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Abstract 
In this paper, we combine polynomial functions, Generalized Estimating Eq-
uations, and bootstrap-based model selection to test for signatures of linear or 
nonlinear relationships between body surface temperature and ambient tem-
perature in endotherms. Linearity or nonlinearity is associated with the ab-
sence or presence of cutaneous vasodilation and vasoconstriction, respective-
ly. We obtained experimental data on body surface temperature variation 
from a mammalian model organism as a function of ambient temperature us-
ing infrared thermal imaging. The statistical framework of model estimation 
and selection successfully detected linear and nonlinear relationships between 
body surface temperature and ambient temperature for different body regions 
of the model organism. These results demonstrate that our statistical ap-
proach is instrumental to assess the complexity of thermoregulation in endo-
therms. 
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1. Introduction 

Endotherms (mammals and birds) regulate body temperature primarily by ba-
lancing metabolic heat production with heat exchanged with the ambient [1]. 
Heat is exchanged at the interface between body surface and the ambient [1], 
and under standard experimental settings, the differential between surface  
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temperature ( sT ) and ambient temperature ( aT ), s aT T T∆ = − , varies linearly or 
nonlinearly with ambient temperature [2]. Physiologically, linearity or nonli-
nearity between T∆  and ambient temperature derive from the absence or 
presence of cutaneous vasodilation and vasoconstriction, respectively [3] [4]. At 
the interface between body surface and the ambient, cutaneous vasodilation and 
vasoconstriction is a major physiological mechanism of vasomotor control, 
modulating heat exchange with the ambient [1]. Whereas there is experimental 
evidence for an association between nonlinearity or linearity and control of heat 
exchange or lack thereof [2], a theoretical justification is lacking. Recently, Bol-
drini et al. [5] demonstrated mathematically, based on physical first principles, 
that linearity or nonlinerity is expected under realistic assumptions of the ther-
moregulatory process and relevant thermal feedback control mechanisms. Non-
linearity or linearity thus appears to be signatures of vasomotor control. Fur-
thermore, it is well-established that the body surface of an endotherm is not 
homogeneous with respect to vasomotor control [1]. Detection of signatures of 
cutaneous vasoreaction across the body surface is fundamental not only for under-
standing the dynamics of heat control, but also to quantify the relative importance 
of different body regions for global heat exchange in endotherms [6] [7] [8] [9]. 
Body surface temperature is accurately measured using infrared thermal imaging 
(IRT) either at the large scale of whole organisms [10] or at local, small scales 
such as that of the cornea [11]. Infrared thermal measurements taken at sensible 
gradients of ambient temperatures allow to estimate whether body surface tem-
perature varies linearly or nonlinearly with ambient temperature, and, therefore, 
to determine the existence of heat exchange control [6]. The same thermograph-
ic data can be used in connection with biophysical models to estimate how 
different body regions contribute to total heat balance [6]. Such estimates are 
instrumental to assess the dynamics of heat control and exchange in endo-
therms [6]. Infrared thermal data are nevertheless intrinsically prone to with-
in-individual correlations, missing values, time-varying covariates, and irregu-
larly-timed measurements. Additionally, there is a need to discriminate between 
linear or nonlinear functional relationships between surface body temperature 
and ambient temperature. Therefore, to infer physiological process from pat-
terns in thermographic data, we need reliable statistical methods. Here, we ad-
vance a three-pronged framework to test for signatures of linear or nonlinear 
relationships between body surface temperature and ambient temperature, and 
to quantify the relative importance of different surface body regions for the 
maintenance of total heat balance. First, we use polynomial functions that cap-
ture linearity and nonlinearity of the functional relationship between surface 
body temperature and ambient temperature. Second, we use Generalized Esti-
mating Equations [12], a modeling formalism particularly suited to handle the 
idiosyncrasies of thermographic data, to estimate the relevant parameters. Third, 
we assess model parsimony, that is, the compromise between model complexity 
and residual variance, using a bootstrap-based strategy [13]. We demonstrate 
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this approach using as a reference system the gracile mouse opossum, a Neo-
tropical small mammal that has become a model for research in population 
ecology [14] [15] [16] [17], physiology [18], and bioenergetics [19]. 

2. Methodology 
2.1. Animals: Field Collection and Care  

Specimens of Gracilinanus microtarsus were live-trapped in savanna-like habitat 
at the Reserva Biológica de Mogi-Guaçu (RBMG) located in the district of 
Martinho Prado, Mogi-Guaçu, São Paulo (22˚15S; 47˚08W). Field work was 
carried out from October 2011 to April 2012. Trapping was done on three 
consecutive nights. A single 8 × 8 trapping grid with 64 trapping stations located 
10 m from each other was used to capture individual G. microtarsus. A single 
Sherman live trap (7.5 cm × 9.0 cm × 23.5 cm; H. B. Sherman Traps, Inc., 
Tallahassee, Florida) was set on trees at each trapping station about 1.75 m 
above ground and baited with banana and peanut butter. 

