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Abstract 
This work is a discussion on the energy parallax theory developed in [1] [2] 
based on the multiplicity of the solutions theorem. This theory is compared 
with the perturbation theory in mathematical physics. The perturbation 
theory uses the increment of a solution which can be formalized with a Taylor 
series development. With the energy parallax theory, the convergence proper-
ty of the Taylor series of the energy of a system is the key to decide to include 
additional solutions, defined on the so-called energy spaces [2]. The develop-
ment is supported using various examples in quantum mechanics (i.e. Ray-
leigh-Schrödinger perturbation theory) and wave theory with the Electro-
magnetic (EM) energy density (i.e. evanescent waves within the skin layer of a 
dielectric material). Finally, we discuss the Woodward effect [3] and the ap-
plication of the energy parallax when assuming that the variations of EM 
energy density can trigger such effect within asymmetric cavities. 
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1. Introduction 
1.1. Work Overview 

Perturbation theory has played an important role in the development of 
mathematics and physics from the end of the 19th century. With the pioneering 
work of H. Poincaré in the theory of dynamical systems, the perturbation theory 
found a major application in the emergence of quantum mechanics with the 
preliminary works of M. Bore and W. Heisenberg [4]. 
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In quantum mechanics, perturbation theory generates states of a system that 
are adiabatically or linearly derived from a stable state. This stable state is 
generally an exact solution of the equations describing the system at hand. 
However, the system can be perturbed in a way that the exact solution, 
associated with the stable state, is no longer valid to model the changes in the 
system. Perturbation theory has been formulated in various domains, beyond 
quantum mechanics, using small quantities in order to describe the perturbed 
states, degenerated from the stable state. This perturbation shows up as a 
broadening of the initial energy quantity corresponding to the system in stable 
state [4] [5]. 

In previous works (i.e., [1] [2] [6] [7]), we define the Energy Spaces, which are 
subspaces of the Schwartz Space ( )−S   [8] associated with energy operators 
and generalized energy operators. This definition was used to define the concept 
of multiplicity of the solutions in [1] (Theorem 2 and Corollary 1). The idea is to 
consider those energy spaces and functions associated with them when solving 
linear Partial Differential Equations (PDEs). More precisely, we look for 
solutions of a nominated linear PDE within those energy spaces. The concept 
was further developed using the Taylor series of the energy of a solution ( )−S   
for a nominated PDE. The work was based on finding when the successive 
derivatives, defined through the Taylor series coefficients, are also solutions of 
this particular PDE (see Section 4 in [1]). The work was then generalized, 
considering ( )m−S   (m in + , 0m > ) [2] using the properties for the 
Sobolev spaces, the Schwartz space and the L2-norm. The concept of energy 
parallax was also introduced based on Theorem 3. 

This work is a discussion between the energy parallax and the perturbation 
theory developed in quantum mechanics. In the next section, we recall this 
theory. An overview of the energy parallax together with the formal theory 
developed in [2] using the properties of the Schwartz space ( )m−S   and the L2 
space, is briefly exposed at the beginning of Section 3. Through several examples, 
we discuss the similarities between the two theories. Finally, Section 5 is a 
discussion on the application of the energy parallax in the derivation of the 
Woodward effect for the special case of the asymmetric cavities. A conclusion 
ends this work. 

1.2. Notation and Symbols 

In this work, several symbols are used. The set of integer numbers   is 
sometimes called only for the positive integer such as +  or m

+  (for a space 
with dimension m). When the integer 0 is not included, it is explicitly 
mentioned such as { }0+ − . The set of natural numbers is  , with only the 
positive numbers defined as + .   is the set of real numbers. Also, in this 
paper, the Schwartz space is called ( )m−S   which is the notation used in 
previous works such as [1] and [2]. Several notations describe the relationship 
between spaces such as intersection ( ), union ( ), inclusion (⊂ , inclusion 
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without the equality  , inclusion with equality ⊆ ). Readers can refer to [9] or 
advanced mathematical textbooks for more explanations.  

2. An Overview of Perturbation Theory and the Application  
in Quantum Mechanics 

Following [4], we can consider a simple problem with, let us say, a natural 
system α , initial state 0α  and small perturbation 0a , such as 0 0aα α= + . 
Knowing that the system can evolve (or be perturbed) with incremental 
quantities, the general idea is to model these different states of the system. For 
example, we can model the next state as 1 1aα +  with some assumptions such as 

0 1a a  (i.e. ( )2
1 0~a a ). We can then model the i-th phase of the system with 

the perturbation ( )2
1~i ia a − . Note that the perturbation theory can be applied 

to the variations of the system’s energy or solutions describing the system’s 
evolution. 

However, perturbation theory can only estimate solution close to the exact 
solution. The addition of the small quantities to the exact solution can be 
expressed in (power) series (i.e. Taylor series around a nominated quantity—time, 
position in space, ... ). If the quantity becomes large, the series can diverge and 
the resulting solution is not valid to describe the perturbed system. In the 
example of our simple system described above, we have the condition that it 
exists N in +  such as ( )2

0~ ~ 0N
Na a . The various perturbations of the 

system can then be written such as 0 0 1 1 N Na a aα α α α= + → + → → + . In 
other words, the perturbation theory applied to our simple system is expressed 
through the series 0 0 1 Na a aα α= + + + + . This series may converge or not. 
The convergence/divergence properties in the perturbation theory is an 
important research topic [10] [11] [12]. Note that the intermediate states of the 
system are called degenerated states. 

In quantum mechanics, those states are associated with intermediate levels of 
energy. These intermediate states are also solving the equations describing the 
system [5] [13]. For example, let us recall the Rayleigh-Schrödinger perturbation 
theory. The system is described by the Hamiltonian operator (H) and the 
solutions describing the different states of the system are the eigenfunctions ( iψ ) 
of H. In fact, we have the famous relationship between the Hamiltonian, the 
eigenfunctions and the corresponding energy states ( iE ), i i iH Eψ ψ=  [13]. 
Thus, the perturbation in the system is described with a term V such as the 
Hamiltonian is also changed with 0H H Vλ= + . λ  is the small quantity 
varying in [ ]0,1 . The power series of the eigenfunction at the n-th order  
perturbation can be written such as ( )

0
n i i

n niψ ψ λ
=

=∑  and the associated energy 
( )

0
n i i

n niE E λ
=

=∑ . The formula of nψ  and nE  are called the Lindset series for a  

Hamiltonian operator driven by small perturbations [14]. Thus, there is a linear 
relationship between the degenerate states ( )i

nψ  and the associated small energy 
quantity ( )i

nE . Finally, the energy quantities and the associated eigenstates can 
be directly related to the total energy of the system nE  and its associated 
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eigenfunction nψ  such as [13]:  

( )

( )

d1 ,
! d

d1 .
! d

i
i n

n i

i
i n

n i

E
E

i

i

λ
ψ

ψ
λ


=


 =

                         (1) 

It is important to recall for the following that the perturbations for integrable 
Hamiltonian system are described by the Kolmogorov-Arnold-Moser (KAM) 
theorem [14]. The KAM theorem deals with persistence, under perturbation, of 
quasi-periodic motions in Hamiltonian dynamical systems.  

