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Abstract 
 
Firewalls use packet filtering to either accept or deny packets on the basis of a set of predefined rules called 
filters. The firewall forms the initial layer of defense and protects the network from unauthorized access. 
However, maintaining firewall policies is always an error prone task, because the policies are highly com- 
plex. Conflict is a misconfiguration that occurs when a packet matches two or more filters. The occurrence of 
conflicts in a firewall policy makes the filters either redundant or shadowed, and as a result, the network does 
not reflect the actual configuration of the firewall policy. Hence, it is necessary to detect conflicts to keep the 
filters meaningful. Even though geometry-based conflict detection provides an exhaustive method for error 
classification, when the number of filters and headers increases, the demands on memory and computation 
time increase. To solve these two issues, we make two main contributions. First, we propose a topol- 
ogy-based conflict detection system that computes the topological relationship of the filters to detect the con- 
flicts. Second, we propose a systematic implementation method called BISCAL (a bit-vector-based spatial 
calculus) to implement the proposed system and remove irrelevant data from the conflict detection computa- 
tion. We perform a mathematical analysis as well as experimental evaluations and find that the amount of 
data needed for topology is only one-fourth of that needed for geometry. 
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1. Introduction 

A firewall protects the network from unauthorized access 
and provides secure access to the outside world. Packet 
filtering techniques in a firewall provide an initial level 
of security and operate on the network layer or the inter- 
net layer. Packet filtering controls the network traffic 
with a predefined, ordered set of filters called a firewall 
policy (FP). Every filter f in the FP has a condition and 
an action. If a filter matches a packet P the filter action is 
carried out on packet P. The action can be either accept 
or deny the packet. Many packet filtering schemes such 
as IPFW or IPFIREWALL in FreeBSD is a first match-
ing filtering scheme [1]. IPFW is a FreeBSD sponsored 
firewall software application enables use of sophisticated 
filtering capabilities. 

Managing and maintaining firewall policies is an ex- 
tremely complicated job for the network administrator 
because the policies are constantly subject to modifica- 
tion. For example, while examining 37 firewalls in pro- 
duction enterprise networks, Wool found that all the 

firewalls were misconfigured and vulnerable [2]. 
When the network behavior is different from the ac- 

tual configuration of a policy, potential security holes are 
created. For example, if an IP address is mistaken in an 
FP, it allows unintended traffic in the network and can 
cause security holes. A conflict is a type of misconfigu- 
ration that occurs when a packet P matches two or more 
filters. It is a common misconfiguration in firewalls. 
Hamed et al. found that there is a high probability of 
even expert system administrators and network practi- 
tioners creating conflicts [3]. Conflicts render the filters 
redundant or shadowed, and as a result, the actual con- 
figuration of the firewall policy is not reflected in the 
network.  

Various techniques have been developed to manage 
firewall policies [3-22]. Among these are firewall analy- 
sis tools [4,5] and techniques that focus on minimizing 
the firewall rules [6]. Other related works detect conflicts 
by using geometrical analysis [7-9]. Yin et al. developed 
a conflict detection technique based on geometrical 
analysis, which provides systematic conflict classifica- 
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tion [8]. However, this technique becomes very de- 
manding in terms of memory and computation time 
when the number of header fields and filters increases. 
To solve this problem, we have presented a topological 
approach to detect conflicts [10,11]. In this approach, we 
introduced a bit-vector based spatial calculus named 
BISCAL and constructed a new conflict detection frame- 
work through BISCAL which analyzes the topological 
relationship of the filters to detect and classify conflicts. 
This paper extends and strengthens that framework by 
describing the design and implementation of the topol- 
ogy-based conflict detection system that shows how ef- 
fectively the BISCAL can be adopted for conflict de- 
tection and by presenting quantitative evaluations of the 
system. In this paper, our main contributions are as fol- 
lows: 

1) We have presented a systematic implementation 
method based on BISCAL to construct a conflict detec- 
tion system that efficiently classifies conflicts by treating 
with topological relationships between filters effectively, 
and can remove the irrelevant data from the conflict de- 
tection in the intermediate stage of computation. 

2) We have performed comparative studies through 
mathematical and experimental analysis to show that the 
topological approach requires much less computation 
time and storage than geometrical approach in conflict 
detection. 

We implement the topological approach using BIS- 
CAL to extract the conflicting filters from the firewall 
policy. The main advantage of BISCAL is that the opera- 
tions on the filter sets become easier. The rest of the pa- 
per is organized as follows. In Section 2, we discuss re- 
lated works. In Section 3, we explain the firewall policy 
used in the conflict detection system. Section 4 discusses 
the spatial relationship of the filters, and Section 5 ex-
plains the conflict classification in detail. The operators 
and supporting vectors of BISCAL are explained in Sec-
tion 6. Section 7 gives an overview of the proposed sys-
tem and its computational steps. The evaluation and 
comparative analysis of our approach are discussed in 
Section 8. And finally, in Section 9, we present the con-
clusions and discuss future research directions. 

2. Related Work 

Over the past few years, research and analysis of firewall 
policies has received considerable attention [2-28]. Al- 
Share et al. proposed an algorithm to detect conflicts 
caused by one filter on another in a firewall policy on the 
basis of the relationship between the two filters [12]. 
This relationship was defined according to their predi- 
cates such that they satisfied the conditions in {⊂ ⊃ 
=}. However, the problem with this algorithm is that 
when the corresponding predicates of two filters overlap, 

the relationship between the two filters cannot be deter- 
mined, because overlapping predicates do not satisfy any 
of the conditions in{⊂ ⊃ =}. Therefore, the algorithm 
for detecting conflicts also does not work when overlap- 
ping predicates appear between two filters. 

