )

( )

1 2 1 2 2 3 1 2 3 1 3 1 3 1 3
1

1 1 1 2 3

sin sin

sin

L l l m m m l l

gl m m m

θ θ θ θ θ θ θ θ
θ

θ

∂
⇒ = − + − − −

∂

− + +

   

 

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2
1 1 1 2 3 1 2 2 2 3 1 2

11

3 1 3 3 1 3 1 2 1 2 2 3 1 2

3 1 3 1 3 1 3 1 1 1 2 3

d cos
d

cos sin

sin sin 0

L L l m m m l l m m
t

m l l l l m m

m l l gl m m m

θ θ θ θ
θθ

θ θ θ θ θ θ θ

θ θ θ θ θ

 ∂ ∂
∴ − = + + + + −  ∂∂ 

+ − + + −

+ − + + + =

 



  

 

 (21)

 
For the second generalized coordinate j = 2 in (1.20), we have; 

( )

( ) ( )
( ) ( ) ( ) ( )

2 2
2 2 2 2 1 2 1 1 2 3 2 2

2

3 1 2 1 1 2 3 2 3 3 2 3

2
2 2 2 3 1 2 1 2 3 1 2 3 2 3 3 2 3

cos

cos cos

cos cos

L m l m l l m l

m l l m l l

l m m l l m m m l l

θ θ θ θ θ
θ

θ θ θ θ θ θ

θ θ θ θ θ θ θ

∂
= + − +

∂

+ − + −

= + + + − + −

  



 

  

 

( ) ( ) ( )

( )

2
2 2 2 3 1 2 1 2 3 1 2

2

3 2 3 3 2 3

d cos
d

cos

L l m m l l m m
t

m l l

θ θ θ θ
θ

θ θ θ

 ∂
⇒ = + + + − 

∂ 
+ −

 



  

Also, 

( ) ( )

( )

2 1 2 1 2 1 2 3 1 2 1 2 1 2
2

3 2 3 2 3 2 3 2 2 2 2 2 2

sin sin

sin sin sin

L m l l m l l

m l l m gl m gl

θ θ θ θ θ θ θ θ
θ

θ θ θ θ θ θ

∂
= − − − −

∂

− − − −

   

 

 

( ) ( ) ( )

( )

1 2 1 2 2 3 1 2 3 2 3 2 3 2 3
2

2 2 2 3

sin sin

sin

L l l m m m l l

gl m m

θ θ θ θ θ θ θ θ
θ

θ

∂
⇒ = − + − − −

∂

− +

   

 

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2
2 2 2 3 1 2 1 2 3 1 2

22

3 2 3 3 2 3 1 2 1 2 2 3 1 2

3 2 3 2 3 2 3 2 2 2 3

d cos
d

cos sin

sin sin 0

L L l m m l l m m
t

m l l l l m m

m l l gl m m

θ θ θ θ
θθ

θ θ θ θ θ θ θ

θ θ θ θ θ

 ∂ ∂
∴ − = + + + −  ∂∂ 

+ − + + −

+ − + + =

 



  

 

 (22) 

 

 
For the third generalized coordinate j = 3 in (20), we have;

  ( ) ( )2
3 3 3 3 1 3 1 1 3 3 2 3 2 2 3

3

cos cosL m l m l l m l lθ θ θ θ θ θ θ
θ
∂

= + − + −
∂

  



 

( ) ( )2
3 3 3 3 1 3 1 1 3 3 2 3 2 2 3

3

d cos cos
d

L m l m l l m l l
t

θ θ θ θ θ θ θ
θ

 ∂
⇒ = + − + − 

∂ 
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Furthermore, 

( ) ( )3 1 3 1 3 1 3 3 2 3 2 3 2 3 3 3 3
3

sin sin sinL m l l m l l m glθ θ θ θ θ θ θ θ θ
θ
∂

= − − − − −
∂

     

( ) ( )

( ) ( )