3. Energy Parallax and Relationship with Perturbation  
Theory 

This section starts with a short summary of the energy space theory, which 
defines the energy parallax. Readers can refer to [1] [2] [6] for a comprehensive 
description of the work. The second part discusses about the common features 
with the perturbation theory through some examples.  

3.1. Short Review of the Energy Parallax 

The concept of multiplicity of the solutions was developed in [1] which is based 
on the theory of energy operators in the Schwartz space ( )−S   and some 
subspaces called energy spaces first defined in [7] and subsequently in [1]. The 
main idea is to look for solutions of a given linear PDE in those subspaces. The 
theory has been recently extended (e.g., [2]) in ( )m−S   ( m +∈ ) using the 
theory of Sobolev spaces, and in a special case the Hilbert spaces. In [2], the 
author uses the Sobolev embedding theorem in order to show the Theorem 3 
and the concept of multiplicity of the solutions. 

Furthermore, the author defines in [1] the concept of energy parallax, in order 
to understand the physical meaning of including additional solutions when 
varying the energy of a predefined system locally by taking into account 
additional smaller quantities. It is equivalent to take into account solutions in 
other energy subspaces (e.g., Theorem 3, [2]).  

To recall [1] [2] [7], a possible application of the theory of the energy 
operators is to look at solutions of a given partial differential equation for 
solutions in ( )m−S   of the form ( )v n

i f∂ . Instead of solving the equation for 
specific values (e.g., boundary conditions), the work in [1] (e.g., Theorem 2 and 
corollary) defines the concept of multiplicity of the solutions in ( )m−S   
( [ ]1,2m∈ ) such as the study of the multiple solutions of a PDE based on the 
definition of the energy spaces pE  ( p +∈ ). One way to understand this 
concept, is to study the convergence of the development in Taylor series of the 
energy function associated with a nominated energy space. It was shown in [7] 
that taking into account additional terms of the Taylor series leads to define 
additional solutions of the wave equation (see Section 4 [1]). It was further 
generalized in [2] (Section 5) with ( )m−S   ( 0m∈ ) and the solutions in the 
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subspaces ( ) ( )2v m m
p p L−⊂ ⊂ ⊂M E S    ( p +∈ , v +∈ ). Note that the 

inclusion of the energy subspaces is shown in [2] using the properties of the 
Sobolev spaces. The energy spaces v

pM  are defined following [2] (Definition 3).  
Definition 1. [2]: The energy space ( )m

p
−E S  , with p in + , is equal to 

{ }0
v

p pv +∈
=E M



 
. with ( )v m

p
−M S   for v in +  defined as  

( ) [ ] [ ] ( )

{ } [ ]

1 1
, ,

, , 0 , 1, ,

n
p pv m k m

p ig g f f

k k v n i m

+ +
− −

+ +

     = ∈ = ∂ ∈      


∈ ∀ ≤ ∈ − ∈ 


M S S



 

 
      (2) 

[ ]
1

. p +
 
   is a generalized energy operator defined in [2]. In order to 

understand the notation, ( ) ( )0 2 0
0

1
, ,f r t f r t

+
  = ∈    

M , ( )2 1
0,t f r t∂ ∈M  and 

( )( ) ( ) 1 0
1, 1

1
, ,t f r t f r t

+
+  Ψ = ∈    

M . Now, let us define any PDEs of the form:  

[ ]

( ) ( )
0, , 0,

,

,

jv
ij ij i m

m m

ij j

a g

g

a v

+∈ ∈

−

+

 ∂ =

∀ ∈ ⊆

∀ ∈ ∈

∑ ∑
A S



 

 

                   (3) 

Thus, all the solutions are here defined in ( ) ( )m m−⊆A S  . Now, we are 

interested in the solutions which can be defined on the energy spaces pE  

( p +∈ ). In other words, ( ) { }m
pp +∈
≠ ∅A E

  . In particular, we choose the 

solution ( )0 m
pp

g +∈
= ∈A E

  . Furthermore, one can define  

( )m
pp

g +∈
∈A E

  , such as v +∃ ∈  for ( )m v
pp

g +∈
∈A M

  . In other 

words, ( )mf −∃ ∈S   and { }0n +∈ − , such as [ ]
1

n
pg f

+  =    
.  

The theorem of (Multiplicity of Solutions in m ) stated in [2] (Theorem 3) is:  
Theorem 1. If ( ) ( )m m−⊆A S   is a subspace of all the solutions of a 

nominated linear PDE. For p +∈ , g is in pE . Then, g is a solution for this 
linear PDE if and only if:  

1) (General condition to be a solution) ( ) { }m
p ≠ ∅A E .  

2) (Solutions in ( )m−S  ) ( )m
pg∈A E , m +∃ ∈  such as  

( )( )m sup g=  .  

3) (Multiplicity of the solutions) If v
pg∈M  ( v +∈ ), ( )mf −∃ ∈S   and 

{ }0n +∈ − , such as [ ]
1

n
pv

ig f
+  = ∂    

 ( [ ]0, ,i m∈  ) and k v∀ ≥ , k +∈ , 

[ ] ( )
1

n
pk m

i pf
+  ∂ ∈   

A E .  
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4) (Superposition of solutions and energy conservation ) If ( )m
pF ∈A E , 

with [ ], 1

n
pk

ik k vF f+

+

∈ ∀ ≥
  = ∂    

∑   such as [ ]
1

n
pk k

i pf
+  ∂ ∈   

M  ( [ ]0, ,i m∈  ), 

then ( )F < ∞ .  