V. Capretta et al. proposed a formalization of conflict 
detection for firewalls. They defined conflict for the rules 
if and only if the actions of the rules are different [13]. In 
such conflict detection, redundancy cannot be detected, 
as the redundant filters have the same action, but our 
system analyzes the filters with both the same and dif- 
ferent actions, and conflicts are classified in detail. 

Mayer et al. developed a firewall analysis tool Fang to 
perform customized queries on a set of filters and to ex- 
tract the filters in a firewall policy [4]. Wool et al. im- 
proved the usability of Fang [5]. These tools and meth- 
ods help administrators to manually verify the correct- 
ness of a firewall policy. Unfortunately, they require a 
high degree of user expertise to write proper queries and 
identify the problems in firewall policies. 

H. G. Verizon et al. proposed a fast and scalable 
method for resolving the anomalies in firewall policies 
[14], which can be useful for large-scale firewall policies. 
H. Hu et al. proposed a firewall anomaly management 
and resolution environment: FAME, and developed a 
grid-based visualization of the firewall policy [15]. Liu et 
al. used firewall decision trees to detect and remove the 
redundant filters [16]. K. Matsuda proposed a model 
called matrix decomposition to analyze the filters in the 
firewall policy with a few compression methods [17]. If 
for some reason, an administrator needs to intentionally 
embed redundant filters, which will conflict with the 
other filters in a firewall policy, we will inform the ad- 
ministrator of the presence of conflicts instead of re- 
moving these redundant filters. This also helps the ad- 
ministrators to add, delete, or modify the existing filters 
according to their own intentions, as we have classified 
the conflict contents in detail. 

T. Srinivasan et al. proposed a scalable and parallel 
packet classification method using an aggregated bit 
vector [24]. Lakshman et al. proposed high-speed pol- 
icy-based packet forwarding using bit-level parallelism 
[25]. Both the above methods yield good results by using 
the bit-vector data structure for packet classification 
schemes. Baboescu et al. proposed a fast and scalable 
conflict detection technique for packet classifiers using a 
bit-vector. It detects the conflicting pairs, but it does not 
classify the conflicts explicitly [22]. Our method effi- 
ciently utilizes the bit-vector in our conflict detection 
system through BISCAL and explicitly classifies as er- 
rors and warnings, which helps administrators to re-con- 
figure the policies more easily. 
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3. Background 

An FP consists of an ordered set of m filters, and it is 
expressed as follows: 

 0 1 1FP : , , , mf f f   

where if two filters, if  and   , 0, 1 and ,  jf i j m i j   
are such that i < j, filter if  is placed before jf  in the 
FP. We follow the first matching filter scheme, and 
therefore, if  has a higher priority than jf  during exe-  

cution. Each filter   0, 1  if i n  consists of n key  

fields, called predicates 0 1 1  and an action. 
The filter 

,i i inp p p 
if  is expressed as shown below: 

0 1 1: , ,  actioni i i inf p p p   

The commonly used matching keys in a header are 
protocol (represented as Pro), source IP (SrcIP), destina- 
tion IP (DesIP), source port (SrcPort), and destination 
port (DesPort).  

Each predicate     0, 1 , 0, 1  ikp i m k n   



 can be 
represented as an exact value, a prefix, a range value, or 
a list in many firewall systems. However, in this paper, 
we use range value for the sake of simplicity and because 
a filter with predicates in other forms can be easily con- 
verted into one or multiple filters with range values. 
Each predicate    0, 1 , 0, 1  ikp i m k n   

a u b 
 is rep- 

resented as ik k ik , by using a uniform range 
value  and the value in the kth key field of the 
packet header, uk. The default filter is the lowest priority 
filter that denies access to all the packets when no other 
filter matches the packet. 

 ,ika b ik

We represent a filter in the form called internal form, 
which includes the range values instead of the predicates 
in n key fields. An internal form filter fi is represented as 
follows: 

     0 0 1 1 1 1: , , , , , action i i i i i in inf a b a b a b  

Assume that the values of the header of packet P are 
represented as . A packet P matches fi if and  0 1 1, nu u u 

,a u b a only if . 

An example policy consisting of internal form filters is 
shown in Table 1, where f5 is the default filter. 

0 0 0 0 0 0 1 1i i i i in nu b a u b     1in

4. Spatial Relationship of Filters 

According to Max J. Egenhofer, we can classify the spa- 
tial relationships on the basis of the spatial concepts [29]. 
The three relationships are 1) topological relationships, 2) 
spatial and strict order relationships, and 3) metric (geo- 
metric) relationships. Here, we focus on geometric and 
topological relationships and analyze how they differ in 
terms of conflict detection. 

Table 1. A sample firewall policy FP1. 

 SrcIP DesIP Action 

f0 [0,3) [3,7) Accept 

f1 [0,3) [3,7) Deny 

f2 [1,5) [1,5) Accept 

f3 [3,5) [1,3) Deny 

f4 [5,7) [1,3) Accept 

f5 [0,232) [0,232) Deny 

4.1. Geometric Relationship of Filters 

Max J. Egenhofer stated that metric relationships are 
based on parameters such as distance and directions of the 
objects [29]. Finding the metrics of an object has many 
applications in the field of telecommunication, medical 
imaging, robot motion planning, etc. For example, multi- 
dimensional packet classification is viewed as a point 
location problem in computational geometry. Finding 
the geometric location of a packet in an n-dimensional 
space is necessary to classify a packet in packet classifi-
cation techniques [23-26]. The n-dimensional space is 
otherwise called as packet space.  

