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Abstract 
The system of equations simulating the processes of nonstationary stimulated 
Raman scattering (SRS) with the excitation of polar optical phonons is ob-
tained. This system is found by applying such standard methods as the non-
stationary theory of perturbations, which resulted in the equations for the 
amplitudes of probabilities to find the discrete system in certain state, and 
slowly-varying amplitudes for the electromagnetic waves. It has been shown 
that the obtained system includes, as extremes, the case of classical interaction 
between electromagnetic field and resonant medium (including the “area 
theorem”), and the one related with SRS on optical phonons. We have con-
ducted both theoretical and numerical investigation of simplified system as-
suming that the amplitudes of all electromagnetic waves (laser, Stokes, and 
polariton) were real (there was no destructive spatial-temporal phase modula-
tion). Only low-order nonlinear processes are considered. It is shown that this 
system can be reduced to Sine-Gordon equation. This system can also be sim-
plified to the equation that simulates the motion of physical pendulum from 
upper equilibrium position. The numerical study of nonstationary SRS when 
the electromagnetic field of laser radiation and Stokes excite both polariton 
emission and the continuum of dipole-active phonons has been carried out. 
The evolution of the intensity of the polariton wave as function of the length 
of nonlinear medium has been numerically analyzed. 
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1. Introduction 

Over the past two decades, the field of polaritons (exciton-like, plasmon-like, 
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and phonon-like) has been substantially developed [1] [2]. For instance, the 
theory of exciton-polaritons provides the successful explanation of physical 
phenomena in microcavities, which is essential for the design of polariton lasers 
[3] [4]. The spectroscopy of complex semiconductor layer structures is related 
with the theory of plasmon-polaritons [5] [6]. The progress in infrared spec-
troscopy of ionic crystals is based on theory of phonon-polaritons [7] [8] [9]. 
Surface polaritons are considered in details in [10]. However, given the com-
plexity of the equations simulating multi-photon processes in nonlinear media 
and accepted simplifications (the method of slowly-varying amplitudes, the giv-
en field approximation, phase capture, etc.) some results still remain unforeseen 
[11] [12] [13] [14]. In this paper, we made an attempt to obtain and solve the 
system of equations that would properly describe the processes of nonstationary 
SRS in ionic crystals by phonon-polaritons. The Section 2 of our paper is based 
on technique developed in [15] where the equations for the “nonresonant” am-
plitude of probabilities to find the particle at certain level were approximate 
whereas the equations for the “resonant” amplitudes of probabilities 1a  and 2a  
were exact. Despite the fact that the obtained system was cumbersome, we ma-
naged to bring it to the compact form. In Section 3, we have compared the theo-
retical and experimental gain factors [16]-[25]. In Section 4, we found the sim-
plified system of equations, showed that this system corresponds to the extreme 
cases studied previously (see [26] [27]), and reduced the system to Sine-Gordon 
equation [28]. The numerical analysis of the system has been carried out as well. 

2. Basic Principles and Equations 

In this paper we assume that two optical pulses with frequencies 1ω  (the fre-
quency of laser pump) and 2ω  (that of Stokes) propagate in crystal at the an-
gles 1,2θ�  with respect to z-axis, which is perpendicular to the input surface of 
the medium. The laser wave 1ω  and Stokes 2ω  during SRS generate  

3 1 2ω ω ω= −  as well as the polar optical phonon 21fω ω≡  in the vicinity of 
which falls 3ω  ( )3 21ω ω ω= + ∆ . 