Readers can refer to the appendices in [2] for further information on the 
energy space theory. Note that, in [1], the theorem on the multiplicity of the 
solutions was established for the function of finite energy in m  (m in 
{ }1,2,3 ). [2] generalizes the same theorem for m in +  ( 0m > ), thanks to the 
theory of Sobolev Spaces.  

Furthermore, let us recall a proposition first stated in [1] (i equal 1) and 
generalized ( [ ]1, ,i m∀ ∈  )) in [2]. 

Proposition 1. If for n +∈ , ( )n mf −∈S   and analytic; for any 

( ) 2,i ip q ∈  and [ ],i i iq pτ ∈  ( [ ]1, ,i m∀ ∈  ), and ( )nf  is analytic, where  

( )( ) ( )2 di

i

n n
i i iq

f f t t
τ

τ = < ∞∫                    (4) 

then  

( )( ) ( )( ) ( )( ) ( )2

0 !i

k
i in n k n

i i t i
k

p q
f p f q f q

k

∞

=

−
= + ∂ < ∞∑         (5) 

is a convergent series.  

3.2. Examples and Discussion between the Energy Parallax and  
the Perturbation Theory 

In areas where the solutions are described via a set of PDEs, the perturbation 
theory can be rather complicated to use. Instead, the energy parallax shows that 
the variations of energy quantity lead to define solutions according to the spaces 
associated with the energy quantities (or energy spaces as defined in Definition 
1). Theorem 1—the multiplicity of the solutions—lays the basis to define the 
solutions associated with the perturbed system, every time the energy increases 
in small quantities. Let us recall the definition of energy parallax [2] (Definition 
4):  

Definition 2. Considering a linear PDE with some solutions in ( )mA   such 

as ( ) ( ) { }m m− ≠ ∅A S  . Furthermore, if it exists p and v +∈  such as 

( ) { }m v
p ≠ ∅A M , then we associate the energy ( )f  for  

( )m v
pf ∈A M , such as one can estimate the variation  

( ) ( )( ) ( )( )( )d d df f q q f q q= + −    over an elementary quantity dq  (e.g., 

space, time or space-time for the specific case m in { }1,2,3,4 ). If ( )d f  is 

not negligible ( m∃ ∈  such as 1  and ( )d f >  ), then one can consider 

additional solutions in ( ) 1m v
p
+A M . 

The validity of this approach is only guaranteed if the power series of the 
energy is converging. The convergence properties is essential, because of the 
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assumptions of small variations of energy. Due to those small energy variations, 
a limited number of energy subspaces are taken into account and thus a limited 
number of additional solutions are introduced in the considered system. This 
idea is written mathematically in the superposition of solutions and energy 
conservation, property 4 in Theorem 1. That is why the fundamental work in [6] 
[7] focuses on the function of finite energy in the Schwartz space 

( ) ( )2m mL− ⊂S    (m in + ) in [2]. ( )2 mL   is the L2 space associated with 
the 2-norm on m . 

To illustrate the energy parallax, let us come back to our simple system 
example used in the explaination of the perturbation theory. The energy of this 
system   increases slowly such as 0 0= +   . If we assume that the space of  

the solutions of PDEs describing this system is ( ) ( ) ( )2m m mL− ⊂A S    . 

We can then assume that if ( )mf ∈A  , the power series  

( ) ( )0
k k

kf f ν∞

=
= ∂∑   is convergent. kν  depends on the variables of f . In 

the classical formulation of a Taylor series with a function depending on time, 

( )0

!

k
k t t

k
ν

−
=  and 0t  is some initial time/coordinate where the development is 

realized.  
Let us consider that 0  is equal to ( )1 1f ν∂  . Now, applying Proposition 1, 

the power series ( )f  is convergent. Knowing that ( ) 1 2k kf f−∂ = ∂  ( 0k > ) 
(i.e. Proposition 1 ), the definition of the energy space recalls that the solutions 

2
0

k kf∂ ∈M . The energy parallax with Theorem 1 states the conditions when the 
solutions of the form k nf∂  ( n +∈ ) are also solutions in ( )mA   (or 

( ) 0
k n m kf∂ ∈A M ). The general idea is that when the energy of the system 

increases of a small quantity (i.e. k ), one can look at solutions with higher 
derivatives (i.e. 1k f−∂ ) belonging to ( ) 0

m kA M .  
Let remind us of an example in functional analysis first shown in [7] in order 

to illustrate the energy parallax.  

3.2.1. Example 1: Specific Solutions of the Wave Equation in ( )2 2L   

As a simple case of linear PDE, the wave equation with the particular solutions 
of the form of evanescent waves, was already discussed in Section 6 of [7] and 
[2]. However, it is an interesting example to apply and understand the concept 
of multiplicity of the solutions stated in [2] (e.g., Theorem 3) and recall in 
Theorem 1. From [15], the wave equation can be formulated in 2  (with t and 
r the time and space variables):  

( ) ( )

[ ] [ ] ( )
[ ] [ ]

2 2
2

3
1 2 1 2 1 2

0 0 1 2

1, , 0,

0, , , , , , ,

0, , ,

r tg r t g r t
c

t T r r r r r T r r

t T r r r

∂ − ∂ =

 ∈ ∈ ∈ <
 ∈ ∈

          (6) 

c is the speed of light. Note that the values of t and r are restricted to some 
interval, because it is conventional to solve the equation for a restricted time 
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interval in +  and a specific region in space. According to the previous section, 
here we are interested in the solutions in the energy (sub)space k

pM , of the kind  

( ) [ ] ( )
1

, ,
n

pk
tg r t f r t

+  = ∂    
 (n in { }0+ − , p in + , k in + ). Furthermore, 

the relationship ( ) ( )2 2 2k
p L−⊂ ⊂M S    imposes that the solutions should be  

finite energy functions, decaying for large values of r and t. It was previously 
underlined in [1] [2] that planar waves should be rejected, because this type of  
solution does not belong to ( )2L  . However, evanescent waves are a type of 

solutions included in ( )2−S   and considered in this work. They are here 

defined such as:  

( ) ( ){ } ( )( ){ }{ }
[ ] [ ] ( )

2 1

2
1 2 1 2 1 2

, exp exp ,

0, , , , , ,

f r t Real A u r i t u r

t T r r r r r r r

ω = −

 ∈ ∈ ∈ < 

           (7) 