When the number of key fields in a packet is n, the 
packet can be represented as a point in n-dimensional 
space or packet space. A filter is represented as a subspace 
of a packet space, called the filter space FS, which in- 
cludes all the points of the packet that match the filter. The 
geometric shape of the filters in a two-dimensional space 
is a rectangle, and in an n-dimensional space, it is a hy- 
percube or n-cube. The sample firewall policy in Table 1 
is represented spatially in Figure 1. 

We perform a spatial decomposition of the n-dimen- 
sional space until dividing the filter boundaries reaches its 
last dimension. The final decomposed space is called a 
subspace Si. The packet classification techniques in 
[23-26] preserve the subspaces and their locations in the 
n-dimensional space in various data structures to classify 
the packet in n key fields. In packet classification, the 
location of a subspace in the n-dimensional space is es-
sential for finding which filter matches which packet. 
However, conflict detection techniques that find con- 
flicting filters preserve the same data as packet classifi- 
cation techniques [7-9]. D. Eppstein et al. used orthogonal 
range searching techniques and proposed techniques for 
the packet classification problem and the conflict detec- 
tion problem simultaneously [7]. Yin et al. detected the 
conflicting filters that appear in [8] by dividing the filter 
space using SIERRA, a systolic filter sieve array used in 
high-speed packet classifiers [23]. 

Both the above techniques detect the conflicting filters 
based on packet classification analysis. However, when 

Copyright © 2011 SciRes.                                                                                IJCNS 



S. THANASEGARAN  ET  AL. 686
 

 

the number of key fields and filters increases, the con- 
ventional methods used in [7-9] are extremely demand- 
ing in terms of memory and computation time, as they 
depend on geometry-based packet classification tech- 
niques. As far as conflicts are concerned, rather than us- 
ing packet classification, we should focus on filter classi- 
fication. Therefore, in our paper, we propose to focus 
only on filter classification and therefore solve the 
drawbacks of the previous approaches based on the 
geometrical relationship of the filters. 

4.2. Topological Relationship of Filters 

According to Max J. Egenhofer, topological relationships 
are a subset of spatial relationships [29]. Topological 
notations include the concepts of continuity, closure, 
interior, and boundary, and are defined in terms of neigh- 
borhood relations. Topological equivalence is a crucial 
criterion when comparing the relationships between ob- 
jects. Topological equivalence does not preserve distances 
and directions. Topology refers to the way in which the 
filters are connected to each other. Therefore, filter clas- 
sification can be performed by identifying the topologi- 
cal relationship of the filters, which is the basic require- 
ment for conflict detection. 

In our approach, as we have discussed earlier, we per- 
form the n-dimensional spatial decomposition, and then 
further analyze the filters in the subspaces to find the 
topological relationships of the filters. The difference 
between the number of subspaces required for conflict 
detection using topology and geometry is explained be- 
low. Geometry-based systems consider all the subspaces 
for conflict detection, as the location of all the subspace 
is important for packet classification techniques. In a 
topology-based system, the location is discarded, and 
concentrates only on the uniqueness of the subspace. In 
other words, it only selects the subspaces with different 
filter sets by removing subspaces with the same filter 
sets. 

Therefore, the number of subspaces (the amount of 
data required for conflict detection) is smaller for topol- 
ogy-based systems than for geometry-based systems. 

For example, in Figure 1, the number of subspaces 
considered in the geometrical approach is thirteen. In the 
topological approach, it is five, because there are only 
five unique subspaces with different filter sets, namely 
          0 1 0 1 2 2 2 3 4, , , , , , , ,f f f f f f f f f . As a result, 

when the number of filters and key fields increase, the 
difference in the number of subspaces considered for 
conflict detection varies drastically between the topo- 
logical and geometrical approaches. Therefore, we can 
say that identifying only the topological relationships 
improves the efficiency of the conflict detection system 

by removing the irrelevant data from the conflict com- 
putation. In this way, we can achieve our target of solv- 
ing the two issues, namely, large memory usage and 
computation time. We use experiments to verify this in 
later sections. 

Conflict detection is performed by finding the topo- 
logical relationship of the filters. There are nine possible 
topological relations between any two objects, as they 
appeared in [29]. We have extracted five topological 
relationships (TR) to identify conflicts between any pair 
of filters, if  and jf . In other words, TR (fi, fj) = {dis- 
joint, inside, contains, equal, overlap}. The relations are 
shown in two dimensions in Figure 2, and can be gener- 
alized for higher dimensions. The filter space of a filter f 
is represented by FS (f). 

Disjoint:  TR ,i jf f  = disjoint when the intersection 
of the filters spaces is empty or    FS FS  i jf f , 
as shown in Figure 2(a).  

Inside:  TR ,i jf f  = inside when fj is completely 

enclosed by fi or    FSFS j if f , as shown in Figure 

2(b). 
Contains: When if  is enclosed by filter jf , or  
   FS FSj if f , then we say that there exists a rela-  

tion  TR ,i jf f  = contains between filters fi and fj, as  

shown in Figure 2(c). Contains is the converse of the 
inside relation. 

Equal:  TR ,i jf f  = equal when if  and jf  are 
equal, or    FS FSi if f , as shown in Figure 2(d). 
 

f0, f1

f2

f3 f4

SrcIP

DesIP
232

232

0 1 3 75

1

3

5

f57

S0

S1

S4

S5

S8 S11

S3 S7 S10

S2 S6 S9 S12

 

Figure 1. Spatial decomposition of filters of FP1 defined in 
Table 1. 
 

fi fj fi

fj

fi
fjfifj

fi

fj

 
(a)         (b)         (c)         (d)         (e) 

Figure 2. Topological Relationships. (a) Disjoint; (b) Inside; 
(c) Contains; (d) Equal; (e) Overlap. 
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Overlap: When if  and jf  do not satisfy any one 
of the above four relationships, then we can say that 

TR ,i j f f  = overlap, as shown in Figure 2(e). 

