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Abstract

A CR-structure on a 2n+1-manifold gives a conformal class of Lorentz

metrics on the Fefferman S'-bundle. This analogy is carried out to the
quarternionic conformal 3-CR structure (a generalization of quaternionic
CR-structure) on a 4n+ 3 -manifold M. This structure produces a conformal

class [g] of a pseudo-Riemannian metric g of type (4n+3,3) on M xS®.
Let (PSp(n +1,1),S4n+3) be the geometric model obtained from the pro-
jective boundary of the complete simply connected quaternionic hyperbolic
manifold. We shall prove that A is locally modeled on (PSp(n +1,1), S4n+3)
if and only if (M x SS,[g]) is conformally flat (i.e. the Weyl conformal cur-

vature tensor vanishes).
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1. Introduction

This paper concerns a geometric structure on (4n +3) -manifolds which is re-
lated with CR-structure and also quaternionic CR-structure (cf. [1] [2]). Given a

quaternionic CR-structure {a) on a 4n+3 -manifold A, we have

a}a:lz
proved in [3] that the associated égdomorphism J, on the 4n-bundle D
naturally extends to a complex structure J, on kerw,. So we obtain 3
CR-structures on M. Taking into account this fact, we study the following
geometric structure on (4N +3)-manifolds globally.

A hypercomplex 3 CR-structure on a (4n+3) -manifold M consists of (po-
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sitive definite) 3 pseudo-Hermitian structures {a)ul,.]a}a:1 ,3 on M which sa-
tisfies that

3
1) D= ﬂ Kerw, isa 4n-dimensional subbundle of 7/ such that

a-l
D -I—[D, D] =TM.

2) Each J coincides with the endomorphism (d @y | D)_1 o(dw,|D):D—>D
((a,,b’,y) ~ (1,2,3)) such that {J;,J,,J;} constitutes a hypercomplex
structureon D.

We call the pair (D,{J;,J,,J;}) also a hypercomplex 3 CR-structure if it is
represented by such pseudo-Hermitian structures on M. A quaternionic CR-
structure is an example of our hypercomplex 3 CR-structure. As Sasakian 3-
structure is equivalent with quaternionic CR-structure, Sasakian 3-structure is
also an example. Especially the 4n+ 3 -dimensional standard sphere S*"* isa
hypercomplex 3 CR-manifold. The pair (PSp(n +l,l),S4”+3) is the spherical
homogeneous model of hypercomplex 3 CR-structure in the sense of Cartan
geometry (cf. [4]). First we study the properties of Aypercomplex 3 CR-structure.
Next we introduce a quaternionic 3 CR-structure on M in a local manner. In fact,
let D be a 4n-dimensional subbundle endowed with a quaternionic structure Q
on a (4n +3) -manifold M. The pair (D,Q) is called quaternionic 3
CR-structure if the following conditions hold:

1) D-I—[D,D]:TM ;

2) Mhas an open cover {U,}.

ieA

CR-structure (a)(i) J(i)) s such that:

a 'Ya

each U; of which admits a hypercomplex 3

3 )
a) D|U, =[kera”;

a
a=1

b) Each hypercomplex structure {Jl(i), JS), J;i)}iEA on D|U; generates a
quaternionic structure Qon D.

A 4n+3 -manifold equipped with this structure is said to be a quaternionic 3
CR-manifold. A typical example of a quaternionic 3 CR-manifold but not a
hypercomplex 3 CR-manifold is a quaterninic Heisenberg nilmanifold. In this
paper, we shall study an invariant for quaternionic 3 CR-structure on (4n +3) -
manifolds.

Theorem A. Let (M ,{D,Q}) be a quaternionic 3 CR-manifold. There exists
a pseudo-Riemannian metric g of type (4n+3,3) on M xS*. Then the con-
formal class [g] Is an invariant for quaternionic 3 CR-structure.

As well as the spherical quaternionic 3 CR homogeneous manifold S$**, we
have the pseudo-Riemannian homogeneous manifold S$*™**xS® which is a
two-fold covering of the pseudo-Riemannian homogeneous manifold
(5*"x,, $°,¢°). The pair (PSp(n+1,1)xS0(3),5"x,, §°) isa
subgeometry of conformally flat pseudo-Riemannian homogeneous geometry
(PO(4n+4,4),8%"x, S°) where PSp(n+1,1)xSO(3)<PO(4n+4,4).

Theorem B. A quaternionic 3 CR-manifold M is spherical (ie. locally
modeled on (PSp(n +l,l),S4”+3)) if and only if the pseudo-Riemannian
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manifold (M xS°, g) is conformally flat, more precisely it is locally modeled
on (PSp(n+1,1)xS0(3),8"*x, §°).

We have constructed a conformal invariant on (4n + 3) -dimensional pseudo-
conformal quaternionic CR manifolds in [3]. We think that the Weyl conformal
curvature of our new pseudo-Riemannian metric obtained in Theorem A is
theoretically the same as this invariant in view of Uniformization Theorem B.
But we do not know whether they coincide.