Individuals of G. microtarsus were housed in individual cages in an animal 
room maintained at approximately 23˚C with a 12h/12h light/dark cycle. Gracile 
mouse opossums were provided with ad libitum water and an amount of food 
(dry cat and dog food and mango) designed to keep weight gain (Figure 1) 
similar to that observed under natural conditions, following data from Martins 
et al. [15]. Trapping and handling methods followed the guidelines of the 
American Society of Mammalogists (Animal Care and Use Committee 1998). 

2.2. Experimental Procedures 

Changes in radiative heat exchange at the surface of different body regions of G. 
microtarsus were monitored by video thermography as ambient temperature 
was varied from 8˚C to 38˚C. On the day of an experiment, each individual 
animal was transferred from its home-cage to an experimental container (7.5 cm 
× 9.0 cm × 23.5 cm). This container was framed with wire mesh (1 × 10 cm), 
which allowed the monitoring of body temperature surface without any 
considerable interference. The animal container was then placed inside a 
temperature-controlled chamber (FANEM Ltd., São Paulo) and the thermal 
camera (FLIR SC640, FLIR Systems, Inc.) was positioned under the animal cage, 
allowing us to track body surface temperature while manipulating ambient 
temperature. First, the individual was allowed one hour to habituate to the 
experimental conditions at 23˚C. We set the temperature change protocol for a 
1˚C stepwise increment or decrement from the initial temperature (23˚C) up to 
38˚C or down to 8˚C, respectively. This range of aT  covers the range of aT  the 
gracile mouse opossum is commonly exposed in its natural habitat (Figure 2). 
Upon each step change in aT , animals were kept for 12 min at the target 
temperature before the next step change. Previous tests indicated that this time 
interval assured that animals had reached a steady-state with aT . Incrementing 
and decrementing temperature protocols were separated by an interval of at least  
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Figure 1. Gracile mouse opossum growth curves. Solid line shows growth curve in 
captivity. Dashed line shows observed growth under natural conditions according to data 
from Martins et al. [14]. Grey areas represent confidence intervals. 

 

 
Figure 2. Average annual air temperature variation at Reserva Biológica de Mogi-Guaçu 
between 1998 and 2010. Red line represents the average air temperature across months. 
Green line represents the average maximum air temperature across months. Blue line 
represents the average minimum air temperature across months. Grey areas represent 
confidence intervals. 

 
4 days, in which animals were returned to their home-cages and allowed to feed 
and drink. Whether individual animals were first submitted to the incrementing 
and decrementing temperature protocols was a random decision. 

Thermal images were recorded at 10 frames∙s−1 using an IR camera streamed 
to a computer where data acquisition was managed by the software Thermacam 
2.9 (FLIR Systems, Inc). Thermal imaging cameras measure the amount of near 
infrared radiation (typically wavelengths: 8 - 12 nm) emitted by a surface and 
then convert this measured radiation to a radiative temperature reading 
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according to the Stefan-Boltzmann equation. This equation states that the 
energy emitted, R (W∙m−2), is proportional to the fourth power of its absolute 
temperature, T, in Kelvin degrees,  

4R Tσ=                              (1) 

where,   is the emissivity of the surface and σ  is the Stefan-Boltzmann 
constant (5.67 × 10-8 W∙m−2∙K−4). We assumed that the body surface of G. 
microtarsus has an homogenous emissivity of 0.96, which is typical of organic 
materials [8]. Surface temperatures were visualised as images in grey or colour 
scales [6]. 

We analyzed surface temperature ( sT ) separately for different body regions 
including ears (split into distal and proximal regions), feet, tail, chest, back 
(evaluated when the animal turned on its back) and ventral areas. Initially, we 
chose one frame for each aT  from the last two minutes of the exposure period 
to any given aT . Thus, at the time used for data collection, animals had already 
been exposed to that particular aT  for at least 10 min. For each chosen frame, 
the regions of interest were digitally drawn to obtain the average surface 
temperature of each body part. Typically, we used the same frame to analyze the 

sT  from all body parts. In cases in which the animal positioning did not allow 
for the analysis of all the body regions on the same frame, we used the 
temporally closest frame to analyze the missing body region. 