5. Classification of Conflicts 

Conflicts are classified in filter pairs,  ,i jf f , where   
i < j and filter fj has an error or warning caused by fi. The 
errors and warnings of the filter fj can be classified ex- 
clusively by the type of topology between fj and fi and 
the actions of fj and fi as follows. 

1) Shadowing error: A filter fj has a shadowing error 
caused by fi when  

a) TR (fi, fj) = equal, fi·action ≠ fj·action, 
b) TR (fi, fj) = inside, fi·action ≠ fj·action. 
In this case, the filter fj is never executed, as fi prevents 

fj from matching all the packets. 
2) Redundancy error: A filter fj has a redundancy 

error caused by fi when  
a) TR (fi, fj) = equal, fi·action = fj·action,  
b) TR (fi, fj) = inside, fi·action = fj·action. 
In this case, the filter fj is never executed, as the filter fi 

prevents fj from matching all the packets that fj can match. 
The redundant filters in the FP unnecessarily increase the 
size of the FP, and even removing fj does not change the 
semantics of FP. 

3) Correlation warning: A filter fj has a correlation 
warning caused by fi when  

TR (fi, fj) = overlap, fi·action ≠ fj·action. 

If filter fj has a correlation warning caused by fi, fj is 
sometimes not executed for the packets that match the 
filter fi. 

4) Generalization warning: A filter fj has a generali- 
zation warning caused by fi when  

TR (fi, fj) = contains, fi·action ≠ fi·action. 

The filter fj is executed only when packets arrive that 
does not satisfy fi. 

5) Redundancy warning: A filter fj has a redundancy 
warning caused by fi when  

a) TR (fi, fj) = contains, fi·action = fj·action, 
b) TR (fi, fj) = overlap, fi·action = fj·action 
The filter fj is sometimes executed, as fi prevents fj 

from matching some packets that can match fj. However, 
if a filter fj is disjoint to the other filters, then it does not 
fall within any of the above conflict classifications. In 
this case, we refer to it as a neither error nor warning filter. 

6. BISCAL 

BISCAL operates on the filter sets to extract the topo- 
logical relationship of the filters. It treats the filter sets in 
a bit-vector format and uses seven primitive operators to 

find the topological relationship of the filters and three 
special vectors called characterization vectors to preserve 
the intermediate results. The main advantage of BISCAL 
is that it finds the disjoint filters in the intermediate stage 
of computation and removes those filters from the con- 
flict computation. This is because a filter that is disjoint 
in any dimension is always disjoint in n dimensions. 

6.1. Data Structure: Bit-Vector 

An FP which consists of m filters is represented by a 
bit-vector  0b b  1m , where a bit bi in the bit-vector 
represents the filter fi. If a filter is selected from the FP, 
then the value of the corresponding bit is 1, and if not, 
then the value of the bit is 0. For example, let FP0 con- 
sist of  0 1 2 3, , , , 4f f f f f . If filters  1 3 4, ,f f f  are se- 
lected from FP0, then the bit-vector is [01011]. Because 
this paper focuses on bit-vectors, hereinafter we will re- 
fer to a bit-vector as simply vector. The main reason for 
choosing the bit-vector representation is that it makes 
easier to apply logical operations to find the topological 
relationships between the filters. We introduce a function 
V2S that transforms the 1 s in the vector to its corre- 
sponding filters. For example, V2S ([11100]) = {f0, f1, 
f2}. 

6.2. Primitive Operators 

There are seven primitive operators in BISCAL that 
compute the topological relationships of the filters. They 
are explained with example vectors v1 and v2, where 
v1= [1010] and v2 = [1011]. 

1) AND Operator (AND): This operator computes a 
bit-wise AND for a set of vectors. For example, AND 
({v1, v2}) = AND ({[1010], [1011]}) = [1010]. 

2) Cartesian-AND Operator (C-AND): It computes 
the Cartesian product of two sets of vectors A and B and 
then computes the logical AND for the resulting vectors. 
C-AND (A, B) = {AND ((a, b)), | (a, b) ∈ A × B}. 

3) OR Operator (OR): This operator computes a 
bit-wise OR for a set of vectors. For example, OR (v1, 
v2) = OR ({[1010], [1011]}) = [1011]. 

4) Counting one Operator (C1): This operator counts 
the number of 1s in an input vector. For example, C1 (v1) 
= C1 ([1010]) = 2. 

5) NOT Operator (NOT): This operator returns the 
complement of an input vector. For example, NOT (v1) 
= NOT ([1010]) = [0101]. 

6) Pair-filters Operator (PF): This operator returns a 
set from two filter sets that contain the possible combi- 
nations of the two filters in each of the input vectors. For 
example, PF ([1010], [1011]) = {{f0, f2}, {f0, f2}, {f0, f3}, 
{f2 f3}}. 
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5

7) Permutation Operator (PO): This operator returns 
a set from two filter sets in which each filter is a filter 
selected from each of two input filter sets. For example, 
PO ({f0}, {f1, f2}) = {{f0, f1}, {f0, f2}}. 