Section 2 is a review of previous results and to give some definition of our notion.
In Section 3 we prove the conformal equivalence of our pseudo-Riemannian
metrics and prove Theorem A. In Section 4 first we relate our spherical 3
CR-homogeneous model (PSp(n +11), S4”+3) and the conformally flat
pseudo-Riemannian homogeneous model (PSp(n +1,1)><SO(3), S4n+3‘3) . We
study properties of 3-dimensional lightlike groups with respect to the pseudo-
Riemannian metric §° of type (4n + 3,3) on S*™*xS°. We apply these
results to prove Theorem B.

2. Preliminaries

Let (M Ha,, Ja}a:l,z,s) be a (411 + 3)-dimensional hypercomplex 3 CR-manifold.
Put (@,,J,)=(@,J) for one of as. By the definition, (M ,{a),J}) is a
CR-manifold. Let C2"™?? (M ) be the canonical bundle over M (ie. the C -line
bundle of complex (2n +2,0) forms). Put C (M)=C*?°(M)-{0}/R"
which is a principal bundle: S'—C(M)—2—>M . Compare [[5], Section 2.2].
Fefferman [6] has shown that C (M ) admits a Lorentz metric g for which the
Lorentz isometries S' induce a lightlike vector field. We recognize the
following definition from pseudo-Riemannian geometry.

Definition 1. /n general if S' induces a lightlike vector field with respect to a
Lorentz metric of a Lorentz manifold, then S' is said to be a lightlike group
acting as Lorentz isometries. Similarly if each generator S' of S° is chosen to
be a lightlike group, then we call S® also a lightlike group.

We recall a construction of the Fefferman-Lorentz metric from [5] (cf. [6]).
Let ¢ be the Reeb vector field for (a), J ) The circle S' generates the vector
field T on C(M).Define dt tobeal-formon C(M) such that

dt(T)=1,dt(V)=0 ("VeT™M). (2.1)

In [[5], (3.4) Proposition] J. Lee has shown that there exists a unique real
l1-form ¢ on C(M). The explicit form of ¢ is obtained from [[5], (5.1)
Theorem)] in this case:

(o2

- dt+io” —hPdh —— L Ry 22)
2n+3 2

— Row
@ 2(2n+2)
Here 1-forms {a)f ,rﬂ} are connection forms of @ such that

dw= ihaﬂa)“ A a)B,
5 (2.3)

do’ =w /\a);+a)/\r”‘.
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The function R is the Webster scalar curvature on M. Note from (2.2)

do= (2.4)

= [ida)“— 1 Rdw - ! dR/\a)].
2n+3 “ 2(2n+2) 2(2n+2)
Normalize dt so that we may assume O'(T)=1. Let cOw denote the
symmetric 2-form defined by o-w+®-o . Since a)(T)=0 , it follows
O'Oa)(T,T)zo. The Fefferman-Lorentz metric for (a),J) on C(M) is
defined by

g(X,Y)=00m(X,Y)+dm(IX,Y). (2.5)

Here T(C(M )) =(T)®(&)@kerw. Since & is the Reeb field,
da)(JX,f) =0. As [kel‘a),T]=0, da)(JX,T)= 0 (v X e kerw). On the other
hand, J ({T, 5}) =0 by the definition. We have

9(&,T)=19(T,T)=0. (2.6)

Thus g becomes a Lorentz metric on C(M) in which S' is a lightlike

group.
Theorem 2 ([5]). If @' =uw, then ¢g'=ug.

3. Hypercomplex 3 CR-Structure

Our strategy is as follows: first we construct a pseudo-Riemannian metric locally
on each neighborhood of M xS® by Condition I below and then sew these
metrics on each intersection to get a globally defined pseudo-Riemannian metric
on M xS® using Theorem 4. (See the proof of Theorem A.)

Suppose that (I\/I ,{a)a, Ja}a:l‘2,3) is a hypercomplex 3 CR-manifold of
dimension (4n+3). Put @w=wji+,j+ok. It is an IMH -valued 1-form
annihilating D. In general, there is no canonical choice of ® annihilating D.
In [[3], Lemma 1.3] we observed that if @' is another IMH -valued 1-form

annihilating D, then
o' = Aod (3.1)

for some H -valued function A on M. (Here A is the quaternion conjugate.)
If we put A=+/ua for a positive function uz and aeSp(l), then o'=uawa
such that the map zr» aza (Z € H) represents a matrix function Ae SO(3) .
If {J.},,,, isahypercomplex structure on D for @', then they are related
as [J]3;3;]=[3,.3,3;]A.

For each (a)a,\]a), we obtain a unique real 1-form o, on C(M) from
Section 2 (cf. (2.2)). First of all we construct a pseudo-Riemannian metric on
M x S*. In general C(M ) is a nontrivial principal S'-bundle. It is the trivial
bundle when we restrict to a neighborhood. So for our use we assume:

Condition I. C(M) is trivial as bundle, ie. C(M)=M xS*.