We apply the standard equations for the amplitude of probability ka  of 
finding the system in state with energy kE  [29] [30]: 

e ,kliw tk
kl l

l

ai V a
t

∂
=

∂ ∑�                        (1) 

where 
( ) ( )(

( ) ( ) ( ) )
,

1 1e e e
2 2

e e e

m nm m

m n m n m n

ii i
kl kl m kl m n

m m n

i i i

V µ ε α ε ε Φ +ΦΦ − Φ

−Φ +Φ Φ −Φ −Φ −Φ

′= − + −

+ + +

∑ ∑
,  

m m mt k zω ϕΦ = − + , m m−Φ = −Φ , m mε ε−= , 

klµ  is the dipole moment of the transition k l→ ; , ,m m mkω ε  and mϕ  are 
the frequencies, z-components of wave vectors, real “slowly-varying amplitudes”, 
and phases of the interacting waves, accordingly; klα′  is the tensor of the com-
binational scattering. 

Then we use (1) to find la  ( )1,2l ≠ . 
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To obtain the exact equations for 1,2a  we substitute (2) into (1): 
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The system of Equations (3) can be transformed to the equations for the pola-
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rization 1,2P  and n (population difference): 
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3. Gain Factor G 

Such significant characteristics of crystals as the dispersion relation and damp-
ing of phonon-polaritons have been the subject of many both theoretical and 
experimental investigations in recent years. For instance, the experimental me-
thods used in these studies include the impulsive SRS and transient grating ex-
periments with femtosecond pulses [16] [17], and coherent anti-Stokes Raman 
Scattering (CARS) with picosecond pulses [18]. The information on the damp-
ing of polaritons is contained in Raman linewidth, which can be obtained from 
the stimulated gain curve [19]. This method was successfully applied in [20], 
where the two-beam amplifier experiment SRS gain measurements were per-
formed in LiNbO3 for the polariton frequencies ranging from 30 to 230 cm−1. 
The measurements were carried out at liquid-nitrogen temperature in doped 
congruent LiNbO3 and undoped nearly stoichiometric LiNbO3. It was the com-
parison of doped and nearly stoichiometric crystals which provided new infor-
mation on the number and type of low-frequency excitations determining the 
polariton damping over almost complete frequency range. 

Now we show that our equations are consistent with the experimental results 
presented in [20]. The theoretical treatment of the gain factor for SRS by polari-
tons is based on the solutions of the coupled wave equations for the Stokes and 
polariton fields. In quasi-stationary case, in absence of phase modulation of any 
kind, and given pump field, the system of equations for the 2ε  (Stokes) and 3ε  
(polariton) can be reduced to the following (see (11) and (13)): 

2 2
2 *2

2 1 32 2

1
2 2

s s
s s s

s s

i k i
z k c k c

ω ωε
ε ε χ ε ε

 ∂
= − − 

∂  
�              (15) 

2 2
2 *3

3 1 22 2

1 1
2 2

p p
p p p

p p

i k i
z k kc c

ω ωε
ε ε χ ε ε

 ∂
= − −  ∂  

�             (16) 

where ,
, ,

s p
s p s pk n

c
ω

= , ,s pε�  are the dielectric constants, ,s pχ  are the nonlinear 

coefficients. This system is the part of more complex system considered in [21]. 
When we assume that there is exponential amplification of the electromagnetic 
field with a gain factor G and after the insertion of the electromagnetic fields  

expressed as 
1
2

, e sG z

s pA  into (15) and (16) we get the expression for G as 

2 2
1

1 ,s

s p

G
n
ν

χ ε
ε

′′≈
′′�

                      (17) 

which is completely consistent with the expression of the gain given in [20] and 
[22]. Therefore, the gain factor is related to the dielectric function of the crystal, 
which contains the damping of the polariton. 
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Here 
2π

s
s c

ω
ν = ; sn  is the index of refraction at Stokes frequency; 

( )

2

22 2 2 2

f f p
p f

f
f p f p

s
ν γ ν

ε
ν ν γ ν

′′ =
− +

∑ ; fs  is the oscillator’s strength of the dipole-ac-  

tive phonon fν ; fγ  is the damping constant; χ′′  is the imaginary part of 
quadratic polarizability. The expression for χ′′  is given in [23]: 

( )