6.3. Characterization Vectors 

Characterization vectors are the vectors that characterize 
the topological relationship of the filters. There are two 
types of characterization vectors: 1) vectors characterize- 
ing the topological relationship of the filters in the packet 
space, called CV and, 2) vectors characterizing the topo- 
logical relationship of the filters projected on each axis 
of the packet space, called PCV. 

6.3.1. Characterization Vectors for Filters in the 
Packet Space 

CVs characterize the topological relationship of the fil- 
ters in n-dimensional packet space. They consist of the 
following three kinds of vectors.  

1) Co-Existence Vectors Set (OVS): OV is a vector 
in which a bit of the vector is 1 if the corresponding filter 
co-exists with another filter in some subspace of the 
packet space. OVS is a set of all OVs. For example, in 
Figure 1, f0, f1 and f2 co-exist in S4, therefore the vector 
representation is, OV = [11100].  

2) Fully Covered Vector (FV): FV is vector in which 
the value of bi is 1, if fi is fully covered in n-dimensional 
space. For example, in Figure 1, f0, f1 and f3 are fully 
covered in two-dimension and therefore, FV = [11010].  

3) Disjoint Vector (DV): If a filter fi is disjoint from 
all other filters in n-dimensional space, then the value of 
bit bi is set to 1 in DV. For example, in Figure 1, f4 is a 
disjoint filter and therefore DV = [00001]. 

6.3.2. Characterization Vectors for Projections of 
Filters on Each Axis of the Packet Space 

PCVs are computed by using the projection of the filters 
on each axis of the packet space. The 1m  
is an ordered set of the ith predicates of the filters in FP 
and the projection of the filters on the ith axis of the 
packet space corresponding to the ith key, Xi. All the pro- 
jected filters except for the default filter are decomposed 
in the boundaries specified by their ith predicate. As a 
result of the decomposition, the axis is divided into mul- 
tiple intervals. Figure 3 shows an example of the spatial 
division for the projection of the filters in FP1 on the 0th 
axis corresponding to the 0th key X0 or SrcIP and shows 
that six intervals, 

 0 , ,iX f f 

0 , ,I I
 , ,

, are made by the decomposi- 
tion of 0 0 5X f  f .  

Each interval has a set of filters, called sub-domain 
filter set, in which ith predicate of the filter is always true 
within the interval. The sub-domain filter sets for all the  

f0

f1

f3

f2
f4

{f0,f1} {f0,f1,f2} {f2} {f2,f3} {f4}

SrcIP (X0)

0 1 2 3 4 5

I0 I1 I2 I3 I4 I5

{ }

 

Figure 3. Spatial division for the projection of the filters in 
FP1 on the 0th key X0 or SrcIP. 
 
intervals on the ith axis except the empty sets form a set, 
named SFSi. Each sub-domain filter set is transformed 
into a vector, and as a result, the SFSi is transformed into 
a set of vectors, SVSi. If a filter fi exists in a sub-domain 
filter set, the corresponding bit of the vector bi is set to 1. 
For example, SFS0 =         0 1 0 1 2 2 2 3, , , , , , , ,f f f f f f f f   

 4f  and SVS0 =         11000 , 11100 , 00100 , 00110 ,   

 00001  for the spatial division for the projection of the 
filters in FP1 mentioned in the above. 

PCVi characterizes the topological relationship of the 
projected filters on the ith axis and consists of the fol- 
lowing three kinds of vectors. 

1) POVSi: POVi is a vector in which a bit of the vec- 
tor is 1 if the corresponding projected filter co-exists 
with another projected filter in some interval on the ith 
axis of the packet space. POVSi is a set of all POVSis. 
For example, in Figure 3, POVS0 = {[11000], [11100], 
[00110]}. 

2) PFVi: PFVi is vector in which the value of bit bi is 
1 if the projection of fi is fully covered on ith axis of the 
packet space. For example, in Figure 3, the projections 
of {f0, f1} and {f3} are fully covered and therefore, PFV0 

= [11010]. 
3) PDVi: If a filter fi is disjoint from all other filters 

projected on ith axis of the packet space, then the value of 
bi is set to 1 in PDVi. For example, in Figure 3, f4 is dis- 
joint and therefore PDV0 = [00001]. 

7. Implementation of Topology-Based 
Conflict Detection System 

7.1. System Overview 

The proposed system detects and classifies the conflicts 
in the given firewall policy, FP, which consists of m fil- 
ters and n key fields. The default filter is the least prior- 
ity filter fm–1 and is not considered for conflict detection 
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1m



7.2. PCV Extractor as it always conflicts with the remaining filters. Our sys- 
tem computes the topological relation of each filter pair 
(fi, fj), where fj is the conflicting filter and fi is the conflict 
causing filter. It then decides the errors and warnings for 
fj according to the topological relation based on the con- 
flict classification described in Section 4.  

The PCV extractors calculate POVSs, PDVs and PFVs 
by the following steps. 

STEP 3-1: POVSi is computed as follows: 
Initialize POVSi = {Ø}; 
For all v ∈ SVSi, if C1 (v) > 1, POVSi = POVSi ∪ v; The overview of the proposed system is shown in 

Figure 4 and consists of a vertical decomposer, spatial 
divisors, PCV extractors, a CV extractor, and a TR ex- 
tractor.  

For example, POVS0 =       11000 , 11100 , 00110  
for the SVS0 calculated above. 

STEP 3-2: PDVi is calculated as follows: 
PDVi = NOT (OR (POVSi)); The system receives the FP, and follows the procedure 

given below. For example, when POVS0 is the value calculated 
above, PDV0 = NOT     11110 00001 . STEP 1: The vertical decomposer divides the FP into 

n sequences. Each sequence includes the ith predicate of 
the filters in FP and represents projections of the filters 
in FP on the ith axis of the packet space, , 
where i is from 0 to n – 1.  