2
3 3 3 3 1 3 1 1 3 3 2 3 2 2 3

33

3 1 3 1 3 1 3 3 2 3 2 3 2 3

3 3 3

d cos cos
d

sin sin
sin 0

L L m l m l l m l l
t

m l l m l l
m gl

θ θ θ θ θ θ θ
θθ

θ θ θ θ θ θ θ θ

θ

 ∂ ∂
⇒ − = + − + − 

∂∂ 
+ − + −

+ =

  



    (23) 

  

Therefore, the equations of motion are; 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2
1 1 1 2 3 1 2 2 2 3 1 2

3 1 3 3 1 3 1 2 1 2 2 3 1 2

3 1 3 1 3 1 3 1 1 2 3 1

cos

cos sin

sin sin 0

l m m m l l m m

m l l l l m m

m l l gl m m m

θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ

+ + + + −

+ − + + −

+ − + + + =

 

  

 

         (24) 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2
2 2 2 3 1 2 1 2 3 1 2

2
3 2 3 3 2 3 1 2 1 2 3 1 2

3 2 3 2 3 2 3 2 2 3 2

cos

cos sin

sin sin 0

l m m l l m m

m l l l l m m

m l l gl m m

θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ

+ + + −

+ − + + −

+ − + + =

 

 

 

         (25) 

( ) ( )
( ) ( )

2
3 3 3 3 1 3 1 1 3 3 2 3 2 2 3

3 1 3 1 3 1 3 3 2 3 2 3 2 3 3 3 3

cos cos

sin sin sin 0

m l m l l m l l

m l l m l l m gl

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

+ − + −

+ − + − + =

  

   

    (26) 

Assuming equal masses and equal lengths of rods, i.e., 1 2 3l l l l= = = , 

1 2 3m m m m= = = . 
The equations become respectively; 

( ) ( )
( ) ( )

2 2 2
1 2 1 2 3 1 3

2 2
1 2 1 2 1 3 1 3 1

3 2 cos cos

2 sin sin 3 sin 0

l m l m ml

l m ml glm

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

+ − + −

+ − + − + =

  

   

      (27) 

( ) ( )
( ) ( )

2 2 2
2 1 1 2 3 2 3

2 2 2
1 1 2 2 3 2 3 2

2 2 cos cos

2 sin sin 2 sin 0

l m l m ml

l m ml glm

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

+ − + −

+ − + − + =

  

  

      (28) 

( ) ( )
( ) ( )

2 2 2
3 1 1 3 3 2 3

2 2
1 3 1 3 2 3 2 3 3

cos cos

sin sin sin 0 

ml ml ml

ml ml mgl

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

+ − + −

+ − + − + =

  

   

      (29) 

We assume the generalized coordinates 1 2 3, ,θ θ θ  representing the angular 
displacements are small so that; 

( ) ( ) ( )21sin , sin , cos 1 ,
2i i i j i j i j i j i jθ θ θ θ θ θ θ θ θ θ≈ − ≈ − − ≈ − − ∀ ≠  

The equations of motion for the coupled rigid body then become;  

( ) ( )

( ) ( )

22
1 2 1 2 3 1 3

1 2 1 2 1 3 1 3 1

1 13 2 1 1
2 2

32 0g
l

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

   + − − + − −      

+ − + − + =

  

   

 

( ) ( )

( ) ( )

22
1 2 3 2 1 2 3 1 3

1 2 1 2 1 3 1 3 1

13 2
2

32 0g
l

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

⇒ + + − − − −

+ − + − + =

    

   

           (30) 

Following the above procedure, we have for Equation (28) 
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( ) ( )

( ) ( )

22
2 1 1 2 3 2 3

2
1 1 2 2 3 2 3 2

1 12 2 1 1
2 2

22 0g
l

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

   + − − + − −      

+ − + − + =

  

  

 

( ) ( )

( ) ( )

22
2 1 3 1 1 2 3 2 3

2
1 1 2 2 3 2 3 2

1 12 2
2 2

22 0g
l

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

⇒ + + − − − −

+ − + − + =

    

  

          (31)
 

Similarly for Equation (29) we have; 