2 1i = − , 1u  and 2u  are the wave numbers, ω  is the angular frequency and 
A is the amplitude of this wave [15]. Assuming ω  and ( 1u , 2u ) known, one 
can add some boundary conditions in order to estimate 1u , 2u  and A. 
Furthermore, a traveling wave solution of (6) should satisfy the dispersion 
relationship between 1u , 2u  and ω  [15]. However, our interest is just the 
general form assuming that all the parameters are known. For 0p = , the type of 
solutions in 0

kM  are:  

( ) ( ) ( )
( ) ( )( ) ( )

[ ] [ ] ( )
[ ] [ ] { } { }

0 0

0 2 1 0

3
1 2 1 2 1 2

0 0 1 2

, , ,

, , ,

0, , , , , , ,

0, , , , 0 , 0

kk n n
t

kk n n
r

f r t i n f r t

f r t n u iu f r t

t T r r r r r T r r

t T r r r n k

ω

+ +

∂ =

∂ = −

 ∈ ∈ ∈ <


∈ ∈ ∈ − ∈ −



 

         (8) 

In 1
kM , one can then write the type of solutions  

( )( ) ( )

( )( ) ( ) ( ){ }
( )( ) ( )( ) ( ){ }

[ ] [ ] ( )
[ ] [ ] { } { }

1
1, 0 0

1,

2
1, 0 0

2
1, 0 2 1 0

3
1 2 1 2 1 2

0 0 1 2

, ,

, 2 ,

, 2 ,

0, , , , , , ,

0, , , , 0 , 0

k k
t t t

t

k
t t

k
r r

f r t f r t

f r t Real i k f r t

f r t Real k u iu f r t

t T r r r r r T r r

t T r r r n k

ω

+
+

+

+

+ +

   ∂ Ψ = ∂      

∂ Ψ =

∂ Ψ = −

∈ ∈ ∈ <

∈ ∈ ∈ − ∈ −



 

          (9) 

Let us consider the form of solutions which propagates in a closed cavity (e.g., 
closed wave guide [15]). One possible solution is the evanescent wave described 
in (7). Now, if f and ( )f  are analytic in 2 , it was shown (see Proposition 1 
in [2] and Proposition 1) that f is finite energy (and more generally in ( )2−S  ) 
with a wise choice on the parameters A, 1u , 2u  and ω . One can estimate the 
difference of energy in time over dt  inside the cavity at a specific location 0r  
( 0r  in [ ]1 2,r r ) such as  
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( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( )

2
0 00

2
0 0 0

0

2 1
0 0 0 1, 0

1

2
0 0 0

, , d

d
, d , ,

!

, d , , d ,

, d , , d

T

k
k
t

k

k
t t

k

f r T f r h h

t
f r T t f r T f r T

k

f r T t f r T f r T t f r T

f r T t f r T f r T t

∞

=

∞
− +

=

= < ∞

+ = + ∂ < ∞

+ = + + ∂ Ψ

+ +

∫

∑

∑





 

 

 

  (10) 

Here the symbol “  ” means that  

( )( )( ) ( )1 2
1, 0 0, 1, , 0 , ,k

t tk k f r T f r T+ + − +∃ ∈ ∀ ∈ > ∂ Ψ <      (11) 

Now, let us do a hypothesis that ( )( )0 , df r T t+  increases significantly over 

dt  modifying the approximation in (11)  

( )( ) ( )( )1
1, 0 1, 0, 1, , 1 , ,k

t t tk k f r T f r T+ + − + +∃ ∈ ∀ ∈ > ∂ Ψ < Ψ     (12) 

and then,  

( )( ) ( )( ) ( ) ( )( )
2

2
0 0 0 1, 0

d, d , , d ,
2t
tf r T t f r T f r T t f r T++ + + Ψ      (13) 

To recall that ( )2 0
0,f r t ∈M , ( )2 1

0,t f r t∂ ∈M  and ( )( ) 0
1, 1,t f r t+Ψ ∈M , and 

using Theorem 1, one can take into account solutions in those (energy) 
subspaces. The multiplicity of the solutions (i.e., Theorem 1), due to the 
variation of energy, can be formulated as an approximation for taking into 
account additional solutions produced by the wave equation.  

Discussion (1): With the above example, we can now expose some common 
features between the energy parallax formulation and the perturbation theory. 
Firstly, one can emphasize the Lindset series of the energy ( ( )k

nE ) and the 
eigenfunctions ( ( )k

nψ ) described in Section 2. To recall Section 3.2, the energy 
parallax theory uses the Taylor Series development of a general solution  
( )0 ,f r T  for a given PDE (with ( )mf ∈A  ) associated with the Taylor Series  

of the corresponding energy ( )( )0 ,f r T . In quantum mechanics, perturbation 
theory relies on the Hermitian properties of the Hamiltonian, which establish 
the relationship between the energy states and the eigenfunctions. However, the 
energy parallax theory is not based on an explicit operator, which establishes a 
direct relationship between the energy increments and the perturbation of the 
general solution. 

The energy spaces v
pM  (p and v +∈ ) together with the Theorem 1 

describe how the perturbation in the power series of the energy leads to consider 
additional solutions based on the higher order derivatives of the primary 
(original) solution. Technically, we showed in [2] the inclusion of the energy 
(sub)spaces (i.e., 2 1v v

p pM M , 2 1v v> , 1 2,v v +∈ ) similar to the Sobolev 
embedding theorem (see [2], Properties 2). Unlike the perturbation theory 
where the solutions are expressed in power series with the addition of small 
quantities to take into account the perturbation of the system’s energy, the 
energy parallax considers additional solutions to a given PDE (or PDEs 
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describing a given system) based on the higher order derivatives of the primary 
solution when considering higher order perturbations of the system’s energy. 

Note that our formulation of the energy parallax is at the moment restricted to 
functions in ( )m−S  , and thus finite energy function. Thus, every function 
(general solution of the PDE, additional solutions defined on the energy spaces, 
superposition of all the solutions) should be finite energy function to guarantee 
that they are in ( ) ( )2m mL− ⊂S    [2].  

3.2.2. Example 2: Application to EM Field Theory 
Perturbation theory may be difficult to implement when the system is described 
by a set of PDEs. One area in particular is the area of field theory such as Electro 
Magnetic (EM) field with EM waves as solutions of those PDEs. The term field is 
first coined by M. Faraday in 1849. The work of J. C. Maxwell leaded to the 
discovery of the propagation of EM waves [15]. A turning point is the 
introduction of the special theory of relativity by. A. Einstein in 1905 with no 
longer relationship between the speed of the observer and the velocity of the 
waves. Field theory becomes even more important with the development of 
quantum mechanics in the late 1920s and the work of P. Dirac using the 
emerging theory of quantum field theory to explain the energy decay of an atom 
between different quantum states [16].  