2

22 2 2 2
,f f p

f
f

f p f p

ν γ ν
χ χ

ν ν γ ν
′′ =

− +
∑                      (18) 

where 

1
2

3 2

1 1 1 ,
8π

f f
f

fl

s

c

σ
χ

νν

 
=   

 �
. fσ  is the effective cross-section of combi-

national scattering. 
In calculations we used for G in LiNbO3 the following (see [20]):  

210 MW cmlI ≈ ; 810 esufχ
−≈ ; ZnO-doped LiNbO3: ( )1cmfν −  = 112, 122, 

124, 150, 163, 190, 199, 222, and 235; ( )1cmfγ
−  = 33, 20, 12, 12, 14, 12, 11, 14, 

and 14; nearly stoichiometric LiNbO3: ( )1cmfν −  = 106, 125, 148, 153,167, 188, 
198, 217, 233, and 239; ( )1cmfγ

−  = 33, 20, 10, 8, 20, 13, 3, 10, 10, and 4. The 
gain factor G as a function of the polariton frequency in nearly stoichiometric 
LiNbO3 is shown in Figure 1. The gain factor G versus polariton frequency in 
ZnO: LiNbO3 is shown in Figure 2. In both graphs the squares represent expe-
rimental points ([20]), whereas the solid curves are the simulation based on (17). 

4. Analysis of Basic System 

In this section we provide the analysis of the system (6)-(14) assuming that the 
all amplitudes of electromagnetic waves are real ( )1,2,3 0ϕ =  and the waves are 
synchronous ( )0θ ≈ . Only low-order nonlinear processes are considered. The 
simplified system can be written as follows: 

( )3 1 2 2
2 2 ,n P

t
µε α ε ε

∂ ′= +
∂ �

                     (19) 

( )2
3 1 2

1 2 ,
2

P n
t

µε α ε ε
∂ ′= − +
∂ �

                    (20) 

( )21 1 1 1
2 2

1

2π 2 ,n N s P
z c t cn
ε ε ω

ε+∂ ∂
+ = −

∂ ∂
                  (21) 

( )( )12 2 2 2
2 1

2

2π 2 ,n N s P
z c t cn
ε ε ω

ε−∂ ∂
+ = − −

∂ ∂
                (22) 

3 3 3 3
2

3

2π
4 ,

n N P
z c t cn
ε ε ω

µ
∂ ∂

+ = −
∂ ∂

                   (23) 

where 1,2,3n  are linear indices of refraction 1,2,3 1,2,3n ε≈ � . 
The solutions for n and 2P  can be expressed as 

2
1cos , sin ,
2

n Pψ ψ= − =                      (24) 
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Figure 1. Gain factor G versus polariton frequency in nearly stoichiometric 
LiNbO3. Squares: experimental points ([20]); solid curve: simulation based on 
(17). 

 

 
Figure 2. Gain factor G versus polariton frequency in ZnO-doped LiNbO3. 
Squares: experimental points ([20]); solid curve: simulation based on (17). 

 

where ( )3 1 2
1 2 d

t

tψ µε α ε ε
−∞

′= +∫� . 

1) The system of Equations (19)-(23) includes both the classical case of reso-
nant interaction of electromagnetic wave with two-level system (See [26])  
( )0α′ =  and the one that corresponds to the combinational scattering by non-
polar optical phonons studied in [27] ( )0µ = . 

2) The extreme case 0α′ =  also results in standard “area theorem” for 3ε  
(See [26]): 

( )3 3

3

d 8π
1 cos

d
W N
z cn

ω
= − − Φ

�
,                (25) 
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where ( )3 , dz t tµ
ε

+∞

−∞

Φ = ∫� , ( )2
3 3 , dW z t tε

+∞

−∞

≡ ∫ . 

3) In the absence of dispersion ( )1 2 3n n n n≈ ≈ ≈  the system (19)-(23) can be 
reduced to Sine-Gordon equation 

2

sinψ
ψ

τ ς
∂

= −
∂ ∂

                         (26) 

where 
znca t
c

τ  = − 
 

, azς = , 2 2
32

4πNa C
c n

µ ω α ′= + �
, 

( ) ( )2 12 2
1 2 2 1s s Cω ε ω ε+ −− ≡  (the given field approximation for 1,2ε ). 