2.3. Statistical Analysis for the Relationship between Ts and Ta 
2.3.1. Defining the Model Family 
The relationship between body surface and ambient temperature can be one of 
two possible types depending on whether there is no vasomotor adjustment or 
whether there is vasomotor adjustment [2] [9]. The first type of relationship is 
for body regions with no capacity of vasomotor adjustment. Because such 
regions have a constant blood flow that transports a constant amount of heat to 
the surface, surface temperature varies linearly with ambient temperature. The 
second type of relationship is for body regions with capacity of vasomotor 
adjustment. In this case, because blood flow varies nonlinearly with ambient 
temperature, surface temperature varies nonlinearly with ambient temperature. 
A convenient function to describe the functional relationship between body 
surface temperature ( sT ) and ambient temperature ( aT ) can be conceived as  

follows. If the rate of change is constant, we must have 
d
d
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( )d
d d

d
s

a a a
a

T T cT d T
T

= +∫ ∫ ,  yielding ( ) 2
s a af T cT dT e= + + .  Therefore, the  

function describing the relationship between body surface temperature ( )sT  
and ambient temperature ( )aT  is nonlinear, quadratic in aT . Continued diffe-
rentiation and integration leads to higher order polynomials in aT . Polynomial 
functions thus capture the linearity and nonlinearity intrinsic to the relationship 
between surface temperature and ambient temperature associated with the me-
chanism of vasomotor adjustment. Therefore, we modeled the relationship be-
tween ( )sT  and ( )aT  with a family of polynomial functions.  

2.3.2. Model Estimation 
A response variable that is repeatedly measured on the same subject at different 
time points is the key feature of longitudinal data sets. In this setting, the corre-
lation between observations from a given individual must be accounted for. 
Otherwise, downstream analyses may be affected by a number of factors, in-
cluding false conclusions due to underestimated variance terms. Generalized es-
timating equation (GEE) models are an extension of generalized linear models 
devised to analyze data, which arise commonly in applied sciences [12]. Typical-
ly, in such cases, the data are collected in clusters in which observations within a 
cluster tend to be correlated, whereas observations in separate clusters are inde-
pendent [12]. Clustered data arise from longitudinal or panel data, family studies 
or studies with spatial structures [12]. GEE models are used to test hypotheses 
about the dependent variables that are not necessarily normally distributed. The 
GEE framework is based on the concept of quasi-likelihood, which requires only 
an assumed relationship between the expected value (first moment) of the de-
pendent variable and the covariates and between the conditional mean and va-
riance (first and second moments) of the dependent variable. This approach uses 
the mean and variance of the response variable to derive the quasi-likelihood 
and its estimating equations [20] [21]. Because only the first two moments are 
needed, this approach is called semi-parametric. GEE allows for different choices 
of correlation structures, namely, independent, exchangeable, autoregressive, 
and unstructured. The method yields asymptotically unbiased and consistent es-
timates even if the incorrect working correlation structure is chosen. GEE ac-
counts for within-individual correlations, allows for missing data, time-varying 
covariates, irregularly-timed or mistimed measurements. Fitting models using 
GEE requires the definition of the link function (which associates the linear pre-
dictor to the mean), an assumed distribution for the response variable, and a 
correlation structure of the response variable, often referred to as the working 
correlation matrix [12]. 

We defined T∆  as s aT T− , where sT  is the surface temperature and aT  is  

the ambient temperature. Note that the 
d
d

s

a

T
T

 introduced in the previous section  

is proportional to T∆ , representing the rate of change of sT  as aT  changes. 
Our main goal was to describe the relationship between T∆  and aT  for each 
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body region. The relationship between T∆  and aT  is linear when the body 
region is not capable of vasomotor adjustment and nonlinear when the body 
region is capable of vasomotor adjustment. Here, we considered as nonlinear the 
polynomial functions of degree 2 and 3. We used a two-step strategy to select 
models to describe variation in T∆  as a function of ambient temperature ( aT ) 
for each body region. In the first step, we selected a candidate model by 
minimizing the quasilikelihood under the Independence model Criterion (QIC) 
statistic over a grid comprised of correlation structures and model 
complexities (represented by increasing polynomial degrees). The QIC statistic 
is analogous to the familiar AIC (Akaike’s Information Criterion) statistic used 
for comparing models fitted with likelihood-based methods [22]. Because the 
generalized estimating equations (GEE) method is not a likelihood-based 
method, the AIC statistic is not available [22]. Here we applied the GEE method 
assuming a Normal distribution (identity link function), considered a third 
degree polynomial as the global model, and allowed for three possible 
correlation structures to be tested: independent, exchangeable, and unstructured. 
We chose as the best candidate the model with the minimum QIC. In the second 
step, we assumed the correlation structure as fixed (as defined in the first step) 
and assessed model parsimony (compromise between model complexity and 
residual variance) using a boostrap-based strategy. We defined the test statistic 
as 0 1QIC QIC QIC∆ = − , where 0QIC  is the QIC  value of the simpler model 
and 1QIC  is the QIC  value of the more complex model. This allows us to 
test whether a complex model leads to a significantly decreased QIC . If there 
are no gains in using a more complex model, we expect to observe 0QIC∆ ≤  
(null hypothesis). If there is a substantial decrease in QIC  when using the 
more complex model, we expect to observe 0QIC∆ > . Therefore, we used the 
distribution of QIC∆  to decide whether or not we should use a more complex 
model vis-à-vis a simpler one. Because the theoretical distribution of QIC∆  is 
unknown, we used the bootstrap to estimate its distribution empirically. Once 
the empirical bootstrap-based distribution of QIC∆  is available, we used its 
quantiles to decide whether choosing a simpler model or not. In practical terms, 
if 2.5% 97.5%0 ,q q∈ , then we do not have evidence to reject the hypothesis that 
there are no gains in using a more complex model.  