 0 , ,iX f f 

STEP 3-3: In the calculation of PFVi, the non-fully 
covered filters on the ith axis of the packet space are 
computed initially and lastly the fully covered filters are 
computed. The non-fully covered filters are identified in 
NFi by finding a vector in SVSi with a single 1, because 
the non-fully covered filters are somehow alone in any 
subspace. For example, in Figure 3, f2 is a non-fully 
covered filter, because f2 is alone in I2. In this way, the 
corresponding bits of non-fully covered filters are made 
0, and the fully covered vector PFVi is derived. 

STEP 2: The spatial divisor makes SFSi by the spatial 
division of the projection 1m  on the ith 
axis in the way as described in the Section 6.3.2 for each 
projection where i is from 0 to n – 1.  

 0 , ,iX f f 

STEP 3: The PCVi extractor transforms SFSi into 
SVSi in the way as described in the Section 6.3.2 and 
calculates PCVi by applying the BISCAL to the vectors 
in the SVSi where i is from 0 to n – 1. 

Initialize NFi = {Ø}; 
For all v ∈ SVSi, if C1 (v) =1, NFi = NFi ∪ v; 
PFVi = NOT (OR (NFi)); STEP 4: The CV extractor calculate the CVs by com- 

bining the results of PCVs with the BISCAL. 
For example, in X0, SVS0 = {[11000], [11100], [00100], 

[00110], [00001]}, as mentioned above, NF0 = {[00100], 
[00001]}, and PFV0 = NOT ([00101]) = [11010]. 

STEP 5: The TR extractor calculates the topological 
relationship among all combinations of two filters in the 
FP using BISCAL and classifies them into two types of 
errors, three types of warnings and others (neither errors 
nor warnings), as explained in Section 5. 

7.3. CV Extractor 

CV Extractor calculates the CVs using the PCVi  
The computation of the last three steps is taken over 

by BISCAL. It extracts the topological relationships for 
all the combinations of two filters from the CVs, and 
classifies them into five types of conflicts and others 
(neither error nor warning filters). The last three steps are 
explained in detail in the following subsections. 

 0, , 1 i n , calculated in the previous subsection. 
Before the computation of the CVs, we remove the al- 
ready computed disjoint filters from  
POVSi  0, , 1 i n  and PFVi   . Using 
this technique, we improve our system efficiency, as 
unnecessary computations are removed by discarding 

0, , 1 i n
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Figure 4. System overview of topology-based conflict detection system.     
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possibilities to make a filter pair with disjoint filters dur- 
ing the computation. 

We introduce a vector DV , in which the value of a bit 
of the vector is 1 if the sponding filter is disjoint in 
an

corre
simiy one dimension. It is lar to DV because a bit in 

DV  is 1 if the corresponding filter is disjoint on the n- 
dimensional space, but is different from DV in that a bit in 

 might be 0 if the corresponding filter is disjoint on 
the n-dimensional space. The POVSi and PFVi calculated 

 previous subsection are replaced with iOVS

DV

in the   and 
FV, respectively. Here, a bit becomes “0” if the corre-
sponding filter is shown to be a disjoint filter in DV , in 

r to improve the efficiency of the computation. 
STEP 4-1: DV , iOVS  and FV  are calculated as 

follows. In this step, the disjoint filters are removed

orde

 from 

For each i = 0 to ,  = C-AN  (NOT 
), POVS ), and NOT (DV’), PFV ); 

 is lculate
llow whi

re

i
VS   and F   the possibility of a disjoint 

filter in the upcoming conflict detection steps. 

 0 i 1DV PDV PDV PDV  n  OR   ; 

O V  to discard

 1n 
FV  = 

iOVS
AND (

D
( DV i i

STEP 4-2: The OVS ca d according to the 
fo ing sub-steps, ch calculate the intermediate 

sults, IR, and then finally, the OVS. 

 OVS   ; 

 01IR OVS C - AND
1
 ; 

For i = 2 to , repeat 

i-1

For all , if ∪v; 
STEP ension 

on  it is ful vered in all one dimen d 
th

,OVS

1n 

 IR - ANDi iOVS ,OVS C ; 

1nv IR 
 4-3: A 

 v 1,  OVS O S C1
filter is fully covered in an n dim

V

ly when ly co sions, an
erefore FV is computed as follows: 

 NF  n ; 

For all , if ∪v; 1v IR  n  v 1 NF nC1 ,  NF

   0 nFV   1FV FV , NFnAND NOT OR ; 

STEP 4-4: DV is calculated in the same way as the 
vectors of one-dimension.  

For example, the CVs for FP1, shown in Table 1, are 
computed for two dimension (SrcIP, DesIP), as follows: 

  DV OVS NOT OR ; 

      VS 11000 , 11100 , 00110 , FV = [11010] and 
DV = [00001]. 

7.4. TR Extra

O

ctor 

ulates the sets of filter pairs, CCTP 

and CCTPtopology, so that we can obtain the topological 
relationships for all the filter pairs in the firewall policy 

The TR Extractor calc

from the above sets, and apply the rules for conflict clas- 
sification defined in Section 5. Filter pairs that have the 
conflict causing topology are defined in CCTP as fol- 
lows: 

    CCTP , TR , inside,contains,equal, i j i jf f f f

overla p . 

Two filter pairs that have the same topological rela- 
tionship a defined in CCTPtopology in more detail, as 
follows: 

re 

    topologyCCTP , , topology i j i jf f TR f f , 

where “topology” is one of inside, contains, equal, or 
overlap. 