4) If we introduce a new variable zt
v

τ = −  (ν  is the speed of the pulse), we 

can reduce the system (19)-(23) to the equation of the motion of physical pen-
dulum from the position of upper unstable equilibrium: 

2

2 2

1 sin
p

ψ
ψ

τ τ
∂

=
∂

                        (27) 

where 1,2,31
1,2,3

1n
c v

κ − = − , 
2

2 3 3

3

4π
p

N C
c n

ω κ µ
τ α−  

′= − + 
 

�
�

, 

( ) ( )2 1
2 21 1 2 2
2 1

1 2

s sC
n n

ωκ ω κ
ε ε

+ −

≡ − +�  (the given field approximation for 1,2ε ). 

5) We also provided the numerical solution of (19)-(23). To do that, we 
brought that system to unitless form: 

1 1
1 2 21 ,n C P

z t
ε ε

ε
∂ ∂

+ = − ⋅
∂ ∂
� �

�
��

                    (28) 

2 2
2 2 12 ,n C P
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ε ε

ε
∂ ∂
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∂ ∂
� �

�
��

                     (29) 

3 3
3 23 ,n C P

z t
ε ε∂ ∂
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∂ ∂
� �

��
                     (30) 

( )2
3 1 24 5 ,P C C n

t
ε ε ε

∂
= − ⋅ + ⋅

∂
� � �

�
                  (31) 

( )3 1 2 24 5 ,n C C P
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ε ε ε
∂
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∂
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where 1,2,3 1,2,3 '0Aε ε=� , 0t t τ=� , 0z z z=� , 0 0z cτ= , 
( )( )2

1 0

1

2π 2
1

Nz s
C

cn

ω +

≡ , 

( )( )1
2 0

2

2π 2
2

Nz s
C

cn

ω −

≡ , 3 0

3 0

2π 4
3

N zC
cn A
ω µ

≡ , 0 04
2

AC τ µ
≡

�
, 

2
0 05
AC α τ′

≡
�

; 

0τ  and 0A  are characteristic time interval and amplitude of electromagnetic 
wave; N is the number of atoms in cm3; µ  is the average dipole moment. 

The space-time evolution of the polariton wave at frequency 3ω  is shown in  
Figure 3 ( ( )2 2

3 1,maxI31 ,z tε ε= �� �� ; 1 2 4 5 1C C C C= = = = ; 3 15C = ; 0z z z∗ = ;  

0t t t∗ = ; 19 310 cmN −≈ , 10
0 10 sτ −≈ , 1810 esuµ −≈ ). 
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Figure 3. The space-time evolution of the normalized polariton intensity I31. 

5. Conclusions 

In this paper we have found the following: 
1) The system of Equations (6)-(14) that models the processes of nonstatio-

nary SRS by polaritons in nonlinear media consisting of polar optical phonons is 
obtained; 

2) It has been shown that the frequency dependence of the gain factor of the 
Stokes matches with the experimental results; 

3) The simplified system of Equations (19)-(23) (for real amplitudes of all 
electromagnetic waves and “low-order” nonlinear processes); 

4) It is shown that the latter system could be reduced to either case of purely 
combinational interaction (the nonstationary SRS by nonpolar phonons ( 0µ = )) 
or the classical case of nonlinear resonant (but not combinational ( 0α′ = )) in-
teraction (including “area theorem”) between the electromagnetic field and sys-
tem; 

5) It is also shown that (19)-(23) could be reduced to the standard Sine-Gordon 
equation; 

6) The conditions at which the system (19)-(23) becomes the equation of the 
motion of physical pendulum; 

7) The numerical analysis of (19)-(23) has indicated the possibility of effective 
conversion to infrared radiation, which could be useful for the design of wide-
band frequency converters. 
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