2.3.3. Biophysical Modeling 
Biophysical modeling of the heat exchange process allowed us to estimate the 
amount of heat exchanged (Q) with the ambient by each body region of the 
gracile mouse opossum. We represented the gracile mouse opossum by a simple 
geometric model: the ventral body region as a semi-cylinder, the back as a 
horizontal plate, the chest as a horizontal plate, the tail as a horizontal cylinder, 
the feet as a flat plate, the fingers as horizontal cylinders (data for fingers were 
added to that of the feet), and the ears as vertical plates. We measured the 
characteristic dimension, id , and surface area, iA , of each i-th body region 
from thermal images of the gracile mouse opossum using the shape tools of 
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software ImageJ (Figure 3). 
We estimated heat exchange (Q) in Watts for each body surface ( earsQ , feetQ , 

tailQ , chestQ , dorsalQ , ventralQ ), where earsQ  is the sum of the estimated heat 
exchange by the proximal and distal regions of the ear (multiplied by two to 
account for the two ears); feetQ  is the sum of the estimated heat exchange by 
the lower and upper soles (multiplied by four to account for the four feet), plus 
the estimated heat exchange by the fingers (multiplied by 20 to account for the 
20 fingers); tailQ  is the estimated heat exchange by the tail; chestQ  is the 
estimated heat exchange by the chest; dorsalQ  is the estimated heat exchange by 
the dorsal region; and ventralQ  is the estimated heat exchange by the ventral 
region. We assumed that the gracile mouse opossum was in thermal equilibrium 
with the ambient. We defined totalQ  for each gracile mouse opossum by adding 
the Q values for all body surfaces as,  

total ears feet tail chest dorsal ventral.Q Q Q Q Q Q Q= + + + + +            (2) 

 

 
Figure 3. Infrared images of gracile mouse opossum within the experimental container. Solid lines represent geometric forms 
used for surface area estimation and dashed lines represent the characteristic dimension (d) of the body region (see values in 
Table 1). 
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Percent heat exchange by each i-th body region ( )iQ  was calculated as 

total 100
iQ

Q ×
. The iQ  for each body region was estimated using the following 

equation [2] [7] [23],  

,i r cQ Q Q= +                             (3) 

where rQ  is the radiative heat exchange and cQ  is the free convective heat 
exchange, such that,  

( )4 4 ,r s aQ A T Tσ= −                         (4) 

and  

( ) ,c c s aQ h A T T= −                          (5) 

where   is the emissivity for biological tissues, assumed to be 0.96 according to 
Monteith and Unsworth [23]; σ  is the Stefan-Boltzman constant (5.6703 × 
10−8); A is the surface area (m2) of the i-th body region; sT  is the surface 
temperature of the i-th body region; aT  is ambient temperature (K˚); and ch  
is the heat transfer coefficient given by  

,c
kh Nu
d

=                            (6) 

where k is the thermal conductivity of the air at a particular aT  (W∙m−1∙˚K). 
The relationship between k and aT  was estimated by Tattersall et al. [2] as,  

60.00241 7.5907 .ak e T−= + ×                      (7) 

Nu  is the dimensionless Nusselt number that is a measure of the ratio of 
buoyant to viscous forces. In free convection, the Nussel number is a function of 
the dimensionless Grashof (Gr) and Prandtl (Pr) numbers, written as: 

( ),Nu f Gr Pr= . In forced convection, the Nussel number is a function of the 
dimensionless Reynolds (Gr) and Prandtl (Pr) numbers: ( ),Nu f Re Pr= . 
Grashof, Prandtl, and Reynolds numbers are given by,  

( )3

2 ,s aagd T T
Gr

v
−

=                           (8) 

,VdRe
v

=                               (9) 

,pc
Pr

k
µ

=                              (10) 

where a is the coefficient of thermal expansion of air, g is the acceleration of 
gravity, d is the characteristic dimension of the body region (Table 1), v is the 
kinematic viscosity of air, pc  is the specific heat of air, µ  is the dynamic 
viscosity of air, and k is the thermal conductivity of air. Experimental evidence 
shows that the free-convection function for heat exchange should be used when 

216Gr Re>  and the forced-convection function when 20.1Gr Re<  [24]. We 
obtained values for the Gr number that were under the range of validity available 
on the literature [23] [24]. Therefore, we modeled heat exchange by forced  
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Table 1. Biophysical model parameters, coefficients, and dimensionless numbers across the different body regions of the gracile 
mouse opossum. 