We construct a 1-form o, on MxS® (a¢=123) as follows. Let
T,.T, T, generate {ei‘g}ﬁek , {ejg}GER , {ekg}ﬂeR of S° respectively. Obtained
asin (2.2), wehave o,’soneach C(M)=M xS such that
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0u(T.)=L0,(T,) =10, (T,) =1
We then extend o, to M xS® by setting
o,(T,)=0,(T,)=0 (3.2)
Since [T,,T,]=2T, on TS,
do-a(Tﬁ,Ty):—%aa ([T,.T,])=-1=-20, A, (T,.T,) . Note that for any
peM,
do, +20, A0, =0 on {p}xS* ((a. B.7)~(1,2.3)). (3.3)

On the other hand, we recall the following from [[3], Lemma 4.1].
Proposition 3. The following hold:

dey (3,X,Y) =dw, (3,X,Y)=do,(J,X,Y) ("X,Y D).

In particular g° =dw,oJ, is a positive definite invariant symmetric
bilinear formon D;

9°(X,Y)=g°(3,%,3,Y).

Choose a frame field {X;---,X,,} on D such that I X5 = X
(j=l,---,n) with da)a(Jan,Xk)zé'jk. Let @' be the dual frame to X,
(i=1---,4n) such that

da)a(JaX,Y)ziei(X)-H‘(Y) ("X.yeD). (3.4)

Let £, be the Reeb field for @, respectively. There is a decomposition
T(MxS)=TM &{T,.T,,T,} ={&.&.&} @DO(T, T, T }.
As beforelet cOw= Za:l(aa ‘@, +®,-0,) beasymmetric 2-form. Define
a pseudo-Riemannian metricon M xS°® by
3
g(X.Y)=> (0, (X) @, (Y)+a,(X)-0,(Y))+dw,(I,X.Y)
o " (3.5)
=c0w(X,Y)+>.6 -0'(X,Y).
-1
As in (2.6) it follows that g(fa,Ta)zl , g(Ta,Ta)zo . If we note
0,(&,)#0,letting 7, =¢,-0,(&,)T,, it follows g(7,.7,)=0.So

9(7..7,) g(na,Ta)]{o 1}

9(T,.m,) 9(T,.T,) 10

(a=l, 2,3). As g|D=g"° is positive definite from Proposition 3, g is a
pseudo-Riemannian metric of type (4n +4, 3) on M xS,

Theorem 4. Let Q' be the pseudo-Riemannian metric on M xS* corre-
sponding to another |MH -valued 1-form o' on M representing (D,Q) , Le
o' =uawa (aeSp(1),u>0), then g'=u-g.

We divide a proof according to whether ®'=u® or o' =awa .

Proposition 5. If o'=uw, then g'=u-g.

Proof. (Existence.) Suppose @' =uUw . We show the existence of such a 1-form
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o' for o' . Let {Ta,éa,xl,-.-,x4n}a:1z3 be the frame on M xS® for .
Then @' determines another frame {T,,&,, X/, X, }. Since each T
generates the same S' asthatof T, note

T =T (a =1, 2,3). (3.6)

Let {X;},, , betheframeon D.Then the Reeb field &, foreach w] is
described as
&, =u-& +XINuX] 4+ xXJuX;, (@=1,2,3). (3.7)
(Hxi(“)eR,izl,---,n).As u-do=de’ on D and

)=9°(J,X,J,Y) from Proposition 3, there exists a matrix

g Y

B= (bik ) eSp(n) such that
4n

X, =JuY X, (3.8)
k=1

Two frames {T,,&,, X, Xy, {To.&0, X[, X4} give the coframes
{a)a,Hl,---,Qm,O'a} , {w;,H'l,---,HM”,O';} on M xS? respectively. Then the
above Equations (3.6), (3.7), (3.8) determine the relations between coframes:

o, =u-0, (a=1,2,3),

) an 3.9
0" = JUSBT +UXY -y UK 0, +VIX 0, )
=
Moreover if we put
4n ([ 4n . 1 4n
e gl g
j=L\ i i=
3.10
1 4n (y) (a) 1 4n (a) 2 ( )
"rEZl Xi Xi '(07 —EZ:L Xi a,,
then (3.15) and (3.10) show that
(a)l',a)é,a)é,é"l,---,0'4”,0'1',0'£,0§):(a)l,a)z,03,91,---,6’4”,01,02,0'3)P
for which
_|y@f
Jox X . x@ 4@ 40O
2 2 2
@ 0 |xOf @), )
ul \/GX(Z) XX —X"7 X
p=| ° 2 2 2
CRVCINNCINCIES ’
\/ax(g) X" - X XX
2 2 2
0| VJuB | -Bx®  —Bx®  _Bix®
0 0 I
If IS, isa symmetric matrix defined by
0|0 -~ 0]l
0 0
15 =] Lo ., (3.11)
0 0
I,]0 0|0
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it is easily checked that PI5,'P=u-1.