For example: 

    CCTP , , overlap f f TR f f . overlap i j i j

putation of disjoint filters 
The disjoint filters are computed in the DF as follows: 

whic 4

Step 5-2: Compu

P ∪ PF (v); 
For example, the CCTP of FP1 is as follows:  

Step 5-1: Com

DF = V2S (DV); 

For example, for FP1, DF = V2S ([00001]) = {f4}, 
h shows that f FP1.  is a disjoint filter of 

tation of CCTP 

 CCTP   ; 

For each v ∈ OVS, CCTP = CCT

      OVS 11000 , 11100 , 00110 , 

        0 1 0 2 1 2 2 3CCTP , , , , , , , f f f f f f f f . 

STEP 5-3: Classification of topology betw n filter 
pairs 

Initially, we calculate the fully covered filter pairs  and 
th

P 5-3-1: Computation of fully covered filter 
pa

 SP, where S is a set of 
al

d filter pairs. If f  is a fully covered filter in S, and 
f  (

ee

,
en lastly, each CCTPtopology.  
STE
irs 
We introduce two sets, S and

l fully covered filters in FP, and SP is a set of fully 
covere j

i i < j) is some filter in FP, a filter pair (fi, fj) is in either 
one of CCTPinside, CCTPcontains, or CCTPequal. The com- 
putational steps for S and SP are as follows: 
Initialize  SP   ; 

S = V2S (FV); 

 for each fk  
    {

of S, do 
FFk =  11 1

for each v   O
; 

    VS,  
if bk of v is 1, FFk = AND (FFk, v);      
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0 in FF
  (FFk));} 

OVS= {[11000], 

[1

[00110]. 

    Set bk to k; 
    SP = SP ∪ PO ({fk}, V2S

For example, the SP for FP1 is calculated as follows: 
S= V2S ([11010]) = {f0, f1, f3} and 
[11100], [00110]}. Then, FF0 = AND {[11111], [11000], 

1100]} = [11000]. 
Similarly, FF1 and FF3 are calculated as follows: FF1 = 

AND ([11111], [11000], [11100]) = [11000], FF3 = AND 
([11111], [00110]) = 

Set fk bit to 0 in FFk, and therefore, FF0 = [01000], FF1 
= [10000] and FF3 = [00100]. 

              
    

0 1 1 0 3 2

0 1 3 2

, , ,

, , , .

SP f f f f f f

f f f f

PO PO PO 
 



STEP5-3-2: Computation of CCTPtopology 
All the combinations of filter pairs are classified using

the values calculated above, according to their topologi- 
ca

 

l relationships.  

    equalCCTP , , , , SP  i j i j i jf f f f S f f ; 

   insideCCTP , , , , SP   i j i j i jf f f S f S f f  ; 

   containCCTP , , , , SP   i j i j i jf f f S f S f f ; 
The CCTPoverlap is calculated as follows:  

CCTPoverlap = CCTP ∩ SP; 
For example, the SP for FP1 calculated in the STEP 

5-3-1 leads us to the following two sets: 

  equal 0 1CCTP , f f  

and 

  inside 2 3CCTP , f f  

and 

    overlap 0 2 1 2CCTP , , , f f f . f

Step 5-4: Conflict Classification 
By using the sets of filter pairs calculated in the pre- 

vious steps, we can determine the topological relation- 
sh filters fi and fj, and 
ac

ing caused by f0, and a correlation warn- 
in

We have evaluated our proposed system using a mathe- 
ith a special case. We have developed 

e efficiency of the con- 
flict detection system is decided by the number of sub- 

space with a numerical digit. The sub- 
sp

times the value of m in 
to

ips TR (fi, fj) between any pair of 
cording to the rules described in Section 5, any filter fj 

is classified.  
For example, the filters in FP1 are classified as fol- 

lows: f1 has a shadowing error caused by f0, f2 has a re- 
dundancy warn

g caused by f1, f3 has a shadowing error caused by f2 
and f0 and f4 have neither errors nor warnings. 

8. Evaluation 

matical analysis w

a prototype of our system in JAVA programming lan- 
guage and then performed an experimental analysis to 
evaluate the efficiency of the proposed system. 

8.1. Mathematical Analysis 

As we have discussed earlier, th

spaces required to find the relationship between the fil- 
ters. The basic difference in geometry and topology is 
that topology considers only the unique subspaces, 
whereas geometry considers all the subspaces. Therefore, 
the computation time and memory requirements for a 
topology-based approach are less than that of a geome- 
try-based approach. But in general, it is difficult to 
mathematically analyze the difference between the com- 
putation time and memory requirements in geometry and 
topology-based approaches. Therefore, we selected an 
example policy, FPA, which includes a lot of conflicts, 
with each and every filter is symmetrical to each other, 
and every filter conflicting with all the other filters. The 
two-dimensional spatial representation of FPA with 3 
filters is shown in Figure 5(a) and m + 1 filter is shown 
in Figure 5(b). 

In Figure 5(a), for sake of simplicity, we have repre- 
sented each sub

aces with the same filter sets (non-unique subspaces) 
are represented by a single numerical digit. For example, 
the number zero refers the subspace of filter f0, and the 
number four represents the subspace with filters {f1, f2}. 
Firstly, we compare the difference between the number 
of subspaces in Figure 5(a). The computation of con- 
flicts through topological approach requires only six 
subspaces, whereas the geometrical approach requires all 
thirteen subspaces for conflict detection. Likewise, if 
new filters are added by preserving the symmetrical 
structure, as shown in Figure 5(b), we derived the dif- 
ference in subspaces required for the topology and ge- 
ometry approaches for Figure 5. 