Let us recall an example of variation of EM energy density in the skin layer of 
a conductor. The theory of energy space is now applied to the possible variations 
of electromagnetic energy density due to, for example, skin depth effect [15] 
inside some conductive material. Beyond this application, the interest is to give a 
physical meaning of taking into account those additional solutions in various 
energy spaces. Thus, let us formulate the variation in time of energy density (u) 
at the second order with a Taylor series development such as:  

( )
2

2 2dd d d
2t t
tu u t u o t= ∂ + ∂ +                 (14) 

o is the Landau notation to omit higher order quantities. Note that at the first 

order d
d t
u u
t
= ∂ . The higher order terms are based on the assumptions that the  

EM waves inside the skin layer of the copper plate are evanescent waves and thus 
functions in the Schwartz space ( ( )4−S  —with 3 dimension variables and 
considering also the time ) [15]. As discussed before, those solutions are finite 
energy functions and in ( )2 4L   (i.e. following [1] and [7],  

( )( )0 0 0, , ,u f x y z T= < ∞  at some given point in the skin layer defined by the 
coordinates 0 0 0, ,x y z ). To recall Section 2, the definition of the energy space 

0
kM , we can state in ( )4−S    

( ) ( ){
( ) ( )( )( )

( ) { } [ ] ( ) [ ] }

4
0 0 0 0

1 2
0 0 0 1 0 0 0

24
0 0 0

, , ,

, , , , , , ,

, 0 , , 0, , , 0,

k k n
t

k n
n t

n

g g f x y z t

f x y z t f x y z t

f n z L x y a

α

α

−

− − +

− +

= ∈ = ∂

= ∂ Ψ

∈ ∈ − ∈ ∈ ∈

M S

S



  

   (15) 
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Here f is either the electric or magnetic field (i.e. the absolute norm of E  
and B  respectively). With the concept of multiplicity of the solutions (e.g., 
Theorem 1). If g is a general solution of some linear PDEs, then nf  can be 
identified as a special form of the solution (conditionally to its existence ).  

Now considering the wave equation, the electric field and magnetic fields are 
solutions and belong to the subspace 0

kM  and associated with the variation of 
energy density tu∂ . Furthermore, we can consider the solutions in 1

0M  
associated with the variation of energy density 2

t u∂ , which can be explained 
with the concept of multiplicity of the solutions. The solutions of interest in 1

0M  
are for the electric field tg E= ∂  and the magnetic field tg B= ∂ . The Taylor 
Series development of the energy of (for example) the electric field on a 
nominated position in space (i.e., 0 0 0, ,x y z ) and in an increment of time dt :  

( )( )

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

0 0 0

2
0 0 0 0 0 0

0

2
0 0 0 0 0 0

0

, , , d

d
, , , , , ,

!

d
d , , , d , , ,

!

k
k
t

k
k

k
t

k

E x y z T t

t
E x y z T E x y z T

k

t
E x y z T t E x y z T

k

∞

=

∞

=

+

= + ∂ < ∞

+ = ∂

∑

∑







       (16) 

Finally one can write the relationship with the energy density following (14) 
and the previous Taylor series development for the electric and/or magnetic 
field:  

( )( ) ( )( )

( ) ( ) ( )

0 0 0 0 0 0
0

0

2
2 2 2 2

0 0 0 0 0 0 0
0

d , , , d d , , , d10.5
d d

1 d d0.5 , , , , , , d
2 6t t

E x y z T t B x y z T t
t t

t tE x y z T B x y z T u u o t

µ

µ

 + +
 +
 
 
 

= + + ∂ + ∂ + 
 

 




 (17) 

Therefore, taking into account the second order term of the energy density 
2
t u∂  means that additional solutions should also be considered in the EM 

modeling.  

3.2.3. Example 3: Variation of EM Energy Density—Consequences from  
the Wave Theory Point of View 

We are taking the example of the variation of EM energy density inside a copper 
wall due to planar waves reflecting and refracting on it [15]. To recall the 
previous example, the EM field is now including ( E , δE ) and ( B , δB ), 
contribution of the subspaces 0

0M  and 1
0M  respectively when using the 

concept of multiplicity of the solutions (i.e. Theorem 1) for the higher order 
derivatives of the energy density (see (14)). We call the total EM field totE  and 

totB  inside the copper plate (skin layer) with associated permittivity   and 
permeability µ . They are solutions of the Maxwell equations:  

,

,
0,

,

tot
tot

tot t tot

tot

tot t tot

ρ

µ µ

∇ ⋅ = 
∇× = −∂ 
∇ ⋅ =


∇× = ∂ + 





E

E B
B
B E j

                    (18) 
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with the principle of charge conservation:  
0t totρ∂ +∇ ⋅ =j                          (19) 

Now, the variation of energy density (14) together with the equation of charge 
conservation is formulated such as:  

d
d tot tot
u
t
+∇ ⋅ = ⋅P j E                       (20) 

tot tot
tot µ

×
=

E BP  is the Poynting vector. Now, writing tot δ= +E E E , 

tot δ= +B B B  and δ  is the first derivative in time ( t∂ ) (i.e. solutions in 1
0M ), 

then following [15]  

( ) ( ) ( ) ( )1
t t t t tµ

 
+ ∂ ⋅ = + ∂ ⋅ ∇× + ∂ − ∂ + ∂ 

 
E E j E E B B E E

 
       (21) 

using the equalities ( )∇ ⋅ × = ⋅∇× − ⋅∇×E B B E E B  and the Maxwell  

equation t∇× = −∂E B , 2
t t∇×∂ = −∂E B  the previous equation reduces to:  

2

0

t t
t t t

t t
t t

u u
µ µ

µ µ µ

∂ ×∂   ×
⋅ +∇ ⋅ + ∂ + ∂ ⋅ +∇ ⋅ + ∂   

   
∂ × ×∂    ∂ ⋅∂

+ ∇ ⋅ +∇ ⋅ + + ∂ ⋅∂ =   
   



E BE BE j E j

E B E B B B E E
     (22) 