( ) ( )

( ) ( )

2 2
3 1 1 3 3 2 3

1 3 1 3 2 3 2 3 3

1 11 1
2 2

0g
l

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

   + − − + − −      

+ − + − + =

  

   

 

( ) ( )

( ) ( )

2 2
3 1 3 1 1 3 3 2 3

1 3 1 3 2 3 2 3 3

1 1
2 2

0g
l

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

⇒ + + − − − −

+ − + − + =

    

   

           (32) 

The model equations for the given problem are summarized as; 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

22
1 2 3 2 1 2 3 1 3

1 2 1 2 1 3 1 3 1

22
2 1 3 1 1 2 3 2 3

2
1 1 2 2 3 2 3 2

2 2
3 1 3 1 1 3 3 2 3

1 3 1 3 2 3

2 1 1 1
3 3 3 6

2 1 0
3 3

1 1 1
2 4 4

1 0
2

1 1
2 2

g
l

g
l

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

+ + − − − −

+ − + − + =

+ + − − − −

+ − + − + =

+ + − − − −

+ − +

    

   

    

  

    

    ( )2 3 3 0 g
l

θ θ
















 − + =


          (33) 

1.3. Stability Analysis 

For the purpose of stability analysis we must vectorize the above coupled system 
of differential equations. 

Let 1 1 2 2 3 3, ,u u uθ θ θ= = =  and 1 4 2 5 3 6, ,u u u u u u= = =   , hence  

1 4 2 5 3 6, ,u u u u u u= = =       Thus the vectorized system of equations for the coupled 
pendulums is; 

1 4u u=                              (34) 

2 5u u=                              (35) 

3 6u u=                              (36) 

( ) ( )

( ) ( )

22
4 5 6 5 1 2 6 1 3

4 5 1 2 4 6 1 3 1

2 1 1 2
3 3 3 6
2 1
3 3

u u u u u u u u u

gu u u u u u u u u
l

= − − + − + −

− − − − −



          (37) 
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( ) ( )

( ) ( )

22
5 4 6 4 1 2 6 2 3

2
4 1 2 5 6 2 3 2

1 1 1
2 4 4

1
2

u u u u u u u u u

gu u u u u u u u
l

= − − + − + −

− − − − −



           (38) 

( ) ( )

( ) ( )

2 2
6 4 5 4 1 3 6 2 3

4 6 1 3 5 6 2 3 3

1 1
2 2

u u u u u u u u u

gu u u u u u u u u
l

= − − + − + −

− − − − −



            (39) 

We shall investigate the stability of the pendulum at the critical point, where 

1 2 3 4 5 6 0u u u u u u= = = = = =      . This implies that 4 5 60, 0, 0u u u= = =  and by 
substitution our critical point is ( )0,0,0,0,0,0 . 

Equations (34)-(39) can, for convenience) be written simply as; 

( )

( )

1 1 1 6

6 6 1 6

, ,

, ,

u f u u

u f u u

=

=









                         (40)

 
where the ( )1 6, , , 1, ,6if u u i =   represent the RHS of the system. 

The Jacobian of the system is written 

 

( )
6 6

i
f

j

fJ u
u

×

 ∂
=   ∂ 

                        (41)

 Computing the entries and evaluating at the critical point, we get 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2 10 0 0
3 3

10 0 1 0
2

0 0 1 1 0

f

g
J l

g
l

g
l

 
 
 
 
 
 − − −=  
 
 − − −
 
 
 − − −
 

 

The eigenvalues of the matrix J are given by 0fJ Iλ− = . 