Letting a)'=(a)1',a)§,a)§) and O"=(01',0£,03') , we define a pseudo-
Riemannian metric
4n .
g=0'0a'+)0"6" (3.12)
i1

Then a calculation shows

3 4 : .
§'=3 (0} 0 + 0}, -0,)+ 30" 0"
i=1

a=1
=(e,0"-,0" )5, (,0",, 0", 0")
=(@,0",+.60" ,0)PI, P (0,6",-,0" 0) (3.13)

u-(w,6,,0",0)5, (0" ,0",0)

3 4n .
:U[Z(aa w,+w,-0,)+ 2.0 ~¢9'j:u~g.

a=1 i=1

(Uniqueness.) We prove the above ¢’ is uniquely determined with respect
to o . Let F ={wa,01,~~~,6’4n,94"+1,6’4"+2} be the coframe for @, where
0" =@, 02 =@ . We have a Fefferman-Lorentz metric on M xS' from

4 7

(3.5) and (3.4) under Condition I:

ga:0a©a)a+%da)aoJa
Lo (3.14)
:0a©a)a+§[26"~t9'+a)l,-a)ﬂ+a)y-a)y}

i1

1
(We take the coefficient 3 for our use.) When @, =uw,, the coframe F

. . 1 4 4n+l 4n+2
will be transformed into a coframe F'= {a); 0,00 00 0 } such as

0" :\/UZchHj +Juyl o,
j

9{;4n+1 _ \/ag4n+1 — \/aa)ﬂ, (3.15)
6{;4n+2 =\/694n+2 — \/aa)},,

(°y, eR(cl,)€Sp(n).i, j=1-.n).

If g is the corresponding metric on M xS', then g/ =ug, by Theorem
2 and there exists a unique 1-form &, such that
~ (& i i
g; =3, 0] a); +§(20: _0: +0;4n+1 .01;4n+l +9;4n+2 .0(;4n+2J
. o (3.16)
=6,0d, +—(lel9;i -0, +Uw, - w, +Uo, a)/]
i=!
If we sum up this equality for a=1,2,3;
' ' "~ ' 1 1 H!i 2
0,+0,+0; =600 +=>.6. -0, +§u(a)a 0, + 0,0, + 0, ~a)y)

a,i

=Uug, +ug, +ug,

4n .
=u(o-@a)+29' -0 +§(% W, + Oy, + O, -a)y)j,
i1
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which yields
13.4n i 4n .
&Oa)’+—220;'~9;':u£o®w+29'-6"j:ug. (3.17)
a=1i=1 i=1

Compared this with (3.13) it follows
o'=6, ie o,=6,(a=12.3). (3.18)
By uniqueness of &,, o), defined by (3.10) is a unique real 1-form with

respectto @'.

Next put @=a-®-a. The conjugate zr>aza (VZGH) represents a

8 8, d
matrix A=|a, @, &, |€SO(3).Then it follows
83 85 8
i
o =[w, 0, 0]A| ] (3.19)
k

By our definition, a hypercomplex structure {Jl, J,, J3} on D satisfies that
(da)ﬂ | D)fl o(daw,|D)= J, (a,,B,}/) ~ (1,2,3) . A new hypercomplex structure

on D isdescribed as

jl ‘Jl
J, [='AlJ, | (3.20)
j3 ‘]3

Differentiate (3.19) and restrict to D (infact, d&o=a-dw-a on D), using

Proposition 3, a calculation shows
da, (X,Y)=-a,9"(3,X,Y)+a,,9° (I,X,Y)+a,,09° (I,X.Y)
=-g" ((aiaJ1+a2a‘]z +a3a‘]3)X’Y):_gD (jaX,Y),
da, (J,X.Y)=g°(X,Y) (2=1,2,3). (3.21)

In particular, we have (dcT)ﬂ | D)_1 o(d@, |D)= J~7 (a,ﬂ,y) ~ (l, 2,3) .

Proposition 6. If @ =awa , then §=4¢.

Proof Let Q(X Y ) =60 a~)(X ,Y)+ da, (.]NaX ,Y) . Since &, is uniquely
determined by &, and a~)=[a)1,a)2,a)3]A=a)A from (3.19), it implies that

o= [01,02,0'3] A=cA (3.22)
Note that
3
60a=Y (6, @d,+d, -6,)=cA'Alo+wA'A'c
a=l (3.23)
=c'w+w'c=0c0 0.
By (3.21),

§=600+dd, ), =c0w+g°=g.

Proof of Theorem 4. Suppose @' =AlwA =U®d where &=awa . It follows
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from Proposition 5 that g'=ug . By Proposition 6, we have § =0 and hence
g’ =ug . This finishes the proof under Condition I.