When an m + 1th filter is added in FPA, the number of 
new subspaces increases by four 

tal and there exists m + 1 number of unique subspaces 
following the sum of natural number series. Therefore in 
topological approach, when the m + 1th filter is added, 
the number of subspaces considered for conflict detec- 
tion is m + 1. However, in the geometrical approach, 
when the m + 1th filter is added, the total number of sub- 
spaces considered is four times the value of m. We can 
derive the following equations for the number of sub- 
spaces NSi for both approaches. 

Topology: 

   2NS 2 m mi m  
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Figu  
 
and 

re 5. FPA in two dimensions. (a) 3 filters; (b) m + 1 filters.

tional geometry-based approaches [7-9]. 
Our experiments were performed on Intel (R) Core 

(TM) i5  750 @ 2.6  2.67 GHz w 00GM 
RAM g on Win profession  con- 

FPA  FPB. 

     i iNS 1 NS 1   m m m . 
 CPU 7 GHz ith 4.

runnin dows 7 al. We
 and

Geometry: 
ducted experiments with two policies, 
FPA is the policy discussed in the previo   22

iNS 1  m m m  

us subsection, 
and FPB is a synthetic firewall policy, which is gener- 
ated by adding a large number of filters to a small prac- 
tical firewall. We have developed FPB based on the 
practical firewall policy being used in our lab. It consists 
of 99 packet filters of 5 dimensions, with 32-bit SrcIP, 
DesIP addresses, 16-bit SrcPort, DesPort numbers, and 
an 8-bit protocol. The synthetic firewall policy (FPB) 
ranges in size from 100 to 1000. In this paper, like other 
firewall management techniques [3-22], we did not con- 
sider the stateful filters for experimental evaluation. The 
treatment of conflict detection in stateful firewalls is a 
topic for future work. We conducted three experiments 
with both FPA and FPB. 

Exp.1: Comparative performance analysis of topology 
and geometry [7-9] using FPA.  

Exp.2: Evaluation of the system behavior in different 
scenarios by varying the ratio of wildcards in FPB. 

Exp.3: Evaluation of 

and 

    i iNS 1 NS 4  m m . m

We have substituted different values of , and tabu- 
lated the number of subspaces in Table 2. Our mathe- 
m

xperimental Analysis 

y performing a compara- 
tive analysis between the proposed system and conven-  

Numb y 

 m

atical analysis shows that the number of subspaces for 
the topology approach is nearly one-fourth of the geo- 
metrical approach in two-dimensional space. The differ- 
ence between the topology approach and the geometry 
approach is much larger when the dimension increases. 
In practical firewall policies, the efficiency of the topol- 
ogy approach is extremely high, because BISCAL re- 
moves the disjoint filters in the intermediate computation 
itself. We verify these using experiments in the next sec- 
tion. 

8.2. E
system behavior in practical 

firewall policies by varying the number of filters in FPB. 
In the three experiments, we h

We have evaluated our system b
ave measured parame- 

ters such as memory and computation time. Memory is 
compared by examining the number of subspaces 

 
Table 2. Results of mathematical analysis. (NS) 

required for conflict computation. Computation time is 
the measure of the program execution time until conflict er of filters Geometry Topolog

2 5 3 

5 41 15 

1  1 5  

1000 1,998,001 500,500 

00 9801 050

classification. We conducted three experiments, as 
shown above, and plotted graphs showing the number of 
filters on the x-axis, and the computation time expressed 
in seconds and memory expressed in KB and MB on the 
y-axis. The results of Exp.1 are shown in Figure 6. It is 
clear from the graph that our proposed topology-based  
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Figure 6. Comparison of topology and geometry. 
 
system performs better than the geometrical approach. 

Exp.2 is performed by varying the ratio of the wild- 
cards of the input filters, as shown in Figures 7(a) nd 
(b). T sys- 

m behaves with different kinds of polices used in vari- 
y 

va

 
 

 a
his analysis is performed to examine how the 

te
ous environments. We have synthesized various FPs b

rying the distribution of wildcards in FPB. 
We found that the computation time is less when the 

ratio of wildcards is in two extremes. When the ratio of 

wildcards is high, most of the filters occupy the 
n-dimensional space. As a result, there are only a few 
unique subspaces for conflict detection, as most of the 
subspaces have the same set of filters. When the ratio of 
wildcards is too low, most of the filters become disjoint 
to the others, and therefore the number of conflicting 
subspaces is less. Therefore the memory and computa- 
tion time is less for lower and higher percentages of 
wildcards. 

Exp.3 is performed using FPB to examine the system 
behavior with practical firewall policies. When the num- 
ber of filters is increased, the system requires a reason- 
able computation time and memory when detecting con- 
flicts, as shown in Figures 8(a) and (b). For example, the 
system takes only 100 seconds to detect and classify the 
conflicts for m = 500. 

9. Conclusions and Future Work 

Our proposed topology-based conflict detection system 
detects the conflicts in FP and classifies them efficiently. 
It performs well as compared to conventional geometri- 
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Figure 7. Performance analysis by changing the ratio of wildcard in FPB. (a) Computation time; (b) Memory. 
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Figure 8. Performance analysis of system using FPB. (a) Computation time; (b) Memory. 
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cal approaches and efficiently utilizes the two important 
resources: computation time and memory. Our future 
research plan focuses on the detection of conflicts caused 
by combinations of filters in firewall policies and con- 
flict detection in stateful firewalls [28]. 
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