We can separate in three groups,  

2

t

t t
t t

t t t t
t t

u

u

µ

µ µ

µ µ

 ×
∂ +∇ ⋅ = − ⋅  

  
∂ × ×∂    ∂ +∇ ⋅ +∇ ⋅ = − ⋅∂    

    
∂ ×∂ ∂ ⋅∂  ∇ ⋅ = − − ∂ ⋅∂    



E B j E

E B E B j E

E B B B E E

 

The Poynting vector is defined as 
µ
×

=
E BP  and its derivative  

t t
t µ µ

∂ × ×∂
∂ = +

E B E BP . Thus, the second order term of the energy density is 

the contribution of the EM field generated by t∂ E  and t∂ B  is:  

( )2

0

t

t t t

t t t t
t t

u
u

µ µ

∂ +∇ ⋅ = − ⋅ 
∂ +∇ ⋅ ∂ = − ⋅∂ 


∂ ×∂ ∂ ⋅∂  ∇ ⋅ = − − ∂ ⋅∂    


P j E
P j E

E B B B E E
 

The last line is the contribution from only the fields t∂ E  and t∂ B . 
Finally, the creation of the wave defined by the EM field ( t∂ E , t∂ B ) means 

that some material properties may allow to create two type of EM waves namely 
( E , B ) and ( t∂ E , t∂ B ).  

4. Some Comments on the Uncertainty Principle in the  
Energy Parallax Theory  

Uncertainty principle is generally known from the Heisenberg’s relationship in 
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quantum mechanics. In a broad sense, uncertainty principles are a variety of 
mathematical inequalities asserting a fundamental limit to the precision with 
which certain pairs of physical properties describing a system, known as 
complimentary variables (e.g. position and momentum of a particle), can be 
known [5] [13].  

So far in our comparison between the energy parallax and the perturbation 
theory, the development is based on the mathematical properties of the 
functions in ( )2 mL   (i.e. finite energy functions) in order to guaranty the 
convergence of the (Taylor) series associated with those functions and/or the 
energy. In particular, some examples uses special type of waves (i.e. evanescent 
waves in Section 3.2.1 or Section 3.2.2) included in ( )2 mL   with the 
application of the energy parallax on the variation of EM energy density. Thus, 
we emphasize that the energy function and/or the EM energy density defined for 
functions in ( )2 mL  , play a key role in both the energy parallax and 
perturbation theory. Here, we show with the uncertainty principles, how the 
variables in our system (i.e. time, frequency, wavelength) can be affected with 
the variations of energy quantities.  

Let us define the electric field E function in ( )2 2L   with variables in time t 
and space x. Following the definition of ( )2 mL  , one can write  

( ) ( )( )

( ) ( ) ( )

2 2
0

2
2 22 2 2

, d exp , d

,
d , d 4 π , d

E x t t E j t k x x t t

E x t
t j E x t t f E x t t

t

ω

ω

+∞ +∞

−∞ −∞

+∞ +∞ +∞

−∞ −∞ −∞

= ⋅ ⋅ − ⋅

∂
= ⋅ ⋅ = ⋅ ⋅ ⋅

∂

∫ ∫

∫ ∫ ∫
   (23) 

defining 2 π fω = ⋅ ⋅  and k the wavelength, we can further state using the 
Parseval-Dirichlet equality—[17],  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 22 2 2

2
2 22 2

2

2

2

2

, d , d , d .

,1, d , d d
4 π

,1                                , d
4 π

1                                
4 π

f E x t t f E x f f t E x t t

E x t
f E x f f t E x t t t

t

E x t
t E x t t

t

+∞ +∞ +∞

−∞ −∞ −∞

+∞ +∞ +∞

−∞ −∞ −∞

+∞

−∞

⋅ = ⋅ ⋅

∂
⋅ = ⋅ ⋅ ⋅

∂⋅

∂
≥ ⋅ ⋅ ⋅

∂⋅

≥ ⋅
⋅

∫ ∫ ∫

∫ ∫ ∫

∫

( )( )22

2
2

1 , d
4

1 1                                
44 π t

E x t t
+∞

−∞
⋅

≥ ⋅ ⋅
⋅

∫



      (24) 

Associating the quantities ( ) 22 , dt E x t t
+∞

−∞
⋅∫  and ( ) 22 , df E x f f

+∞

−∞
⋅∫  with 

2t∆  and 2f∆  [17], one can write the uncertainty principle in time and 
frequency,  

1
4 π tt f∆ ⋅∆ ≥ ⋅
⋅
                        (25) 

with the relationship (modified Parseval-Dirichlet equality)  

( ) ( )2 21, d , d
2 π

E x t t E x ω ω
+∞ +∞

−∞ −∞
=

⋅∫ ∫  inserted in (24), the uncertainty principle 
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can be written differently  

1
8 π tt ω∆ ⋅∆ ≥ ⋅
⋅
                          (26) 

Thus, the variation of the energy quantity ~t t tδ+   , means that the 
function/wave is distorted in time or an increase of the frequency spectrum. In 
terms of energy parallax, if we think about the superposition of multiple 
waves/functions (i.e. Theorem 1), the broadening of the frequency spectrum 
could be interpreted as additional waves with larger (or shifted) frequency 
bands.  

Finally, if we want to look at the inequality involving the position x, one needs 
to use the wave-particle duality and consider the wave as a photon. In this case, 
we can use the Heisenberg uncertainty principle in quantum mechanics to state 
the relationship between x and the moment p [16].  

5. Discussion on the Woodward Effect Interpreted with the  
Energy Parallax Theory 

The Woodward effect, also referred to as a Mach effect, is part of a hypothesis 
proposed by James F. Woodward in 1990 [3]. The hypothesis states that 
transient mass fluctuations arise in any object that absorbs internal energy while 
undergoing a proper acceleration. Recently, the Woodward effect was applied to 
asymmetric EM cavities (i.e. frustum) due to EM waves reflected on the cavity's 
wall, and creating a momentum [2]. The assumption is that the EM energy 
density variation results from the evanescent waves taking place in the skin 
depth of the asymmetric EM cavity’s walls. 

 The Woodward effect is based on a formula which the author implicitly 
assumed that the rest mass of the piezoelectric material via the famous Einstein's 
relation in special relativity 2mc=  (   the rest energy associated with the 
rest mass m) and its variation via electrostrictive effect. In order to apply this 
formula to an asymmetric EM cavity, the author in [2] formulated the 
hypothesis that the EM excitation on the walls creates electric charges (i.e. 
electrons) which makes the rest mass varying with time. The Woodward effect 
can be mathematically derived in various ways [18] [19] [20]. Note that in the 
appendices, we also show a derivation based on the model of a point mass 
particle moving in a varying electric field. 