Proof of Theorem A

Proof. Let (M ,{D,Q}) be a quaternionic 3 CR-manifold. Then M has an open
cover {U;} .
(a)(i) J(i)) s Put o za)l(i)i +a)£i)j +a)§i)k which is an ImH -valued 1-form

where each U; admits a hypercomplex 3 CR-structure
on U,;. Since we may assume that U, is homeomorphic to a ball (ie
contractible), Condition I s satisfied for each U, ie. C(U;)=U; x S'. Then we
have a pseudo-Riemannian metric g(i) = Zz:lag) Oa)s) + da)s) o JS) on
U,xS® for @" by Theorem 4. Suppose U, U, #J. By condition a) of 2)
(cf. Introduction), D|U;NU, =kera" |U;NU, =kero” |U; U, . Then by the
equivalence (3.1) there exists a function 4= Jua defined on U,Nu i such that

oV =2-0"7 =uawa onU,NU,. (3.24)

It follows from Theorem 4 that g =ug” on U;NU;. We may put
u=u' whichisa positive function defined on U, NU ;- By construction, it is
easy to see that U =uu’ on U, NU;NU, #. This implies that {u}

defines a 1-cocycle on M. Since R" is a fine sheaf as the germ of local

i,jeA

continuous functions, note that the first cohomology H* (L{ ,R* ) =0. (Here U
is a chain complex of covers running over all open covers of M.) Therefore there
exists a local function {f} .~ defined on each U; such that &f(j,i)= u’,
Le. f- fl-'1 =u" on U, ﬂUj . We obtain that

{0 = 19" on (0,0, )S°
Then we may define

glU, xS =f,-g" (3.25)

so that gis a globally defined pseudo-Riemannian metric on M x S®. If another
family {a)’i}ieA represents the same quaternionic 3 CR-structure (D,Q) , then
the same argument shows that g'=ug on M xS?* for some positive function.
Hence the conformal class [g] is an invariant for quaternionic 3 CR-structure.
In particular, the Weyl curvature tensor W (g) is also an invariant. This

completes the proof of Theorem A.

4. Model Geometry and Transformations

We introduce spherical 3 CR-homogeneous model ( PSp(n+1,1),S a3 ) and
conformally flat pseudo-Riemannian homogeneous model

( PSp(n+1,1)xSO(3),S 33 ) equipped with pseudo-Riemannian metric g’
of type (4n+3,3) and then characterize the Ilightlike subgroup in
PSp(n+1,1)xSO(3).

4.1. Pseudo-Riemannian Metric g°

Let us start with the quaternionic vector space H™” endowed with the Her-
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mitian form:

(ZW) =W, ++ 42, W,y — 7, (Z,WEHrHZ). (4.1)

n+27n+2
The g-cone is defined by
V, ={zeH"* {0} |(z,2)) = 0}. (4.2)

When H™? is viewed as the real vector space R*"™®, O(4n + 4,4) denotes
the full subgroup of GL(4n +8, R) preserving the bilinear form Re(,) .
Consider the commutative diagrams below. The image of the pair
(O(4n+4,4),V,) by the projection Py is the homogeneous model of
conformally flat pseudo-Riemannian geometry (PO(4H +4,4), 84'”3'3) in
which $*"*** =P, (V) is diffeomorphic to a quotient manifold $***x, S°.
The identification H"? =R*"® gives a natural embedding
Sp(n +1,1) -Sp (1) - O(4n +4, 4) which results a special geometry
(PSp(n+1,1)xS0(3),5*™*) from (PO(4n+4,4),8"*).

As usual, the image of (Sp(n +1,1)-Sp(1),V0) by B, is spherical quarter-
nionic 3 CR-geometry (PSp(n +l,l), S4”+3) .

R*

| N

H* SN Hn+2 _ {0} i) ]HHPm-i-l

| e\ /P
S0(3) —— RPAm+7 (4.3)
Vo —E,  ginds
P\ /P
G4n+3,3

We describe a pseudo-Riemannian metric g° on $*™%% =g Xz, S®. Let
$***xS* be the product of unit spheres. For (z,w)e $*"*x§?%,

|Z|2 —|W|2 =1-1=0 so $"*xS*cV,. Then P, (V,)=5*"** induces a 2-fold
covering P, :S**xS® 58" for which P.:T (S4n+3 X 83) — TS is an
isomorphism.

Let xeS™*xS® where we put P,(X)=[X]. Choose yeS*"*xS® such
that <X, y) =1. Denote by {X, y}l the orthogonal complement in H™* with
respect to <,> As TV, = {Z eH" |Re(x,Z)= 0} , it follows
TV, =y IMH®XH® {x,y} < H™ such that

T, (8 xS%) =y ImH® X ImH ®{x,y} .
In particular, TV, =XR®T, (84”*3 X Ss). Note that this decomposition does

not depend on the choice of points X' € [X] and y' with (X', y'> =1. (see [3],

Theorem 6.1]). We define a pseudo-Riemannian metric on S*"** to be

00y (PeX, PY ) =Re(X,Y) (VXY eT, (8% x8%)). (4.4)
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Noting Re(ya, ya)=Re(xa,xa)=0 , Re(xa,ya)=1 ("aeSp(1)) and
Re( >|{ o is positive definite, g[ox] is a pseudo-Riemannian metric of type
(4n+3, 35 ateach [x]eS**°.