Body region Shape d (m) Surface area (m2) Gr Re Nu 

Ear (proximal) plate 311.37 10−×  6291.39 10−×  −5 - 20 0.024 - 0.027 0.50.595Re  

Ear (distal) plate 311.37 10−×  6291.39 10−×  −8 - 7 0.024 - 0.027 0.50.595Re  

Feet plate 313.18 10−×  6297.15 10−×  −6 - 7 0.028 - 0.031 0.50.595Re  

Tail cylinder 35.37 10−×  62585.02 10−×  −0.3 - 0.4 0.011 - 0.013 0.330.891Re  

Dorsal plate 391.22 10−×  67050.43 10−×  −489 - 7 × 103 0.195 - 0.215 0.50.595Re  

Chest plate 324.15 10−×  6415.95 10−×  −20 - 261 0.052 - 0.057 0.50.595Re  

Ventral semi-cylinder 391.22 10−×  61361.45 10−×  −856 - 1.6 × 104 0.195 - 0.215 0.50.595Re  

 
convection considering a wind velocity of 0.1 ms−1 according to Tattersall et al. 
[2], Gates [24], and Greenberg et al. [9], to obtain the values for Gr and Re. The 
relationship between Nu and Gr, Re, and Pr has been determined empirically for 
a range of geometric shapes and flow regimes (see Table 1 for the relationships 
for each body region). According to Monteith and Unsworth [23] and Gates [24] 
we assumed,  

,nNu cRe=                          (11) 

where c and n are constants related to shape. 
Data in table are the shape and characteristic dimensions used for heat 

exchange calculations, calculated d and surface area, and relationship between 
Grashof (Gr), Reynolds (Re), and Nusselt (Nu) numbers [23] [24]. (Gr), (Re), 
and (Nu) were calculated according to the equations shown in the Biophysical 
Modeling subsection.  

Assuming that each gracile mouse opossum was in thermal balance during the 
experimental procedure we should expect that the relationship between totalQ  
and aT  would follow the relationship between metabolic heat production and 

aT . Based on the rates for oxygen uptake determined by Cooper et al. [18], we 
estimated the total metabolic heat production (Watts) for a gracile mouse 
opossum with a body mass of 40 g at 12 CaT =  , 20˚C, 28˚C, 30˚C, and 32˚C. 
Thereafter, we compared these rates with the total heat exchange rate (Watts) 
estimated by the biophysical model ( totalQ ).  

2.3.4. Statistical Analysis for the Relationship between Heat Exchange of  
Each Body Region (Qi) and (Ta) 

To estimate the role of each body region for heat exchange we defined the 
variable iQ  as the percent heat exchange of each i-th body region. iQ  was  

calculated as 
total

100iQ
Q

× . The relationship between iQ  and aT  was described  

by linear regression models. We followed the same framework of Generalized 
Estimating Equations (GEE) as the estimation method for the model to account 
for correlated response. 
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3. Results 

Our primary objective is to search for signatures of linearity or non-linearity in 
the relationship between the differential s aT T T∆ = −  and ambient temperature 
( aT ). Linearity or nonlinearity between T∆  and aT  arise as a consequence 
of the absence or presence of cutaneous vasodilation and vasoconstriction, 
respectively, which are major physiological mechanisms of vasomotor control, 
modulating heat exchange with the ambient [1] [3] [4]. Furthermore, the body 
surface of an endotherm is not homogeneous with respect to vasomotor control. 
Therefore, surface temperatures were measured in individuals of the mammalian 
experimental model at a range of ambient temperatures for different body 
regions. The data we gathered and the relevant statistical analyses are described 
below. 

Within the range of aT  from 8˚C to 38˚C, surface temperatures ( sT ) for all 
body regions of the gracile mouse opossum increased with aT  at increasing 
rates depending on the body region (Figure 4). For furred body regions such as 
the back, chest, and ventral region, we observed a linear relationship between 

T∆  and aT . Conversely, for furless body regions such as the ears, feet, and tail, 
the relationship between T∆  and aT  was nonlinear (Table 2). The nonlinear 
relationships observed for feet and tail are typical of thermal windows showing a 
vasodilation at 20 CaT >   and vasoconstriction at 20 CaT <   (Figure 4). On 
the other hand, the nonlinear relationship observed for ears has a close to linear 
relationship at 35 CaT <   and a change in this tendency at 35 CaT >  , probably 
due to the equalization between sT  and aT . 
 