If we define the mass density such as m Vρ = , then from [20], one can write 
the elementary mass variation per unit of volume  

( )

( )22
2

~ d infinitesimally small variation

1 1 1d
4π t t

m
V

G

δδρ ρ

ρ ρ ρ
ρ ρ

=

 
= ∂ − ∂ 

 

         (27) 

Let us define the the rest energy 2cρ= , then  
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( )
( )

( )
( )

22
2 22

22
2

1 1 1d
4π

1 1 1d
4π

t t

t t

G c c

G

ρ
ρ ρ

ρ

 
 = ∂ − ∂
 
 
 

= ∂ − ∂ 
  

 

 
 

              (28) 

In some particular cases such as an EM cavity, we assume that the variation in 
time of the rest energy is equal to the variation of EM energy density u (i.e. 

t tu∂ ∂  ), but the rest energy is much bigger than the EM energy density 
u . It allows then to state the relationship between the Woodward effect and 

the EM energy density  

( )
( )22

2

1 1 1d
4π t tu u

G
ρ

 
= ∂ − ∂ 

   
                 (29) 

The EM energy density u follows the general definition of the sum of energy 
density from the electric ( Eu ) and magnetic ( Bu ) fields [15]. Note that in [2], 
the author defines the Electro magnetic and gravitational coupling using 
Equation (29). 

Discussion (2): The above equation shows that the variation of mass density 
is a linear relationship with the first and second derivative of the EM energy 
density. To recall Example 2 in Section 3.2.2, we underline the relationship 
between the order of the derivatives of the EM energy density and the energy 
spaces. As we are dealing with evanescent waves (functions in  

( ) ( )2m mL− ⊂S    with 4m = , with 3D space and time) in the skin layer of the 
EM cavity, we can apply the results of Example 2 with the multiplicity of the 
solutions (i.e. Theorem 1). The interpretation of the Woodward effect using the 
energy parallax is that the solutions are in 0

kM  (k in { }0,1,2 ) using the same 
definitions as in Section 2. In other words, we need to take into account the 
evanescent waves associated with the electric and magnetic fields and their first 
and second derivative in time.  

6. Conclusions 

This work is a discussion on the energy parallax and the comparison with the 
perturbation theory. One of the motivation is that the energy parallax is based 
on the multiplicity of the solutions (i.e. Theorem 1) developed by [2] for the 
functions in the ( )2 mL  , i.e. finite energy functions in the Schwartz space 

( )m−S  . Unlike the perturbation theory where the solutions are expressed in 
power series with the addition of small quantities to take into account the 
perturbation of the system’s energy, the energy parallax considers additional 
solutions to a given PDE (or PDEs describing a given system) based on the 
higher order derivatives of the primary solution when considering higher order 
perturbations of the system’s energy. Note that we give some meaning to the 
variation of energy via the uncertainty inequality (time, frequency) based on the 
superposition of waves using the energy parallax. 
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The perturbation theory is well defined when the system can be described 
with an operator (e.g., Hamiltonian) such as in quantum mechanics. However, 
complex systems using multiple operators or various PDEs may be best 
described in terms of the variation of the total energy. In this way, the energy 
parallax can be seen as an alternative. In the first example, the energy parallax is 
applied to the evanescent waves in the skin layer of a dielectric material (i.e. EM 
fields). We also show the possible application of this concept with the 
Woodward effect for the special case of the asymmetrical cavities. The energy 
parallax is used with the higher order derivatives of the EM energy density.  
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Appendix: Derivation of the Woodward Effect from a Point  
Mass Particle with a Varying Charge 

In this section, we derive the Woodward effect for a particle moving along a 
world line in a varying electric field. It is a simplistic model of a so called 
“relativistic” capacitor, due to the variation of mass only dependent of the  
variation of charge ( )q t .  

A1. Lagrangian Formalism 

Let us call { } [ ]
{ }

1,2
: ,i

i
φ

∈
= E B  and { } [ ] { } { }

1,2 1,2
: ,i i

t t ti
φ φ

∈
∂ = = ∂ ∂ E B . Thus, we 

assume that the Lagrangian is a function of iφ , iφ  and the time t. Now, the 

action principle is applied when varying the fields of the small quantity iδφ  and 
iδφ  The infinitesimally variation of the action is then  

( ) ( )( )d , , , ,i i i i i iS t L t L t
ω

δ φ δφ φ δφ φ φ= + + −∫                (30) 

ω  is a proper interval defines along the path of the particle. In order to 
simplify the notation, let us define i

i δφ=  and i
i δφ= 

 . One can further 
develop the equation above  

d i ii i
i

L L LS t t
tω

δ δ
φ φ

  ∂ ∂ ∂
= + +   ∂∂ ∂  

∑∫ 



                 (31) 

using the same development as the Euler-Lagrange equation (and the 

assumption that 0i i

L

ωφ
 ∂

= ∂ 
 ), one can rewrite the above equation such as  

dd
di i i

i

L L LS t t
t tω

δ δ
φ φ

  ∂ ∂ ∂
= − +   ∂∂ ∂  

∑∫


                 (32) 

Note that the momentum ip  is defined such as i i

Lp
φ
∂

=
∂ 

. Now, let us state 

the Euler-Lagrange equation  

d
di i i

i

L L Lt
t t

δ
φ φ

 ∂ ∂ ∂
− = −  ∂∂ ∂ 

∑


                    (33) 

A2. The Case of the Point Mass Particle inside an Electric Field 

The idea is to use the Lagrangian for a particle inside an EM field subject to a 
Lorentz force, but with a varying charge in time ( )q t  and a varying mass in 
time and space ( ),m x t . Let us state the Lagrangian for such a system with 
simply the electric field (see for a full statement [21]):  

( ) ( ) ( ) ( )21 , ,
2

L m x t V t q t x tφ= −                    (34) 

( ),x tφ  is the electric potential such as φ= −E ∇ . The system is not 
conservative (off-shell variation) and thus at the first order variation of the 
Lagrangian we can apply (32):  
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3