4.2. Conformal Group O(4n+4,4)

It is known more or less but we need to check that O(4n+4,4) acts on
$*™¥xS® as conformal transformations with respect to Re(,) and so does
PO(4n+4,4) on (8°%,¢°)

For any heO(4n+4,4), <hX, hX) = <X, X) =0 so hxeV,. However hx
does not necessarily belong to S**°*xS°®. Normalized hx , there is
X' €S*"*xS® suchthat (hx)A=X" forsome 1eR".Note
[hX] =Py (hX) =P, (X). If R,:H"? —H"? is the right multiplication defined
by R, (Z) =71, then there is the commutative diagram:

T:L"I/O \l PRy
R T Tipg Sin+33
Thva / Pra

in which R.(h.X)=(hX)1eTV,. As TV, :X'R@TX,<S4M3><83), we have
(h*X)/sz',u-l-X' for some peR, X'eTx,(S4"+3><S3).Since
P(TR")=P.(xR)=0 and P,:(O(4n+4,4)V,)—>(PO(4n+4,4),8"**) is
equivariant, it follows
hPee (X) =P (X ) = Po (X ) A) = P (X1 + X ') = P (X).
Similarly h.P,. (Y )— Pee(Y') for (hY)A=Xv+Y' for some veR ,
Y'eTX,(S4”+3><S) As (X',X') Re(x Y> 0, a calculation shows
O (NP (X ), 1P (V)
:g[hx]( Per (X'), Par (Y')) = Re(X",Y")
=Re(Xu+ X', Xv+Y")=Re((hX)A,(hY)A)
=2*Re(h.X,hY)=2*Re(X,Y)
= 27900 (Pes (X), P (Y)).

Hence heO(4n+4,4) acts as conformal transformation with respect to
0

g°.
4.3. Conformal Subgroup Sp(n+1,1)-Sp(1)

Let (I W, K) be the standard hypercomplex structure on H"? defined by
Iz=-12i,Jz =-2j,Kz =—zk.

Put Q=span ( 1,J, K) as the associated quaternionic structure. Then Re(,)
leaves invariant Q. The full subgroup of O(4n+4,4) preserving Q is
isomorphic to Sp(n+1,1)-Sp(1), ie the intersection of O(4n+4,4) with
GL(n+2,H)-GL(1,H).
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Let p:S° —>O(4n+4,4) be a faithful representation. Then the subgroup
p(SS) preserves Q so it is contained in

n+2

{Sp(l)xr-]?x Sp(l)} -Sp(1)<SO(4)x---xSO(4)

which is a subgroup of SO(4n+4)xSO(4).

4.4. Three Dimensional Lightlike Group

Choose S'<S°® and consider a representation restricted to S'. As we may
assume that the semisimple group p(53> belongs to (Sp (1) X +xSp (1)) -Sp (1) >
this reduces to a faithful representation: p:S' —>T"*-S* such that

PO (%)), =

Here we may assume that @ >0 are relatively prime (i =1,---,n+2)
without loss of generality, and either b=0 or 1. The element p(t) acts on
g4m3 g3 cV, as

—ibt

P(0) (B 2y W) = (€52, 02, , o)

(4.6)

—ibt

(e|a1tze—|bt . elanﬂtz e

n+l

elan,rztwe—ibt )

where |Z1|2+"'+|Zn+1|2_|W|2:O for (Z,W)=(Zl, Lo )eV If X is the
vector field induced by p(Sl) at (z,w), then it follows

X =(iaz,,1a,,2,,,1a,,W) = (zib, -, z,,,ib,wib). (4.7)

Proposition 7. If p:S* —>T"2.S* js a faithful lightlike 1-parameter group,
then it has either one of the forms:

n+2

p(t):(e",~--,e“)g{Sp(l)»--xSp(l)jsSp(n+1,1)~{1},
p(t)=(1,-1)-e" <{1}-Sp(1) <Sp(n+1,1)-Sp(1).

Proof Case (i) b=0. X =(iaz, - ia,,z,,,ia,,W) from (4.7) so that

<X’X>=a12|zl|2+“'+an2+l Zn+l|2_a§+2|wl =(a1 _an+2)| l| +“'+(a§+l_an2+2)|zn+1|2
Since R6<X,X>=0 and we assume g, >0, it follows

A =88,y =8,

(4.8)

As @,’s are relatively prime, this implies
ai :“':am-l :an+2 :1'
As a consequence p(t):(e",---,e") <Sp(n+11)-{1}. In this case note that
T,($*xS%)=ImHy ® ImHx @ {X,y}  such that (x,y)eR".
Case (ii) b=1. It follows from (4.7) that
('a121v a n+lzn+1'|an+2W) (Z Ly Zn+1i’Wi)-
Put Y =(iaz, -, ia,,2,,,i8,,W), W =(zi,+,2,,,Wi)=Xi such that

' Endl

X=Y-W and <W,W>— < , > i =0. Calculate
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2
Zoa| —

(Y,Y>:a12|zl|2+---+a

n+1

(Y W) =aZizi++a,,,7, 41z, ,,i - a,,,Wiwi, (4.9)
Re(Y,W)=a,|z,[ +-+a,, |2, —a,., W =Re(W,Y).