 
Figure 4. Variation in surface temperature of the gracile mouse opossum across the 
different body regions as a function of aT . Red lines represent the relationship between 

T∆  versus aT . Confidence interval bands are represented in grey. Grey dots represent 
the data for gracile mouse opossum individuals. 
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Table 2. Polynomial models selected for describing the relationship between T∆  and aT  across the different body regions of 
the gracile mouse opossum. 

Candidate model Selected model 
Correlation 

matrix ρ Quantile 2.5% Quantile 97.5% 
Vasomotor 
adjustment 

Ear (proximal) 

2 3
1 2 3 4a a ab b T b T b T+ + +

 
2

1 2 3a ab b T b T+ +  
* autoregressive 0.31 3.138 31.2 yes 

Ear (distal) 

2 3
1 2 3 4a a ab b T b T b T+ + +

 
2

1 2 3a ab b T b T+ +  
* autoregressive 0.60 −0.938 14.5 yes 

Feet 

2 3
1 2 3 4a a ab b T b T b T+ + +

 
2

1 2 3a ab b T b T+ +  
* independence  −0.994 27.6 yes 

Tail 

2
1 2 3a ab b T b T+ +

 
1 2 ab b T+  

* autoregressive 0.54 1.993 26 yes 

Ventral 

1 2 ab b T+
 

1b  
* autoregressive 0.43 1087.259 1228.6 no 

Dorsal 

1 2 ab b T+
 

1b  
* autoregressive 0.40 721.043 825.3 no 

Chest 

1 2 ab b T+  

1b  
* autoregressive 0.81 755.442 1044.27 no 

*indicates which candidate model was selected. If 2.5% 97.5%0 ,q q∈ , then we do not have evidence to reject the hypothesis that there are no gains in using a 

more complex model. 

 
The comparison between the rates of heat production estimated from Cooper 

et al. [18] and the total heat exchange (present study) for the gracile mouse 
opossum (Figure 5) revealed that our estimates were consistently lower than the 
rates measured by Cooper et al. [18]. At 12 CaT =  , the estimated heat exchange 
( totalQ ) is approximately 97% of the predicted metabolic heat production. This 
percentage tends to get lower as aT  increases, 74% at 20 CaT =  , 83% at 

28 CaT =  , 57% at 30 CaT =  , and 35% at 32 CaT =  . 
Heat exchanged by each body region varied across the range of ambient 

temperature as indicated by the significant interactions between iQ  and aT  
(Table 3 and Figure 6). However, the pattern of variation was considerably 
different between furred and furless body regions. Furred regions such as the 
chest, dorsal, and ventral regions exchanged most of the heat, from 50% to 75%, 
dissipated by the gracile mouse opossum at lower temperatures. The furred ears 
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account for about 15% of the total heat exchange only at mid-ambient 
temperature. As ambient temperature gets higher, furless regions such as feet 
and tail become more important and can account for almost 70% of the total 
heat exchange. 

 

 
Figure 5. Variation in heat exchange (as the iQ  percentage) of each i-th body region of 

the gracile mouse opossum as a function of aT . Red lines represent the relationship 

between percentage of heat exchange versus aT . Grey areas represent confidence 
intervals. Grey dots represent the data of gracile mouse opossum individuals. 
 
Table 3. Coefficient estimation from the model describing the relationship between iQ  

and aT  across the different body regions of the gracile mouse opossum. 

Coefficient Estimate SE p-value 

Ear (proximal) −15.742 2.977 071.2e− *** 

Ear (distal) −20.878 2.112 162e−< *** 

Feet −30.396 3.097 162e−< *** 

Tail −45.177 3.548 162e−< *** 

Ventral 29.658 3.223 0.001< *** 

Dorsal 23.526 1.998 162e−< *** 

Chest −22.635 2.451 162e−< *** 

Ta: Ear (proximal) −0.810 0.153 0.597 

Ta: Ear (distal) −0.080 0.108 0.461 

Ta: Feet 0.763 0.164 063.1e− *** 

Ta: Tail 1.359 0.176 141.4e− *** 

Ta: Ventral −0.384 0.158 0.015* 

Ta: Chest 0.039 0.114 0.731 

*coefficients statistically significant at p-value ≤ 0.05; ***coefficients statistically significant at p-value ≤ 
0.001.  
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Figure 6. Variation in total heat exchange of the gracile mouse opossum ( totalQ ) as a 

function of aT . Blue line represents the relationship between total heat exchange due to 

convection and radiation versus aT . Black line represents predicted metabolic rate of 
gracile mouse opossum based on data from Cooper et al. [18]. Grey area represents 
confidence intervals. 