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2 10 0 03 3
10 0 1
2

0 0 1 1

g
l

g
l

g
l

λ
λ

λ

λ

λ

λ

−
−

−

− − − −⇒ =

− − − −

− − − −

 

This simplifies to give; 

6 4 3 2 33 2 33 3 0
2 3 2

λ α λ λ α α λ α   + − − + + − − =   
   

         (42) 
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where g lα = − . For simplicity we take 1l = , and naturally 9.8g = . 
We now employ the POLYROOT algorithm in MathCad [7] to solve the po-

lynomial Equation (42).  
Define a vector v of the coefficients beginning with the constant term, i.e.: 

T
3 2 3 2 30 3 3 0 1

2 3 2
α α α α

    = − + − −        
v          (43) 

 

( )

0.703 3.051
0.703 3.051

0.282 3.118
polyroots

0.282 3.118
0.421 3.102
0.421 3.102

i
i
i
i
i
i

− − 
 − + 
 +

∴ =  
− 

 −
 

+  

v                  (44) 

Clearly not all the eigenvalues have negative real parts, we therefore conclude 
that the critical point of the system is unstable. 

2. Simulation of the System of ODEs 

In MathCAD we define the vector of derivatives, viz.; 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3

4

5

2 2 2
4 5 4 0 1 5 0 2 3 4 0 1 3 5 0 2 0

2 22
3 5 3 0 1 5 1 2 3 0 1 4 5 1 2 1

2 2
3 4 3 0 2 5 1 2 3 5 0 2 4 5 1 2 2

2 1 1 1 2 1
, 3 3 3 6 3 3

1 1 1 1
2 4 4 2

1 1
4 2

Y
Y
Y

gY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YD t Y L
gY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
L

gY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
L

 
 
 
 
 
 − + − − − − − − − −= 

 − − + − + − − − − − −


 − − + − + − − − − − −
 









 

Additional arguments for the ODE solver are 

0 : 0t =  Initial value of independent variable 

1 : 10t =  End value of independent variable 

0

0.01
0
0

:
0
0
0

Y

 
 
 
 

=  
 
 
  
 

 Vector of initial function values 

3: 1 10num = ×  Number of solution values on [t0, t1] 

Solution Matrix 

( )0 0 11: Rkadapt , , , ,S Y t t num D=  
0: 1t S=  Independent variable values 

1
1 : 1u S=  First solution function values 

2
2 : 1u S=  Second solution function values 
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3
3 : 1u S=  Third solution function values 

4
4 : 1u S=  Fourth solution function values 

5
5 : 1u S=  Fifth solution function values 

6
6 : 1u S=  Sixth solution function values 

3. Discussion 

Table 1 is the MathCad solution matrix for the system of differential equations 
describing the dynamics of the coupled pendulums. This solution matrix is ob-
tained using the Runge-Kutta algorithm. Figures 2(a)-(c) depict the graphical 
profiles of the solution curves. We recall that the variables 1 1 2 2 3 3, ,u u uθ θ θ= = =  
are actually the generalized coordinates, representing the angular displacements 
from the vertical position, while their derivates with respect to time 

1 4 2 5 3 6, ,u u u u u u= = =    are the angular velocities. 
The graph of ( )1 tθ  (Figure 2(a)) starts from the origin, then performs irre-

gular oscillations with increasing amplitude over time. Figure 2(b) and Figure 
2(c) depict a similar variation for ( )2 tθ  and ( )3 tθ . 

Figure 2(g) is the profile of the combined graph of ( )1 tθ , ( )2 tθ  and ( )3 tθ  
against time. This is important because although the coupled pendulum per-
forms irregular oscillations, at specific times the oscillations for each mass inter-
sect, meaning they all pass through the same point. Furthermore, we observe 
that the respective amplitudes for each generalized coordinate is increasing. 
Figures 2(d)-(f) depict respectively the variation of the angular velocities  

 
Table 1. Solution matrix for the ODE. 