This shows
Re(X,X)=Re(Y -W,Y -W)
=Re(Y,Y)-2Re(Y,W)+Re(W,W)=R(Y,Y)-2Re(Y W)

2

= (aiz _2a1)|zl|2 +'“+(an+1 _2an+1)|zn+1|2 _(ariz _2an+2)|w|2
- ((af —2a1)—(a§+2 —2an+2))|zl|2 +..-+((a§+1 —2an+1)—(a§+2 —2an+2))|zn+1|2
= ((ai _1)2 _(an+2 _1)2)|Zl|2 +"'+((an+1 _1)2 _(an+2 _1)2)|Zn+1|2 .

Thus

2

(8, -1)° =(ay, 1)+ (2 1) =(a,., -1)°. (4.10)

On the other hand, we may assume in general
a==2a = 0.
a,,,—-1<0,---,8 -1<0.

a, -120,---,a,,,-1=0.

n+l

(ii-1). Suppose a,,-1>0. As O<a;<1 for k+1<j<I, it implies

n+2

., =--=a =1. Since (a, —1)2 =(a,, —1)2 from (4.10), it follows a , =1.
2 .

Again from (4.10), (aj —l) =0 and so a;=1 (| +1< )< n+1). Note that

a #0 because (g —1)2 =(ay,, —1)2 =0. Thus a =a,=:--=a,,=1. This

implies p(t) = (e",---,eit>-eit .

(ii-2). Suppose a,,, —1<O0. In this case a,,=0. By (4.10), it follows that
",#0 and a=--=a =1, a =2 (I+1<i<n+1).Thus
p(t) = (l, ---,1,ei2‘,---,e‘2‘,1) .e" . This contradicts that nonzero a’s

n+2

(1<i<n+1) are relatively prime.
(ii-3). Suppose a,.,
) p(t)=(1,---,l)-e".
To complete the proof of the proposition we prove the following. Put

x=(z,w)=(z,,2,,W)€S*"*xS*cV, suchthat (X,x)=0.

' Sn4ly

-1<0 and & =a,=:--=a,,=0. Again a,,=0 and

Lemma 8. Case (ii-1) does not occur.
Proof It follows from (4.7) that
X =iz, 12,0,1W) = (2], +, 2,41, Wi) = iX - Xi. (4.11)

n+l

Put x=p+jg(p,qeC™). Then X =2kq. As <X,X> =0 implies
(q, q) =0. On the other hand, the equation
0=(xx)=((p,p)+(a,a)-2j(p.q)
shows (p, p)+(q,q):0,<6,q>:0. Note that if S*™'xS' is the canonical
subsetin S*"*xS°, then (p,p)=0 ifandonlyif peS™™ xS’ Since Xisa
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nontrivial vector field on S$*™**xS®, there is a point x in the open subset
S=5""x8%\8*™ xS" such that (p,p)=#0 and thus (X,X)#0 on
which contradicts that Xis a lightlike vector field.

4.5, Proof of Theorem B

Applying Proposition 7 to a lightlike group S° we obtain:

Corollary 9. Let p:S° —>0(4n+4,4) be a faithful representation which
preserves the metric Re(,) on V,. If p(SB) is a lightlike group on
S x S*, then either one of the following holds.

p(S*)=diag(Sp(1)x---xSp(1))<Sp(n+1,1)-{1},
p(S*)={1}-Sp(1) <Sp(n+1,1)-Sp(1).

Let (diag(Sp(L)x---xSp(1))-Sp(1),5*"*xS*) beasin (4.13). If
f:5"°%xS® 55" xS* isamap defined by
f (1200, W)) = (W2, -+, W2,,,, W), then for aeSp(1), beSp(l),

(4.13)

f ((azl,u-,azml,awﬁ)) = (bWz,, -+, bWz, ,,bWa).

So the equivariant diffeomorphism f induces a quotient equivariant

diffeomorphism
f:(Sp(), 5" x 5%/ p(%)) > (diag (Sp(1)x-+-xSp(1)),§*"*).  (4.14)

We prove Theorem B of Introduction.

Proof. Suppose that the pseudo-Riemannian manifold (M ><S3,g) is
conformally flat. Let 7Z'=7T1(M) be the fundamental group and M the
universal covering of M. By the developing argument (cf. [7]), there is a
developing pair:

(p.Dev):(zxS° M xS*,§)—(0(4n+4,4),8"*xs% ¢°)

where Dev is a conformal immersion such that Dev*go =UJ for some
positive function z on M xS® and p:7xS*— O(4n +4, 4) is a holonomy
homomorphism for which Dev is equivariant with respectto p.