4. Discussion 

Heat exchange in the surface of an endotherm is a process that can be modeled 
by the equation ( ) ( )4 4

total s a c s aQ A T T h A T Tσ= − + − , as described in classic 
textbooks and review articles of animal physiology and biophysical ecology [10] 
[24] [25] [26]. From this equation, it becomes evident that heat exchange is 
determined by the surface temperature, sT , the gradient between surface 
temperature and ambient temperature s aT T− , the superficial area, A, of the 
body region, and the intrinsic characteristics of a given body region that define 
the amount of heat transported to the surface. The surface of an organism, 
however, is not uniform with respect to all these characteristics [4] [26]. 
Therefore, in order to understand the heat exchange process as a function of 
ambient temperature across non-uniform surfaces in endotherms one must: 1) 
measure sT  as function of aT  across the surface of the organism; 2) assess the 
relationship between sT  and aT  across the surface of the organism; 3) 
understand how sT  and aT  interact with each body region to determine the 
role of each body region for total heat exchange at each aT  [2] [6] [25] [26]. 

Different body regions of the gracile mouse opossum exhibited distinct heat 
exchange properties in response to variation in ambient temperature. As a 
consequence, the relative contribution of each body region to total heat balance 
also changed with ambient temperature. Whereas furred body regions such as 
the chest, dorsal, and ventral region, exhibited a linear relationship between T∆  
and aT , furless body regions such as the ears, feet, and tail exhibited a nonlinear 
relationship between T∆  and aT . The linear relationship between T∆  and 

aT  for the furred regions of G. microtarsus indicates that mechanisms other 
than vasomotor adjustment dominated the dynamics of heat exchange at these 
regions. Indeed, this is readily observed by the decay of T∆  as the ambient 
temperature approaches bT  (around 30.6˚C and 34.7˚C, [18] [27]), or even 
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surpasses it. Although quite similar in their general behavior, furred regions also 
varied in the relationship between T∆  and aT . The chest and ventral regions 
always had T∆  values considerably higher than those recorded for the dorsal 
region for most aT  considered. Also, the T∆  for the chest and ventral regions 
exhibited more variation as a function of aT  (i.e., a higher slope value) 
compared to the dorsal region. Together, these differences indicate a better 
insulation of the dorsal region compared to the chest and ventral regions and, 
possibly, differences in the capacity to modulate body insulation by piloerection. 
These interpretations also supported by the results on heat exchange. 

For the range of temperatures tested, temperature equalization (i.e., 0T∆ = ) 
for the furred body regions occurred only at the highest temperatures tested 
(differently from what happened with the furless body regions). At these 
temperatures (>35˚C), ambient temperature most likely had already surpassed 
internal body temperature. Therefore, we suspect that, in this case, fur insulation 
of the animals reduced heat gain from the environment at greater rates, shifting 
the point of temperature equalization to a temperature a few degrees higher than 
their normal body temperature. As at these temperatures energy expensive heat 
loss mechanisms are likely to intervene, preventing extra heat gain from the 
ambient might be highly relevant for the total heat balance and energetics of G. 
microtarsus. Finally, we should acknowledge the possibility that the atainement 
of equalization at higher than expected temperatures (normal bT ) could be 
attributable to hyperthermia. We did not monitored internal body temperature 
of our animals during the experiments. Nevertheless, the results from temperature 
equalization obtained for the furless regions, particularly the ear, suggest that the 
animals did not experience hyperthermia. Thus, we believe that the linear 
relationship between T∆  and aT  for the furred regions of G. microtarsus 
reveals not only the insulative properties of the fur in preventing excessive heat 
loss at low temperatures, but also the less commonly acknowledged role of 
preventing excessive heat gain at higher temperatures. 

Furless body regions such as the ears, feet, and tail exhibited a nonlinear 
relationship between T∆  and aT . However, there were differences among 
different furless regions. The relationship found for the ears was quite interesting. 
For aT  higher than 35˚C, T∆  tended to zero and remained unchanged. Our 
interpretation of this result is that around 35˚C aT  equalized with body 
temperature [18] [27], which induced a vasomotor response to limit of blood flow 
to the ears, thus preventing more heat to be gained through this region. 
Interestingly, below 35˚C and even at the lowest temperature tested, we found no 
indication of vasoconstriction for the ears, which could have been expected as a 
heat conservation strategy under cooler conditions. The dynamics of heat 
exchange variation in response to changes in aT  for the ears was quite different 
from that observed for the other furless regions, such as the feet and tail. Feet and 
tail both exhibited clear vasomotor responses (Figure 4). For feet, the threshold 
for vasodilation was detected at 20˚C and increased until around 30˚C, declining 
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thereafter. For temperatures below 20˚C, interestingly, there was also a 
vasodilation response for the feet indicating that the temperature of this body 
region was, to some extense, defended from external cooling. The tail had a 
vasodilation threshold a few degrees higher than the feet, around 24˚C, that 
increased to ambient temperatures around 32˚C, declining thereafter. Differently 
from the feet, however, it seems that the vasoconstriction response of the tail was 
maintained as the animals were cooled below 24˚C. In this regard, the tail behaved 
as a typical thermal window, promoting non-evaporative heat dissipation at higher 
temperatures and heat conservation as ambient temperature is lowered [2] [28] 
[29]. 