 
 0 1 2 3 4 5 6 

0 0 0.01 0 0 0 0 0 

S1 = 

1 0.01 9.995 × 10−3 1.631 × 10−8 1.637 × 10−8 −9.799 × 10−4 4.891 × 10−6 4.915 × 10−6 

2 0.01 9.98 × 10−3 1.131 × 10−7 1.313 × 10−7 −1.959 × 10−3 1.952 × 10−5 1.972 × 10−5 

3 0.01 9.956 × 10−3 4.39 × 10−7 4.439 × 10−7 −2.936 × 10−3 4.381 × 10−5 4.448 × 10−5 

4 0.01 9.922 × 10−3 1.038 × 10−6 1.054 × 10−6 −3.911 × 10−3 7.768 × 10−5 7.924 × 10−5 

5 0.01 9.878 × 10−3 2.024 × 10−6 2.062 × 10−6 −4.882 × 10−3 1.21 × 10−4 1.24 × 10−4 

6 0.01 9.824 × 10−3 3.489 × 10−6 3.569 × 10−6 −5.849 × 10−3 1.736 × 10−4 1.789 × 10−4 

7 0.01 9.761 × 10−3 5.527 × 10−6 5.674 × 10−6 −6.811 × 10−3 2.354 × 10−4 2.438 × 10−4 

8 0.01 9.688 × 10−3 8.228 × 10−6 8.478 × 10−6 −7.767 × 10−3 3.062 × 10−4 3.187 × 10−4 

9 0.01 9.605 × 10−3 1.168 × 10−5 1.208 × 10−5 −8.716 × 10−3 3.859 × 10−4 4.036 × 10−4 

10 0.1 9.514 × 10−3 1.597 × 10−5 1.658 × 10−5 −9.657 × 10−3 4.741 × 10−4 4.983 × 10−4 

 11 0.11 9.412 × 10−3 2.119 × 10−5 2.208 × 10−5 −0.011 5.708 × 10−4 6.029 × 10−4 

 12 0.12 9.302 × 10−3 2.742 × 10−5 2.867 × 10−5 −0.012 6.756 × 10−4 7.172 × 10−4 

 13 0.13 9.182 × 10−3 3.473 × 10−5 3.645 × 10−5 −0.012 7.884 × 10−4 8.41 × 10−4 

 14 0.14 9.053 × 10−3 4.321 × 10−5 4.552 × 10−5 −0.013 9.088 × 10−4 9.743 × 10−4 

 15 0.15 8.916 × 10−3 5.597 × 10−5 5.597 × 10−5 ∙∙∙ 1.037 × 10−4 ∙∙∙ 
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(a)                                                           (b) 

 
(c)                                                          (d) 

 
(e)                                                          (f) 

 
(g) 

Figure 2. (a) Graph of u1 against time; (b) Graph of u2 against time; (c) Graph of u3 against time; (d) Graph of u4 against time; (e) 
Graph of u5 against time; (f) Graph of u6 against time; (g) Graph of u1, u2 and u3 against time. 
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(a)                                                          (b) 

 
(c) 

Figure 3. (a) Graph of u4 against u1; (b) Graph of u5 against u2; (c) Graph of u6 against u3. 

 
( )1 4t uθ = , ( )2 5t uθ =  and ( )3 6t uθ = . These velocities are clearly oscillatory 

and irregular with increasing amplitude. 
Figures 3(a)-(c) are respectively the phase portrait for ( )1 4t uθ =  against 
( )1 1t uθ = , ( )2 5t uθ = against ( )2 2t uθ =  and ( )3 6t uθ =  against ( )3 3t uθ = . 

For each of the phase portraits we obtain a spiral source. 

4. Conclusions 

Coupled oscillators in general, are useful in the study of vibrations and as such 
computing the specific modes of vibration for oscillating systems is very impor-
tant from a practical point of view, particularly in engineering. The study of 
coupled systems is useful in mechanics, electronics as well as biological systems. 
It is also pertinent for the biomechanical analysis of animals, humans or robotic 
systems. An early application of mathematical modeling in biological systems 
was first pioneered by Van der Pol in 1928. The Van der Pol oscillator [8] was 
used to explain some normal and pathological rhythms of the heart. 

Our research work has clearly demonstrated the power of mathematical mod-
eling, where the behaviour of a complex mechanical system can be captured in 
the form of a system of ordinary differential equations. Furthermore, with versa-
tile mathematical software such as MathCAD, the system can be analyzed in de-
tailed graphical format to give a deep understanding of the inherent dynamics as 
well as its stability properties. 
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