By Corollary 9, if p(Ss) = {1} -Sp (1) < Sp(n +1,1) -Sp (l) , then the normalizer
of Sp(l) in O(4n +4, 4) is isomorphic to Sp(n +1,1)-Sp (1) . In particular,
p(ﬁx SS) =p(7)xSp(1)<Sp(n+1,1)-Sp(1) where p(83) ={1}-Sp(1) . We
have the commutative diagram:

S3 -t Sp(1)

l |

(r x 83,01 x §%) PPV (h(r) x Sp(1), 43 x §3)

! |

(w01 L2 (pl), S4+3)

where p(;r)SPSp(n+1,1) and dev is an immersion which is p -

(4.15)
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equivariant.

If p(S°)=diag(Sp(1)x:--xSp(1))<Sp(n+11)-{l} from (4.13), then
p(7x8%)=p(S*) p(7)<diag(Sp(1)x-+-xSp(1))-Sp(1) . Composed f with
Dev , we have an equivariant diffeomorphism f odev: (7[, M )—) ( p(r), SAM)
where p(7)<diag (Sp(l) X e X Sp(l)) <PSp(n+1,1). In each case taking the
developing map either dev of (4.15) or f odev, a quaternionic 3 CR-manifold
M s spherical, i.e. uniformized with respect to (PSp(n + 1,1), S4n+3) .

Conversely recall (a)o, {JZ }azlz 3) is the standard quaternionic 3 CR-structure
on S*"° equipped with the standard hypercomplex structure Q° = {Jg}
on D°.Suppose that (w’{‘]a}azl,z,a)
on M with a quaternionic structure @, then there exists a developing map
dev:M — S$*" such that

a-123
is a spherical quaternionic 3 CR-structure

dev'eo® = oA
for some H -valued function A on M with a lift of quaternionic 3
CR-structure @ . In particular, dev,D=D° and dev.Q=Q°.
Let § be a pseudo-Riemannian metric on M xS® for & which is a lift of
g and @ to MxS® respectively. Put o' =dev'o® . Let A=+ua be a
function for u>0 and aeSp(l) such that

o' =uadoa.
By the definition, recall da)g. (J;}V ,W) =da) (V,W) (VV W e DO) . The
induced quaternionic structure {J }a:1 ,5 for o= dev’®® is obtained as

d(dev'ep)(J;X,Y)=d(dev'w?)(X,Y). Since
da)g (dev*J;X ,dev.Y ) = da)s (dev*X , dev*Y) , taking V =dev.X , we obtain

dev.J/X =J7dev.X ("X eD). (4.16)

As dev.Q=Q" =span(J?,2=1,2,3), note that {J.} , €Q.

On the other hand, let g’ be the pseudo-Riemannian metric on M xS* for

', it follows from Theorem 4

g'=ug. (4.17)

Take the above element aeS® and let p:S°—S° be a homomorphism
defined by p(s)=asa (VS € Ss). Define a map devx p: M xS% — 3% §?
which makes the diagram commutative. (Here p is the projection onto the left

summand.)

s L5

! |

~ dev X
M x §3 S 78 gant3 o g3

g g
o dev, gand3
where both p.:(D,{J,})—>(D.{3,}) and p.:(D"{3})>(D%{3}) are

(4.18)

a

isomorphisms such that
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pood,=Jop. and p.od2=J)0p. (a=123). (4.19)

Recall from (3.5) that g° =5’'0 p*a)o +dp*a)2 ° ij. (We write p more pre-
cisely.) Consider the pull-back metric

(devxp) g°(X,Y)=c"0 p*a)O((deVXp)* X,(deVXp)*Y)

) (4.20)
+dp @? (Jg (devx p), X ,(dEpr)*Y).

Calculate the first and the second summand of (4.20) respectively.

(devxp) (0" @ p'a’)=(devxp) o" O (devxp) po®
=p'devic® O p'dev'e’.

dp’@? (J7 (devx p), X ,(deVXp)*Y)

a

=da) (32p.(devx p), X, p. (devx p),Y)
=da) (J2dev. p.X,dev.p.Y)
=dw) (dev.J, p.X,dev.p.Y) (4.16)
=da) (dev.p.J. X, dev.pY) (4.19)
=dp'dev’e? (3, X,Y)=d(p'dev'm?)e . (X,Y).
(4.22)
Thus
(devx p) g° =R;dev'c® © p'dev’e’ +d(pdeve) )oJ..

Then it follows by the construction of (3.5) that (dev>< p)* g° is the
corresponding  pseudo-Riemannian metric for devw’=w0' and so
(dEVXp)* 0°=9g'=ug by (4.17). Therefore (|\7| xS3, g) is conformally flat
and so is (M xS%, g) .
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