The differences in the heat exchange properties observed among the different 
body regions of G. microtarsus had a direct impact on the contribution of each 
body region to the total heat balance of the gracile mouse opossum. Furred re-
gions were the largest in surface area and collectively responded for more than 
half of the total heat dissipated, especially at temperatures below 20˚C - 24˚C. 
However, as these regions lacked the capacity for vasomotor adjustment, as 
temperatures were elevated above that limit, the contribution of the furless re-
gions of the feet and tail to the total heat balance of the animals gained promi-
nence. Indeed, from almost negligible at low temperatures, the contribution of 
the feet and tail was elevated to more than half of the total heat exchanged at the 
highest temperature tested. This effect can be directly attributed to the vasomo-
tor response exhibited by these body regions. Also, it is conceivable that some 
evaporative cooling mechanism concurrently improved heat dissipation through 
tail and feet at temperatures above the vasomotor threshold. At this point, it re-
mains uncertain which evaporative heat dissipation mechanisms are employed 
by G. microtarsus. 

Whereas examining heterothermy across different body regions can be 
straightforward with IRT, addressing the question of how sT  can inform about 

bT  regulation and the existence of thermal windows lacks a sound statistical 
approach. Here, we have shown that combining the use of polynomial functions 
and estimation by GEE can be a robust and informative strategy for addressing 
questions on the dynamics of either sT  or surface heat exchange across animal 
body regions. Polynomial functions capture the linearity and nonlinearity in the 
relationship between sT  and aT , making the task of detecting regions capable 
or not of vasomotor adjustments objective and unbiased. In addition, the GEE 
estimation method used with generalized linear models incorporates structures 
typical of IRT data, such as correlated responses, within-individual correlations, 
allows for missing data, time-varying covariates, irregularly-timed or mistimed 
measurements [12]. 

Tail and feet comprise less than 25% of G. microtarsus body surface although 
their contribution to total heat exchange at temperatures above 20˚C - 24˚C was 
considerable. A similar response is found in rabbits and elephant ears [28] [29] 
[30] [31], guanaco fur [32], penguin feet [33], bird bills [2] [34], digits [35], 
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combs and wattles of several fowl [36], and ungulate horns and antlers [37] [38]. 
The tail, in particular, is commonly acknowledged as an important organ to 
modulate radiative heat dissipation via vasomotor adjustments in rats [39] [40] 
[41]. However, the potential for controlling heat exchange rate through the tail is 
probably higher in rodents than in G. microtarsus, which has semi-arboreal 
habits and uses its tail for climbing [14] [42]. We suspect that conflicting 
functional demands between thermoregulation and climbing may explain the 
difference in the potential to control heat exchange through the tail in rodents 
and the gracile mouse opossum. A similar situation seems to occur with young 
toco-toucans, in which the vasomotor control of heat exchange through the bill 
is thought to conflict with a demand associated with bill growth [2]. We are not 
aware of other studies focusing on the heat exchange properties of other small 
marsupials and/or bearers of prehensile tails. Therefore, it remains uncertain 
whether a functional trade-off in tail use may occur in G. microtarsus or whether 
it reflects a more general difference between different mammalian groups. 

Our estimates of total heat exchange for the gracile mouse opossum were con-
sistently lower than the rates of heat production estimated by Cooper et al. [18] 
using metabolic measurements (Figure 6). Assuming that the gracile mouse 
opossum reached a thermal steady state at each aT  tested, this comparison 
shows that our estimates of heat dissipation of gracile mouse opossum using bi-
ophysical modeling are good, given that they balance its internal heat production. 
The difference observed between the two curves might be attributable to me-
chanisms of heat exchange, such as evaporative heat exchange, which were not 
considered in our model.  

5. Conclusion 

In conclusion, the process of heat exchange across an endotherm surface as a 
function of ambient temperature is complex and depends on as many dimensions 
of the organism and its surrounding ambient. Assessing this process under 
simplified conditions within the unifying principles of thermoregulation unveils 
and clarifies the rich diversity of mechanisms underlying the process. Under this 
approach, one is able to better describe how the dynamics of heat exchange 
mechanisms vary between body regions, allowing endotherms to thermoregulate 
across ambient temperatures. This approach is based on detailed understanding 
of the relative importance of each body region for the entire budget across the 
range of ambient temperature.  
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