1

d 0
d

d 0
d

i i i
i

i i i
i

L L Lt
t t

L L Lx t
t tx x

δ
φ φ

δ δ
=

 ∂ ∂ ∂
− + =  ∂∂ ∂ 

∂ ∂ ∂ − + =  ∂∂ ∂ 

∑

∑






                 (35) 

Knowing that 
[ ]1,2,3

i

i

xV
t =

∂ =  ∂ 
, one can develop further  

2

2
2

2
d d d
d d d

i i i

i

L V V m qmV q
t t t t t
L V m q
x x x

L V mm V
t x t t

φφ

φ

∂ ∂ ∂ ∂ ∂
= + − −

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂

= −
∂ ∂ ∂

∂
= +

∂

                (36) 

with the assumptions that 0
i

V
x
∂

=
∂

, 1
i

V
x
∂

=
∂

, d 0
d i

V
t x
∂

=
∂

, 
2d d2

d di

V V
t x t
∂

=
∂

, 

( )d 0
d i

q
t x

φ∂
=

∂
. Also with the approximation 

d
d

V V
t t

∂
=

∂
, 

d
d

q q
t t

∂
=

∂
 Now, if we 

separate the variables as internal and external parameters, such as ( ),Vφ  are 

external (or parameters in on-shell transformation); and ( ),m q  are the 
parameters due to the “relativistic” capacitor model. We can then rewrite (23) 
such as:  

2 2

d d d
d d d

d 0
d 2 2

i
i

i
i

V V mt mV q x q m V
t t x t t

q V m V mt x
t t x

φ φ
δ δ

δ φ δ

 ∂ ∂ − + − − −  ∂ ∂   
  ∂ ∂

+ − + + =  ∂ ∂   

          (37) 

Thus, from this equation, we can see that the first group of terms in tδ  and 
the second group of terms in ixδ  are with derivatives of the external variables 
(e.g., φ , V), whereas the two last groups of variables are with derivatives of the 
internal variables (e.g., m, q). Now, if we assume that ~ 0ixδ , in other words, a 
negligible displacement in space during the variation of tδ , the equation 
becomes  

2d d 0
d d 2
V q V mmV q
t t t t

φ
φ

∂ ∂
− − + =

∂ ∂
                  (38) 

and reciprocally with the assumption ~ 0tδ ,  
2d d 0

d d 2i i

V m V mq m V
x t t x
φ∂ ∂

− − − + =
∂ ∂

                  (39) 

and by definition .

ix
∂

=
∂

∇ . One can set 0
i

m
x
∂

=
∂

, and see the variation of mass 

only dependent of the variation of charge ( )q t  in our “relativistic” capacitor 
model. Furthermore, we can get the equation without variation of the internal 

variables if d 0
d
m
t
= : d 0

d
Vq m
t

φ + =∇ . 
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As the “relativistic” capacitor model is a particle moving along a world line, 
one can follow the same way that Prof. Woodward used to establish the 
Woodward effect (See Appendix A of [3]). Let us write the equation of the 
momentum when the particle is stimulated by external force: d dt = −p f . With 
Equation (39), one can write:  

d d
d d i

V mm V q
t t x

φ∂
− − =

∂
                       (40) 

which ends up in  

d
d

q
t

φ− =
p

∇                            (41) 

This equation is the particle accelerated by a Lorentz force with only the 
electric field. We can qualify it as the macroscopic view of the system. One can  

then define a force 
d: ,
d
mV q
t

φ = − − 
 

F ∇ . Making the same assumption as in 

[3], one can apply the four divergence to the normalized force  
d: ,
d
mm V m q m
t

φ = − − 
 

F ∇ :  

2
04πV m q q G

V t m t V t m m
φ φ ρ

−∂ ∂ ∂   + + ∇ =   ∂ ∂ ∂   
∇              (42) 

with 0ρ , the first term of the stress energy tensor (or 00T ), which is the EM 
energy density. Let us make the assumption that the particle is accelerated to the 
speed of light ~V c , and if the fluctuation of the total energy is equal to the 
fluctuation of the EM energy density ( 0t EM tu ρ∂ ∂ ), thus we have also 

2
0t tm cρ∂ ∂ ⋅ . The above equation is then:  

2
04πc m q q G

c t m t c t m m
φ φ ρ

−∂ ∂ ∂   + + ∇ =   ∂ ∂ ∂   
∇            (43) 

or 
2

20
0

1 4πq q cc G
t E t t E E

ρ
φ φ ρ

∂−∂ ∂ ⋅   + ⋅ + ∇ =  ∂ ∂ ∂   
∇            (44) 

Let us define the potential q
E
φψ ⋅

= , and rewrite the previous equation  

( ) 2 20
0

1 4πc c G
t E t t

ρ
ψ ψ ρ

∂−∂ ∂  + ⋅ + ⋅∇ = ∂ ∂ ∂ 
∇             (45) 

The infinitesimally variation 0δρ  is only due to the variation in time in the 
LHS term, then  

0
0

1 4πG
t E t

ρ
δρ

∂−∂   = ∂ ∂ 
                       (46) 

with 2
0 m cδρ δ ⋅ ,  

0
2

1 4πG m
E tc t

ρ
δ

∂−∂  
 ∂⋅∂  

                       (47) 

https://doi.org/10.4236/jmp.2018.93034


J.-P. Montillet 
 

 

DOI: 10.4236/jmp.2018.93034 499 Journal of Modern Physics 
 

Note that it is possible to consider higher order derivatives in time if we 
consider the variations of the quantity ( )0ρ  at higher orders (i.e.  

0 0 0tρ ρ ρ= + ∂ ). However, one must also consider higher order variations of φ  
and q in order to agree with Equation (45).  

Also, it is worth to underline that Equation (42) is established when 
considering only an electrical potential in the Lagrangian formalism of a point 
mass particle moving in an electrical field (i.e. Equation (34)). According to [21], 
one can also include a magnetic potential within the Lagrangian, adding the  

vector potential 
( ) ( ) ( ),

q t
t x t

c
⋅v A . ⋅  is the scalar product and ( ),A x t  is the 

magnetic potential. It follows that the term 
i

qv A
c x
∂

−
∂

 is added on the RHS of 

Equation (41) and the term 
qv A
c

− ∇  in the LHS of Equation (42). It forces to  

do the same assumption as with the electric field in order to get an equation 
similar to Equation (47). That is why, for the sake of the example, the addition of 
the magnetic potential is not so important. 
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